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Background: A major challenge in implementing personalized medicine in pediatrics is

identifying appropriate drug dosages for children. The majority of drug dosing studies

have been based on adult populations, often with modification of the dosing for children

based on size and weight. However, the growth and development experienced by

children between birth and adulthood represents a dynamically changing biological

system, with implications for effective drug dosing, efficacy as well as potential drug

toxicity. The purpose of this study was to apply a metabolomics approach to gain

preliminary insights into the ontogeny of liver function from newborn to adolescent.

Methods: Metabolites were measured in 98 post-mortem pediatric liver samples in

two experiments 3 batches of samples, allowing for both technical and biological

validation. After extensive quality control, imputation and normalization, non-parametric

tests were used to determine which metabolite levels differ between the four age

groups (AG) ranging in age from newborn to adolescent (AG1—children <1 year;

AG2—children with age between 1 and 6 years; AG3—children with age between 6

and 12 years; AG4—children with age between 12 and 18 years). To identify which

metabolites had different concentration levels among the age groups, Kruskal-Wallis

and Spearman correlation tests were conducted. Pathway analysis utilized the Gamma

Method. Correction for multiple testing was completed using Bonferroni correction.

Results: We found 41 metabolites (out of 884) that were biologically validated, and

of those 25 were technically replicated, of which 24 were known metabolites. For

the majority of these 24 metabolites, concentration levels were significantly lower in

newborns than in the other age groups, many of which were long chain fatty acids or

involved in pyrimidine or purine metabolism. Additionally, we found two KEGG pathways

enriched for association with age: betainemetabolism and alpha linolenic acid and linoleic

acid metabolism.

Conclusions: Understanding the role that ontogeny of childhood liver plays may aid in

determining better drug dosing algorithms for children.
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INTRODUCTION

Most drugs prescribed for children have not been studied
in the relevant pediatric patient population to determine the
appropriate dosing regimen, with ∼20% of drugs approved by
the FDA being labeled for use in children as of 2016 (from FDA
website https://www.fda.gov/drugs/resourcesforyou/consumers/
ucm143565.htm). Hence, the majority of drug dosing regimens
for use in pediatric populations are based on dosing guidelines
developed for adults and modified for use in children based on
body weight and size of the child. However, children differ from
adults in other ways beyond just size or weight, including body
composition and organ development (1, 2). The disposition of
many drugs is dependent on hepatic factors, such as blood flow
and activity of drug-metabolizing enzymes and transporters.

In particular, the activity of many cytochrome P450 (CYP)
isoforms, such as CYP3A4, CYP1A2, and CYP2D6, has been
shown to be lower in newborns compared to adults, with
each having a distinct developmental trajectory (3, 4). Similar
findings have been reported for glucuronosyl transferases (5)
and the expression of liver transporters (6). In addition to the
critical need to understand the ontogeny of drug disposition
to aid in age-appropriate dose selection, there needs to be
recognition that a child is a dynamically changing biological
system. For example, age-dependent changes in organic acid
profiles imply that mitochondrial function may change during
growth and development, especially relevant in the context of
valproate hepatotoxicity (7). Less studied are the developmental
trajectories of hepatic pathways that serve as targets of drug
action, such as cholesterol biosynthesis (statins) and glucose
homeostasis (metformin).

Technological advances in measuring metabolites and the
rapid commercialization of novel instrumentation have sped
up the adoption of metabolomics in all aspects of basic,
population and clinical biomedical research (8, 9). Metabolites
are the substrates, cofactors, and products needed for biological
pathways and essential for cellular functions. In addition,
many endogenous compounds are also substrates for “drug”
metabolizing enzymes and transporters. Therefore, the purpose
of this study was to characterize the biochemical changes
occurring in liver between birth and 18 years of age and
gain initial insight into ages/developmental stages that may be
associated with altered drug response or increased susceptibility
for age-related drug toxicity not apparent from adult data.

MATERIALS AND METHODS

Liver Samples
Postmortem pediatric human liver tissue samples were obtained
through the Brain and Tissue Bank for Developmental Disorders
at the University of Maryland (Baltimore, MD), the Liver Tissue
Cell Distribution System (LTCDS; University of Pittsburgh and
University of Minnesota), and XenoTech LLC (Lenexa, KS). The
use of these tissues was classified as non-human subject research
by the Children’s Mercy Hospital Pediatric Institutional Review
Board. A replication set of post-mortem liver tissue samples from
autopsies of fetuses (from therapeutic abortions or stillbirths)

and infants was provided by the Erasmus Medical Center Tissue
Bank, Sophia Children’s Hospital, Rotterdam, the Netherlands.
Tissue was procured at the time of autopsy within 24 h after
death, snap-frozen in liquid nitrogen and stored at −80 ◦C for
later research use. The Erasmus Medical Center Research Ethics
Board waived the need for formal ethics approval according
to the Dutch Law on Medical Research in Humans. Tissue
was collected when parental written informed consent for both
autopsy and the explicit use of the tissue for research was present.
Samples were selected based on the absence of a clinical diagnosis
or medications affecting the liver (CMH and Erasmus Medical
Center), and tissue that was histologically normal (Erasmus
Medical Center). Samples were stratified into four age groups:
<1 year of age (age group 1), 1 to <6 years (age group 2), 6 to
<12 years (age group 3), and 12–18 years of age (age group 4).
In total 98 liver samples were available for metabolomic analysis.
Characteristics of the study group are presented in Table 1.

Metabolomic Analysis
Untargeted metabolomic profiling was conducted by Metabolon
Inc. (Durham, NC). Samples in two sets of experiments,
Experiment 1 and Experiment 2, as described below and depicted
in Figure 1A.

Experiment 1
The first experiment was completed using the first set of samples
(N = 48) (referred to as “batch 1”).

Metabolite extraction and detection as previously described
(10). Briefly, liver sample preparation was conducted using
a proprietary series of organic and aqueous extractions to
remove the protein fraction and optimize recovery of small
molecules through the automated MicroLab STAR R© system
(Hamilton Company, UT, USA), centrifuged, and the resulting
supernatants were analyzed by analyzed by ultra-performance
liquid chromatography mass spectrometry (UPLC-MS/MS) in
a positive and negative ion mode (UPLC: Waters, Milford,
MA; mass spectrometer: Thermo-Finnigan LTQ, Thermo Fisher
Scientific, Waltham, MA, scan range, 80–1,000 m/z) and by
GC-MS (Thermo-Finnigan Trace DSQ fast-scanning single-
quadrupole mass spectrometer, scan range 50–750 m/z). The
final experiment 1 metabolomic dataset comprised a total of
751 biochemicals, 478 compounds of known identity (named
biochemicals) and 273 compounds of unknown structural
identity. As initial statistical analysis revealed an age-dependent
effect that could not be distinguished from a tissue source-
related effect, a replication set of group 1 samples was obtained
through collaboration with the Erasmus Medical Center/Sophia
Children’s Hospital.

Experiment 2
Given that the metabolomic platform changed between the
first analysis and the sample set containing the replication
samples, the second experiment examined the entire set of
98 samples. The same 48 samples previously processed in
Experiment 1 and designated as “batch 1” above were re-
analyzed on the new platform, with the results designated
“batch 2.” The replication samples from the Erasmus Medical
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TABLE 1 | Summary of pediatric liver samples included in the study.

Sample set Tissue source Age group

Age <1 year (AG1) 1≤ age <6 years (AG2) 6≤ age <12 years (AG3) 12≤ age <18 years (AG4)

All samples

Erasmus Medical Center 20 1 0 2

Minnesota 0 8 8 12

Pittsburgh 0 3 10 6

UMB 13 2 1 1

XenoTech 1 7 2 1

Total 34 21 21 22

Samples in Experiment 1,

Batch 1 and Experiment 2,

Batch 2

Erasmus Medical Center 0 0 0 0

Minnesota 0 8 6 8

Pittsburgh 0 0 2 2

UMB 12 2 1 1

XenoTech 0 4 1 0

Total 13 14 10 11

Samples in Experiment 2,

Batch 3

Erasmus Medical Center 20 1 0 2

Minnesota 0 0 2 4

Pittsburgh 0 3 8 4

UMB 1 0 0 0

XenoTech 0 3 1 1

Total 21 4 11 11

Center/Sophia Children’s Hospital and additional samples
from CMH (N = 50) are designated as “batch 3.” Following
the sample extraction, the resulting extract was analyzed
using a Waters ACQUITY UPLC and a Thermo Scientific
Q-Exactive high resolution/accurate mass spectrometer
interfaced with a heated electrospray ionization (HESI-II)
source and Orbitrap mass analyzer operated at 35,000 mass
resolution (11). Four methods were utilized: two separate
reverse phase (RP)/UPLC-MS/MS methods with positive
ion mode electrospray ionization (ESI), RP/UPLC-MS/MS
with negative ion mode ESI, and HILIC/UPLC-MS/MS with
negative ion mode ESI. The MS analysis alternated between
MS and data-dependent MSn scans using dynamic exclusion.
The scan range varied slightly between methods but covered
70–1,000 m/z. The final experiment 2 metabolomic dataset
comprised a total of 971 biochemicals, 779 compounds of known
identity (named biochemicals) and 192 compounds of unknown
structural identity.

Data Processing
Raw data was extracted, peak-identified and QC processed
using proprietary hardware and software. Compounds were
identified by comparison to library entries of purified standards

or recurrent unknown entities (12). Peaks were quantified
using area-under-the-curve. As the metabolomic assays span
multiple days, a data normalization step was performed to correct
variation resulting from instrument inter-day tuning differences.
Essentially, each compound was corrected in run-day blocks by
registering the medians to equal one (1.00) and normalizing each
data point proportionately.

Statistical Analyses
Additional quality control measures were taken and are
outlined in Figure 1B, such as imputation of missing data,
and normalization. First, metabolites with more than 75%
missing data were removed from subsequent analysis. After
removing metabolites from analysis data set, data were log2
transformed and scaled followed by imputation of missing
values with the minimum detected level for the specific
metabolite divided by

√
2. Latent effects are unmeasurable

and unobservable factors can bias results, some examples
of latent effects are batch effects, day-to-day variations in
instrument performance. Latent factors were identified using
principal component analysis (PCA), where the top 2 principal
components (PCs) were adjusted for by using a linear model
for each batch. Removing the top 2 PCs strikes a balance
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FIGURE 1 | (A) Description of the two procedures used to obtain metabolite concentrations and how the samples were allocated in the three batches. (B) Flowchart

of the entire analysis batch including how the quality control was conducted for the raw data, and summarizes the metabolite validation.

between removing latent technical factors, while the biologically
relevant factors are still present. On the other hand it is
possible that some of the estimated latent factors are not
technical artifacts but rather represent true biology presented in
the data.

It is unreasonable to assume that the abundance of each
metabolite is normally distributed, hence the rank-based non-
parametric Kruskal-Wallis (KW) test was performed, for each
batch and metabolite individually, to determine if there were
any differences in metabolite levels among the four age groups
(AG1—children<1 year; AG2—children with age between 1 and
6 years; AG3—children with age between 6 and 12 years; AG4—
children with age between 12 and 18 years). Linear associations
between age group and metabolite levels were investigated
using Spearman correlation test. To adjust for multiple testing
a Bonferroni correction was applied. Statistical analysis was

restricted to metabolites in common between the three batches
of samples to enable assessment of both technical and biological
validation. Biological validation was achieved by determining
which metabolites had a significant p-value from KW test in both
batches 2 and 3. This set of metabolites was then compared to
the set of metabolites with a significant p-value from KW test (p
< 0.05) in Batch 1 for technical validation. Pairwise differences
were assessed for technically validated metabolite using Mann-
Whitney tests.

The implication of an association between the concentrations
of a single metabolite and age can be difficult to relate to
important biological processes, while grouping metabolites into
biologically meaningful sets can help understand an entire
metabolite set. To determine association between age and a
metabolite set we used the Gamma Method, a variation of
Fisher’s method (13). In the Gamma method, p-values from the
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metabolite-age association analysis were combined into a test

statistic defined as
∑k

i=1 h(pi), where k represents the number
of metabolites in a pathway, pi represents the p-value for the
association between the ith metabolite and age group, and h()
represent the inverse gamma cumulative distribution function
[i.e., Gω,1

−1(1 − pi)]. This transformation gives more weight
with p-values below a soft truncation threshold value determined
by the shape parameter ω (13, 14). For this analysis we set
the shape parameter to 0.0382, which gives more weight to p
< 0.1. Due to the correlation between metabolites, the sum
of transformed p-values does not necessarily follows a known
distribution; therefore empirical p-values were computing using
permutation methods, with p-values estimated from 100,000
permutations. Definition and mapping of metabolites to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
and drug metabolite sets was completed using pathway mapping
data fromMetaboAnalyst (15). Metabolite pathways with at least
5 metabolites and coverage of at least 50% were included in
the analysis, excluding pathways related to disease processes,
resulting in 2 KEGG and 30 drug metabolite pathways being
analyzed. Only metabolites that were present all three batches
were considered for pathway analysis. Pathways were considered

enriched if the empirical p-value derived using the Gamma
method is <0.01 in all three batches.

RESULTS

Metabolites withmore than 75%missing data (across all samples)
were removed from the analyses; 88 out of 751 metabolites were
removed from consideration from batch 1, while 66 and 57
out of 971 metabolites were not considered in batches 2 and
3, respectively. After the removal of metabolites with >75%
missing values, there were 322 metabolites in common between
the 3 batches for comparative analysis (884 in common between
batch 2 and batch 3). First, the effect due to age was removed
from the data and then PCA was conducted to estimate latent
features. Then, the first 2 principal component removed for
each batch individually, with the resulting data presented in
Figure 2. As Figure 2 illustrates, there is a large difference in
global metabolites levels between the infant (AG1) and the early
childhood/late childhood/adolescent age groups (AG2–AG4).
The 2 principal components that were removed consisted of
29.83, 26.34, and 27.33% of the total variance in each batch,
respectively. There were 16, 21, and 11 metabolites that were

FIGURE 2 | Principal Component Analysis of each metabolite for each batch. The metabolomic liver profiles for children <1 year old clearly separate from the profiles

for the children older than 1 year of age in PCA plot.
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TABLE 2 | Twenty-four known metabolites out of the 25 biologically and technically replicated metabolites.

Metabolite HMDB Super pathway Sub pathway Batch

Median of normalized data

Four age group comparison Pairwise comparisons

KW test Spearman test Mann-Whitney p < 0.001*

Infant

(AG1)

Early

childhood

(AG2)

Late

childhood

(AG3)

Adolescent

(AG4)

p-value Rho p-value AG1 vs.

AG2

AG1 vs.

AG3

AG1 vs.

AG4

10-heptadecenoate

(17:1n7)
HMDB60038 Lipid Long chain fatty acid

1 −1.30 0.46 0.87 0.38 3.13E-07 0.74 1.42E-09 x x x

2 −1.16 0.55 0.60 0.31 2.41E-06 0.65 6.94E-07 x x x

3 −0.75 0.22 0.91 0.01 1.34E-05 0.68 6.58E-08 x

10-non-adecenoate

(19:1n9)
HMDB13622 Lipid Long chain fatty acid

1 −1.20 0.46 0.71 0.01 6.56E-07 0.66 3.15E-07 x x x

2 −1.08 0.78 0.69 0.08 1.16E-06 0.55 4.58E-05 x x

3 −0.87 0.62 0.86 0.11 2.08E-05 0.64 4.69E-07 x

Margarate (17:0) HMDB02259 Lipid Long chain fatty acid

1 −0.98 0.53 0.31 0.09 1.72E-06 0.62 2.11E-06 x x x

2 −0.84 0.56 0.71 −0.08 3.29E-06 0.52 1.55E-04 x x

3 −0.72 0.56 0.70 0.15 1.66E-05 0.66 1.70E-07 x

Taurodeoxycholate HMDB00951 Lipid
Primary bile acid

metabolism

1 −1.55 0.10 −0.10 0.00 1.60E-04 0.51 2.18E-04 x x

2 −3.18 0.20 −0.09 0.13 6.21E-06 0.57 2.12E-05 x x x

3 −2.17 −0.04 0.10 0.20 1.61E-06 0.76 1.39E-10 x x

Beta-alanine HMDB00056 Nucleotide
Pyrimidine metabolism,

uracil containing

1 1.00 −0.53 0.23 −0.58 8.71E-05 −0.48 5.02E-04 x x

2 1.03 −0.36 −0.15 −0.75 2.60E-05 −0.50 2.77E-04 x x

3 0.91 −0.62 −0.18 −0.74 1.63E-04 −0.48 4.63E-04

Pseudouridine HMDB00767 Nucleotide
Pyrimidine metabolism,

uracil containing

1 0.95 −0.04 −0.43 −0.68 3.90E-06 −0.69 4.25E-08 x x x

2 0.97 −0.38 −0.28 −0.63 4.03E-05 −0.57 2.65E-05 x x x

3 1.09 −0.79 −1.14 −0.36 1.34E-08 −0.82 5.61E-13 x x x

Uridine HMDB00296 Nucleotide
Pyrimidine metabolism,

uracil containing

1 −0.97 0.42 0.33 0.45 2.88E-06 0.60 7.99E-06 x x x

2 −0.96 0.24 0.05 0.35 2.73E-05 0.51 2.45E-04 x x x

3 −0.77 0.58 0.82 0.38 1.34E-08 0.85 3.83E-15 x x x

Hypoxanthine HMDB00157 Nucleotide

Purine metabolism,

(Hypo)Xanthine/Inosine

containing

1 −1.83 0.66 0.73 0.77 1.81E-06 0.64 1.20E-06 x x x

2 −2.71 1.07 1.00 1.40 9.45E-06 0.58 1.51E-05 x x x

3 −0.58 0.21 0.91 0.43 8.54E-08 0.82 2.95E-13 x x x

(Continued)
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TABLE 2 | Continued

Metabolite HMDB Super pathway Sub pathway Batch

Median of normalized data

Four age group comparison Pairwise comparisons

KW test Spearman test Mann-Whitney p < 0.001*

Infant

(AG1)

Early

childhood

(AG2)

Late

childhood

(AG3)

Adolescent

(AG4)

p-value Rho p-value AG1 vs.

AG2

AG1 vs.

AG3

AG1 vs.

AG4

Inosine HMDB00195 Nucleotide

Purine metabolism,

(Hypo)Xanthine/Inosine

containing

1 −1.70 0.60 0.73 0.82 2.53E-06 0.65 4.88E-07 x x x

2 −2.17 0.78 0.77 1.37 3.13E-06 0.60 6.54E-06 x x x

3 −1.16 0.83 1.07 0.57 8.44E-08 0.80 4.07E-12 x x x

Urate HMDB00289 Nucleotide

Purine metabolism,

(Hypo)Xanthine/Inosine

containing

1 1.47 −0.37 −0.54 −1.09 1.31E-06 −0.65 5.23E-07 x x x

2 2.04 −0.83 −0.38 −1.40 6.32E-06 −0.56 2.94E-05 x x x

3 1.03 −1.19 0.65 −0.48 1.43E-05 −0.64 5.04E-07 x x

S-

adenosylhomocysteine

(SAH)

HMDB00939 Amino acid

Methionine, cysteine,

SAM, and taurine

metabolism

1 −1.21 0.39 0.57 0.34 2.82E-06 0.67 1.65E-07 x x x

2 −1.28 0.22 0.07 0.03 2.07E-05 0.54 7.29E-05 x x x

3 −0.91 0.75 0.75 0.43 2.30E-06 0.68 4.18E-08 x x x

Gamma-

glutamylmethionine
HMDB29155 Peptide

Gamma-glutamyl amino

acid

1 −0.69 0.31 −0.13 0.34 4.92E-04 0.33 2.35E-02 x x

2 −1.20 0.21 0.67 0.41 1.88E-05 0.68 8.57E-08 x x x

3 −1.40 1.08 0.88 1.19 3.10E-06 0.66 2.08E-07 x x

Prolylglycine HMDB11178 Peptide

Dipeptide 1 −0.78 −0.13 0.55 0.14 5.95E-05 0.68 1.10E-07 x x

2 −0.76 −0.19 0.84 0.14 3.17E-05 0.71 1.97E-08 x

3 −0.93 0.39 0.73 0.38 3.65E-05 0.65 2.53E-07 x

Nicotinamide HMDB00902
Cofactors and

vitamins

Nicotinate and

nicotinamide

metabolism

1 −0.92 0.44 0.28 0.41 3.34E-06 0.57 2.80E-05 x x x

2 −0.87 0.44 0.21 0.52 1.55E-06 0.51 1.90E-04 x x x

3 −0.74 0.64 0.76 0.54 3.90E-08 0.83 1.52E-13 x x x

Nicotinamide adenine

dinucleotide (NAD+)
HMDB00229

Cofactors and

vitamins

Nicotinate and

nicotinamide

metabolism

1 −1.50 0.47 0.54 0.25 2.89E-06 0.56 3.64E-05 x x x

2 −0.88 0.43 0.36 0.08 1.97E-05 0.48 5.52E-04 x x x

3 −1.17 0.72 0.95 0.67 7.02E-08 0.78 2.25E-11 x x x

Glycolithocholate

sulfate*
HMDB02639

Cofactors and

vitamins

Secondary bile acid

metabolism

1 −1.02 −0.05 0.22 0.81 9.35E-03 0.48 5.51E-04

2 −2.46 0.16 0.53 0.74 1.55E-05 0.68 9.77E-08 x x x

3 −1.85 −0.10 0.78 0.59 6.76E-07 0.79 1.38E-11 x x

(Continued)
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TABLE 2 | Continued

Metabolite HMDB Super pathway Sub pathway Batch

Median of normalized data

Four age group comparison Pairwise comparisons

KW test Spearman test Mann-Whitney p < 0.001*

Infant

(AG1)

Early

childhood

(AG2)

Late

childhood

(AG3)

Adolescent

(AG4)

p-value Rho p-value AG1 vs.

AG2

AG1 vs.

AG3

AG1 vs.

AG4

Heme HMDB03178
Cofactors and

vitamins

Hemoglobin and

porphyrin metabolism

1 −0.49 −1.07 −1.31 −1.10 7.81E-04 −0.54 6.87E-05

2 1.16 −1.68 −1.95 −1.64 3.22E-06 −0.67 2.25E-07 x x x

3 1.64 −1.82 −2.26 −1.58 1.71E-08 −0.86 1.52E-15 x x x

Hippurate HMDB00714 Xenobiotics Benzoate metabolism

1 −2.15 0.75 0.66 0.93 4.90E-05 0.59 8.63E-06 x x x

2 −1.99 0.63 0.76 1.25 5.32E-05 0.58 1.54E-05 x x x

3 −1.75 1.47 1.36 1.96 4.45E-06 0.64 7.07E-07 x x x

Lactobionate Carbohydrate
Disaccharides and

oligosaccharides

1 −3.12 0.16 −0.03 −0.21 3.04E-06 0.57 1.93E-05 x x x

2 −3.46 0.63 0.45 0.54 1.22E-05 0.54 7.82E-05 x x x

3 −3.08 1.12 1.29 0.23 2.29E-05 0.63 8.42E-07 x

Mannose HMDB00169 Carbohydrate
Fructose, mannose, and

galactose metabolism

1 −1.25 0.23 0.51 0.64 2.57E-06 0.71 2.18E-08 x x x

2 −0.97 0.17 0.38 0.52 2.52E-06 0.66 3.91E-07 x x x

3 −0.94 0.57 0.92 0.66 1.50E-07 0.80 2.28E-12 x x x

Raffinose HMDB03213 Carbohydrate
Disaccharides and

oligosaccharides

1 −2.87 0.47 0.11 0.34 7.21E-06 0.55 5.55E-05 x x x

2 −1.05 0.07 0.62 −0.04 7.20E-06 0.56 3.41E-05 x x x

3 −1.01 0.48 0.68 −0.42 1.01E-05 0.66 1.66E-07 x x

Ribose HMDB00283 Carbohydrate Pentose metabolism

1 −0.92 0.40 0.84 0.41 1.81E-05 0.67 2.40E-07 x x x

2 −1.05 0.26 0.62 0.42 5.04E-05 0.62 2.17E-06 x x x

3 −1.01 0.22 0.7s3 0.52 1.03E-05 0.70 1.69E-08 x x

Hexanoylglutamine

1 −1.60 0.33 0.42 0.83 1.81E-06 0.70 2.68E-08 x x x

2 −1.49 0.54 0.43 0.79 5.18E-06 0.64 9.67E-07 x x x

3 −1.88 0.57 1.54 0.74 3.89E-08 0.84 3.05E-14 x x x

Succinylcarnitine HMDB61717 Energy TCA cycle

1 −1.31 0.32 0.95 0.61 1.33E-06 0.74 1.38E-09 x x x

2 −1.24 0.40 0.96 0.36 5.27E-06 0.66 3.28E-07 x x x

3 −1.17 0.68 1.22 0.20 3.64E-08 0.83 1.07E-13 x x x

*No Mann-Whitney Tests between Early Childhood, Late Childhood or Adolescent had p < 0.001.
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present in only AG1 in batch 1, 2, and 3, respectively. However,
there was only one metabolite, estriol 3-sulfate, that was only
present in AG1 for all batches.

Assessment of the association of each of the 884 metabolites
with age group in Batch 2 and Batch 3 utilizing the KW
test detected 70 and 197 metabolites in batch 2 and batch
3, respectively (Bonferroni adjusted p < 0.05/884 = 5.7e-
5) (Supplemental Tables 1, 2). Spearman correlation tests to
determine linear trends between metabolites and the four age
groups detected 95 and 286 metabolites in batch 2 and 3,
respectively (p < 0.05/884). Under the null hypothesis that a
metabolite is not associated with age and independent between
tests (i.e., metabolites), we would have expected to have 0
metabolites detected at the 5.7e-5 significance level. Thus,
there appears to be a significant departure from the null
hypothesis. Forty-one of these metabolites were detected in both
batch 2 and batch 3 and had similar direction of effect as
measured by Spearman correlation (Rho), were thus considered
biologically validated.

For technical validation, 25 of these 41 biologically-validated
metabolites were also associated with age in batch 1 (p < 0.05),
of which 24 are known metabolites (Supplemental Table 3).
The 24 known metabolites are presented in Table 2, with a
heatmap of the 25 metabolite levels presented in Figure 3 and
Supplemental Figure 1. Of the 25 metabolites, 20 were found
to have increasing levels over childhood development with
the lowest levels present in the infant age group (AG1) and
little difference in metabolite levels between the three older
age groups. Additionally, pairwise comparison between the
four age groups revealed that in many cases the distribution
of metabolites levels varied significantly between infants and
all other age groups (p < 0.001; Table 2). Of the 24 known
metabolites found to be associated with age, 3 metabolites were
in the sub-pathways “purine metabolism (hypo)xanthine/Inosine
containing,” “pyrimidine metabolism, uracil containing,” and
‘‘long fatty acids.”

Analysis of the pathways/metabolite sets (removing pathways
related to disease etiology) with more than 5 metabolites
and at least 50% coverage of the pathway resulted in a
total of 32 significant metabolite sets (p < 0.001 in all
3 batches) (Supplemental Table 4). Based on the use of
100,000 permutations, the smallest observable empirical p
< 1/100,000 = 1.0 × 10−5. The most significant pathway
in all three batches was the “Betaine Metabolism” pathway
(Table 3). For this pathway, 12 of the 21 metabolites in this
pathway were present in our study, resulting in a p < 1.0 ×
10−5 all three batches. The 12 metabolites included in our
analysis are: 5-methyltetrahydrofolate (5MeTHF), adenosine,
betaine, choline, dimethylglycine, flavin adenine dinucleotide
(FAD), homocysteine, methionine, nicotinamide adenine
dinucleotide (NAD+), phosphate, S-adenosylhomocysteine
(SAH), S-adenosylmethionine (SAM). The majority of these
metabolites were individually significant associated with age.
To put these results in reference to the biological pathway,
we have plotted them with the pathway in Figure 4A and
have denoted the metabolites measured in our study and the
results for association with age. The other KEGG pathway

associated with age was alpha-linolenic Acid and linoleic
acid metabolism (Table 3 and Figure 4B), for which we
observed 5 metabolites with p < 0.05. These 5 metabolites
(arachidonate (20:4n6), docosapentaenoate (n3 DPA; 22:5n3),
linoleate (18:2n6), linolenate [alpha or gamma; (18:3n3 or
6)]) were all observed to be increasing in abundance age.
For 30 of the 32 metabolism and/or drug related pathways
(Supplemental Table 4), the same 10 metabolites (adenosine
monophosphate, L-alanine, L-methionine, L-leucine, L-
histidine, L-proline, L-asparagine, L-valine, L-threonine,
L-soleucine) were observed in the pathways resulting in the same
pathway level results for batch 1, batch 2 and batch 3 of p =
0.00011, 0.00017, and <1.0 × 10−5, respectively (Table 3 and
Supplemental Figure 2).

DISCUSSION

This study set out to investigate age-specific patterns of cellular

metabolites in liver between birth and 18 years of age that
may be indicative of altered drug response or susceptibility
to drug toxicity unique to pediatric patient populations. Using

an untargeted mass-spectroscopy based metabolomics analysis;
we assessed hundreds of metabolites in a set of pediatric
liver samples, with both technical and biological validation
built into the study design (Figure 1A). A major challenge
for investigations like the one we have conducted is access
to a large number of tissue samples of sufficiently high
quality to obtain interpretable results; differences in retrieval
and preservation methods across various publicly funded and
commercial providers has considerable potential to not only
contribute to variability in sample quality (16), but may also
confound data interpretation. For example, in the United States,
availability of tissue samples from infants <1 year of age is
relatively infrequent, and those that are available for research
tend to be procured from the NIH-funded University of
Maryland Brain and Tissue Bank for Developmental Disorders.
This period of time also tends to be a period of rapid growth
and can be accompanied by developmental patterns of gene
expression as we noted in a previous study involving RNA-
Seq analysis of a similar set of samples (17). Thus, it is
difficult to differentiate true developmental differences in RNA or
metabolite expression from confounding effects related to tissue
source. Given that initial statistical analysis of the metabolomic
data corroborated the source effect in the RNA-Seq data (17),
the current investigation included samples <1 year of age from
a second, independent source.

This experimental approach detected 24 metabolites that
changed in a set of liver samples spanning birth to late
adolescence (18 years of age; Table 2). Of the 24 metabolites, 21
were found to have increasing levels over childhood development
with the lowest levels present in the infant age group (children
<1 year of age) and little difference in metabolite levels between
the three older age groups (children >1 year of age) (Figure 3
and Supplemental Figure 1). Key sub-pathways were observed
in the list of significant known metabolites, including “purine
metabolism (hypo)xanthine/Inosine containing,” “pyrimidine
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FIGURE 3 | Heatmaps for the 25 biologically and technically validated metabolites for each of the three batches.

metabolism, uracil containing,” and ‘‘long fatty acids’’—all three
replicated metabolites in long fatty acids sub-pathway increasing
in abundance throughout childhood development (Table 2).
Lastly, we observed consistent age-related differences in KEGG
pathways “Betaine Metabolism” (pathway p-value of < 1.0 ×
10−5 for all 3 batches) and “Alpha-Linolenic Acid and Linoleic
Acid Metabolism” (pathway p-value of 0.002, 0.007, and < 1.0×
10−5 for batch 1, batch 2 and batch 3, respectively). A limitation
to our analysis is that metabolites may not be considered simply
because their concentration is natural concentration is near the
lower limit of detection. There were 353 metabolites that were
measured in all three batches and of these 31 metabolites were
removed because there was 75% missing in at least one batch
(Supplemental Figure 3). Interestingly, X – 11,795, glycerol 2–
phosphate, gamma–glutamylhistidine, formiminoglutamate, and
disulfide, benzoate, may have been removed due to the different
technologies being used in Batch 1, and Batches 2 and 3.
On the other hand, many of the other metabolites have a
consistently high percentage of missing observations across all
batches (Supplemental Figure 4).

Individual analytes and those assigned to specific pathways
may be derived from both endogenous as well as exogenous
(dietary) sources. For example, the betaine metabolism pathway
contained 12 measured metabolites, with all but two metabolites
found to be related to ontogeny (p < 0.10). Eight out of the 10

ontogeny related metabolites increased in abundance increased
with age (Table 3 and Figure 4A). In humans, betaine itself
is found in food and can also be formed endogenously from
choline. Betaine is vital in transmethylation and provides control
of hepatocellular hydration and provides protection of the liver
from various forms of stress, including osmotic stress (18).
Similarly, within the “Alpha-Linolenic Acid and Linoleic Acid
Metabolism” pathway, 4 metabolites consistently were observed
to increase with increasing age across the batches with p <

0.10: docosapentaenoic acid, docosapentaenoic acid (22n-6),
linoleic acid, gamma-linolenic acid and alpha-linolenic acid,
whereas arachidonic acid was present at higher concentrations
in children <1 year of age relative to the older age groups
(Table 3 and Figure 4B). Alpha-linolenic acid (ALA) is an
essential omega-3 fatty acid found in many nuts and vegetable
oils, and thus it is difficult to differentiate analyte changes due to
biological maturation with external factors that also change with
increasing age.

One obvious difference between infants <1 year of age
and older children/adolescents is diet, with breast milk and
formula, either cow’s milk- or soy-based formulas, representing
the primary source of nutrition until solid oral foods are
introduced later in the first year of life. However, it is
also now well-recognized that the intestinal microbiota of
newborns is different from older children and adults, being
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TABLE 3 | Summary of results for the measured metabolites in the each of the ontogeny related pathways.

Pathway Metabolite HMDB Batch 1 Batch 2 Batch 3

p-value Rho p-value Rho p-value Rho

Drug action pathway* Adenosine monophosphate HMDB0000045 0.0012 0.4312 4.00E-04 0.3365 <1E-05 0.662

L-Alanine HMDB0000161 8.00E-04 0.5868 0.1277 0.3398 0.0023 0.4674

L-Asparagine HMDB0000168 0.0833 0.3688 5.00E-04 0.5863 <1E-05 0.7089

L-Histidine HMDB0000177 0.1322 0.3261 0.0483 −0.0854 0.2539 0.2396

L-Isoleucine HMDB0000172 1.00E-04 0.6678 <1E-05 0.6705 0.0019 0.5125

L-Leucine HMDB0000687 0.0085 0.488 0.104 0.3392 0.46 0.1514

L-Methionine HMDB0000696 0.0025 0.5037 3.00E-04 0.6065 1.00E-04 0.6249

L-Proline HMDB0000162 0.1229 0.2928 0.1703 0.1925 0.6005 0.0265

L-Threonine HMDB0000167 0.3312 0.2193 0.3346 0.2387 0.8871 −0.0465

L-Valine HMDB0000883 0.0478 0.4046 0.4396 0.1743 0.9175 −0.0569

Alpha linolenic acid and linoleic acid metabolism Adrenic acid HMDB0002226 0.4488 0.0166 0.1268 0.0068 0.0508 −0.074

Arachidonic acid HMDB0001043 0.0067 −0.2795 0.069 −0.1788 1.00E-04 −0.6536

8,11,14-Eicosatrienoic acid HMDB0002925 0.8763 0.0447 0.4025 −0.0662 0.1548 −0.228

Docosahexaenoic acid HMDB0002183 0.5184 −0.031 0.455 −0.0243 0.0093 −0.4204

Docosapentaenoic acid (22n-6) HMDB0001976 0.0707 0.1497 0.0147 0.0366 0.0036 0.1901

Docosapentaenoic acid HMDB0006528 0.0305 −0.322 0.1935 −0.231 0.0369 −0.3814

Eicosapentaenoic acid HMDB0001999 0.2179 0.0917 0.0423 0.1122 0.0051 −0.4765

Linoleic acid HMDB0000673 0.0077 0.3157 0.0317 0.2491 <1E-05 0.6928

Gamma-Linolenic acid HMDB0003073 0.0065 0.2699 0.0111 0.1437 0.001 0.5066

Alpha-Linolenic acid HMDB0001388 0.0065 0.2699 0.0111 0.1437 0.001 0.5066

Stearidonic acid HMDB0006547 1.00E-04 0.5806 0.0026 0.3783 0.3219 0.2299

Betaine metabolism 5-Methyltetrahydrofolic acid HMDB0001396 <1E-05 0.5152 0.0073 0.4288 <1E-05 0.7356

Adenosine HMDB0000050 <1E-05 0.5206 2.00E-04 0.5026 <1E-05 0.767

Betaine HMDB0000043 2.00E-04 −0.6128 2.00E-04 −0.6276 4.00E-04 −0.6076

Choline HMDB0000097 0.149 0.246 0.1483 0.248 2.00E-04 0.4782

Dimethylglycine HMDB0000092 0.0099 −0.4097 2.00E-04 −0.5482 0.0349 −0.3979

FAD HMDB0001248 1.00E-04 0.4475 0.0012 0.3079 <1E-05 0.741

Homocysteine HMDB0000742 1.00E-04 0.5797 <1E-05 0.7265 0.0091 0.2224

L-Methionine HMDB0000696 0.0025 0.5037 3.00E-04 0.6065 1.00E-04 0.6249

NAD HMDB0000902 <1E-05 0.559 <1E-05 0.4802 <1E-05 0.7809

Phosphate HMDB0001429 5.00E-04 0.5015 1.00E-04 0.481 3.00E-04 0.6007

S-Adenosylhomocysteine HMDB0000939 <1E-05 0.6725 <1E-05 0.5406 <1E-05 0.6847

S-Adenosylmethionine HMDB0001185 0.4032 −0.1736 0.0439 −0.3987 <1E-05 −0.6663

Metabolites with consistent results across batches and p < 0.10 are in bold. *Measured metabolites in the 30 associated drug action pathways are the same.

established after birth and influenced not only by mode-
of delivery, vaginal vs. cesarean, but also to a considerable
extent by the mode of feeding. For example, several studies
now report higher levels of Lactobacilli and bifidobacteria in
stool from breast-fed infants compared to stool from formula-
fed infants that is dominated by a more diverse variety of
species, Bacteroides, Clostridia, Staphylococci, enterobacteria,
Enterococci, and Atopobium (19–21). Introduction of solid foods
also results in increased diversity of the intestinal microbiota over
time. Thus, it is not unreasonable to expect that concentrations
of dietary constituents and the products of metabolism of those
constituents by a changing intestinal microbiota might result in a
unique infant metabolome.

Developmental differences in the gut microbiome between
infants <1 year of age and older children, or more specifically

establishment of the gut microbiome after birth, would be
expected to result in changes in bile acid composition.
For example, primary bile acids derived from endogenous
liver metabolism would be expected to be higher and the
concentrations of gut microbiome-derived secondary bile acids
to be lower in the younger group, with a shift toward
accumulation of predominantly secondary bile acids in the older
age groups following maturation of the intestinal microbiome.
Higher concentrations of primary bile acids in premature
infants and term newborns compared to older ages is a
well-known phenomenon (22, 23), and our observation of
lower concentrations of primary and secondary bile acids
taurodeoxycholate and glycolithocholate sulfate in the <1 year
old group is consistent with colonization and maturation of the
gut microbiome over the first year of life.
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FIGURE 4 | (A) Betaine pathway and (B) alpha linolenic acid and Linoleic acid metabolism. The results for metabolites measured in this study are indicated with red

indicating the metabolite was increasing with age and blue indicating the metabolite was decreasing in abundance with age. Metabolites in the pathway not measured

are indicated in black. The shape corresponds to the significance of the Spearman correlation of metabolite’s concentration and age, where a square indicates that

the p < 0.05 and a circle shows that the p > 0.05.

Studies in which germ-free mice are transferred to a
conventional environment simulate the change in environment
experienced during birth when newborns enter their extrauterine
environment. Claus et al. (24) applied metabolomic approaches
to characterize the metabolic adaptation to bacterial colonization
of the gut by transferring germ-free mice to conventional
environment in which bedding used by conventional mice
was provided to expose the germ-free animals to the same
microbial ecosystem. They observed rapid increases in weight
over the first few days after colonization as well as increases
in gluconeogenesis that were followed by increases in hepatic
triglyceride synthesis and alterations in bile acid metabolites. It
is interesting to note that five analytes in our dataset that were
differentially present between the <1 year old and older age
groups, heme, taurodexycholate, 10-heptadecenoate (17:1n7),
10-non-adecenoate (19:1n9), and margarate (17:0), were also
observed to change by Claus et al., supporting the hypothesis that

some of the observed “developmental” changes in metabolome
are a consequence of bacterial colonization of the gut after birth.

In conclusion, this limited dataset illustrates the complexity
underlying observed “developmental” changes in the hepatic
metabolome as assessed by the snapshot of developmental
changes provided by metabolomic analysis of liver tissue. The
first year of life is characterized by a velocity of change in height
and weight that exceeds that observed in older children, and
thus, some changes in the metabolome reflect the processes
of growth and development. However, it is apparent that
other factors, such as change in diet and gut microbiome
with increasing age, also contribute to the overall picture. The
interplay between diet, gut microbiome and hepatic physiology
can be expected to underlie developmental changes in expression
of drug metabolizing enzymes and transporters involved in the
absorption, distribution, metabolism and excretion of drugs,
nutrients, toxicants, and other foreign compounds. For example,
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bile salts are essential for absorption of lipid soluble vitamins
and poorly water-soluble medications. Furthermore, expansion
of the bile acid pool is also accompanied by changes in expression
of hepatocellular and biliary uptake and efflux transporters
(25) and likely contributes to the developmental trajectories of
transporters that is of considerable interest for modeling and
simulation of drug disposition in pediatrics (26). Studies with
germ-free mice introduced into a conventional environment
also resulted in increased expression of drug metabolizing
enzymes, such as CYP2C29 and CYP3A11 that are similar to the
developmental trajectories of important drug biotransformation
pathways in humans, such as CYP2C9 (27) and CYP3A4 (28).
Thus, improved understanding of the factors contributing to the
developmental processes governing the role of the liver and its
interaction with other systems will improve our understanding of
not only drug disposition in a vulnerable, understudied patient
population, but will also aid in identification of factors that
influence drug disposition and response in individual children.
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Supplemental Figure 1 | Side by side boxplots of metabolite concentration and
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three batches.

Supplemental Figure 2 | Drug action pathways. The results for metabolites

measured in this study are indicated with red indicating the metabolite was

increasing with age and blue indicating the metabolite was decreasing in

abundance with age. Metabolites in the pathway not measured are indicated in

black. The shape corresponds to the significance of the Spearman correlation of

metabolite’s concentration and age, where a square indicates that the p < 0.05

and a circle shows that the p > 0.05. For the drug action pathway, the one

individual metabolite that is unique to a drug action pathway is denoted by a

purple trapezoid.

Supplemental Figure 3 | Venn diagram of the number of metabolites removed

from analysis, by batch, because 75% of the observations were missing in at least

one batch (31 metabolites).

Supplemental Figure 4 | Heatmap of the percent of observations missing for

metabolites that were eliminated from analysis due to more than 75% of

observations were missing for at most 2 batches (20 metabolites).

Supplemental Table 1 | Results for all 905 metabolites in batch 2. N infant = 13,

N early childhood = 14, N late childhood = 10, N adolescent = 11.

Supplemental Table 2 | Results for all 914 metabolites in batch 3. N infant = 21,

N early childhood = 7, N late childhood = 11, N adolescent = 11.

Supplemental Table 3 | Results for all 663 metabolites in batch 1. N infant = 13,

N early childhood = 14, N late childhood = 10, N adolescent = 11.

Supplemental Table 4 | Results for all 32 KEGG and drug pathways with at least

5 metabolites and pathway coverage of at least 50%.
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