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The neonatal intensive care unit (NICU) is a very noisy place as compared to the

intrauterine environment. To protect the neonate’s health, international guidelines suggest

avoiding noise levels above 45 dB in NICUs, but this recommendation is not normally met.

The incubator acoustic isolation and the acoustic features of the NICU play important

roles in determining the noise measured inside the incubator. In this study, the influence of

two types of rooms, one with sound-absorbent covering and the other with reverberant

surfaces, on the acoustic isolation of a neonatal incubator was evaluated using three

acoustic isolation indexes: the level difference, the apparent sound reduction index, and

the standardized level difference. Results show that the acoustic isolation of the incubator

is very poor, with a level difference below 11 dBA at all frequencies. At 62.5Hz, the

level difference measured in both rooms exhibits a negative value, indicating that the

incubator amplifies the noise coming from the NICU. Isolation of the incubator is poor,

and the reverberation time (RT) of the containing room influences RT of the incubator,

which is consequently higher when the containing room is reverberant; for example, the

incubator RT in the reverberant NICU is 0.72 s higher at 500Hz than that in a room with

sound-absorbent covering.

Keywords: acoustic environment, low frequency noise, acoustic isolation, neonatal incubator, reverberation time

INTRODUCTION

Numerous studies affirm that neonatal intensive care units (NICU) are noisy environments
exceeding recommended sound levels (1–3) and that high noise levels have a significant impact
on the health of preterm infants (4–8). The American Academy of Pediatrics uses the U.S.
Environmental Protection Agency noise standards for hospitals (45 dB during the day and 35 dB at
night) and recommends avoiding sound levels over 45 dB in NICU environments (9, 10). However,
studies affirm that NICU noise levels exceed these recommendations between 70% (1) and 95.5%
(2) of the time, exhibiting average noise levels ranging from 48 to 60.6 dBA (11, 12).

Although measurements indicating increases in NICU noise levels have been published over
the years, recent studies show that this is still an unsolved problem. A study of different types of
NICU facilities indicated an average equivalent continuous sound level (Leq) of 48 dBA inside the
incubator, with the highest transient sounds at Leq = 81 dB (13); outside the incubator (also in
different NICU types), two different studies reported measured noise levels of Leq = 55–65 dBA
(13) and Leq= 54.7–58.1 dBA (14).
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Several training programmes and procedures have been
implemented to reduce NICU noise levels (15–17), but
none of them has resulted in reductions to levels below
those recommended. A recent observational study (18) was
undertaken with the goal of reducing NICU noise levels
below the recommended 45 dBA. The maximum decrement
only reduced levels to 55.3 dBA even though three different
procedures were applied; these included awareness and
education, environmental noise reduction measurements, and
unit modification procedures.

Noisy environments affect premature infants more than
full-term infants, as the peripheral auditory system is not
yet fully developed in premature infants (19). The womb
and the impedance mismatch between air and the embryonic
fluid attenuate frequencies above 500Hz by 40 to 50 dB, and
consequently, the developing fetus is not exposed to the spectrum
above this frequency (20). However, the spectral content of the
noisy NICU environment is completely different from that of the
intrauterine environment, and the auditory system of preterm
infants is not prepared for it (21). As a consequence, preterm
infants show distinctive responses to environmental stress within
the NICU (22). Preterm infants cannot habituate to the acoustic
stimuli, even after repeated exposures (23), and their heart
rate, respiratory rate, and oxygen saturation increase in noisy
environments more than those of full-term infants (4, 24).

According to Vohr (25), a stay in the NICU for more than
4 days constitutes a risk factor for hearing loss in neonates.
Furthermore, the noisy NICU environment causes other adverse
effects on infants’ health (4–8). Stressful acoustic stimuli are
related to future disorders in language and attention (26,
27). Heart rate, intracranial pressure, and oxygen saturation
changes are some of the stressful physiologic responses (4, 28–
31) that may have a significant impact on infant neurological
development (22).

The spectral content of NICUs shows a predominance of low
frequencies (3, 32), with the addition of somemid-high frequency

Abbreviations: D, Level difference isolation index; DnT, Standardized level
difference isolation index; HVAC, Heating, ventilation, and air conditioning;
Lin, Noise level inside the incubator; Lin_63, Lin_125, Lin_250, Lin_500, Lin_1000,
Lin_2000, Lin_4000, Noise level inside the incubator at the band frequencies of 63,
125, 250, 500, 1,000, 2,000, and 4,000Hz, respectively; Lout, Noise level outside
the incubator; Lout_63, Lout_125, Lout_250, Lout_500, Lout_1000, Lout_2000, Lout_4000,
Noise level outside the incubator at the band frequencies of 63, 125, 250, 500,
1,000, 2,000, and 4,000Hz, respectively; Nabs, Room with acoustic absorbent
covering; NICU, Neonatal intensive care unit; Nreverb, Room with reverberant
surfaces; R′, Apparent sound reduction index; RIR, Impulsive response of a room;
RT, Reverberation time; RTin, Reverberation time inside the incubator; RTin_63,
RTin_125, RTin_250, RTin_500, RTin_1000, RTin_2000, RTin_4000, Reverberation time
inside the incubator at the band frequencies of 63, 125, 250, 500, 1,000, 2,000,
and 4,000Hz, respectively; RT in_Nreverb, Reverberation time inside the incubator
measured in the roomwith reverberant surfaces; RTout, Reverberation time outside
the incubator; RTout_63, RTout_125, RTout_250, RTout_500, RTout_1000, RTout_2000,
RTout_4000, Reverberation time outside the incubator at the band frequencies of 63,
125, 250, 500, 1,000, 2,000, and 4,000Hz, respectively; SPL, Sound Pressure level;
RTout_Nreverb, Reverberation time outside the incubator measured in the room
with reverberant surfaces; T0, Reference reverberation time of the standardized
level difference equation defined by the ISO16283-1; T, Reverberation time of the
receiver room within the standardized level difference equation; T20, Time in
which the sound pressure level decays 20 dB multiplied by 3; T30, Time in which
the sound pressure level decays 30 dB multiplied by 2.

events resulting from equipment alarms and human voices (33).
However, there is limited information on the specific effects
caused by the low frequencies to which neonates are exposed.
In that regard, a recent study suggested that if low frequency
exposures have negative impacts on the health of exposed mice,
which have a higher threshold for low frequencies than that for
humans [375 (34) and 20Hz, respectively], they could also have
negative impacts on humans (35). Results show that the exposure
of mice to low frequency noise with levels of 70 dB over 4 weeks
causes permanent imbalance and a reduction of the number of
calbindin-positive hair cells in the saccule and utricle (35).

Most studies have used Leq, which is the energy contained in
the entire spectrum, to evaluate noise in NICUs and incubators;
there have been some exceptions, including the studies carried
out by Santos et al., Hernández Molina et al., and Fernández
Zacarías et al. (3, 33, 36). However, this parameter does
not indicate which frequencies are dominant. The acoustic
attenuation caused by the incubator dome is crucial to the
evaluation of noise within the incubator, but this aspect has
largely gone unnoticed in most prior studies.

The motivation of this study is to provide an approach to
improving the acoustic environment of NICUs and incubators
to avoid potential neonatal health issues. Thus, the primary
objective of this paper is to evaluate the influence of the NICU
and incubator in the transmission of noise inside the incubator.

METHODS

Physical Space and Measurement
Procedures
Two different rooms containing the same incubator were studied
to evaluate the incubator acoustic isolation and the influence of
the containing room on the noise levels. These two rooms are
located at the Universidad de Las Américas (Quito, Ecuador).
The first one measured 1.79 × 3.87 × 2.52m and was in
the Sound and Acoustic Engineering Department. The second
one was the CS1 room in the Simulation Medic Center of the
Medicine Faculty andmeasured 3.87× 6.09× 2.5m (Figure 1B).
The first room has sound-absorbent walls with an average RT
of 0.15 s, while the second one is much more reverberant (RT
= 1.18 s) and is similar to a NICU room. Henceforth, the
first room will be referred to as the “absorbent NICU” (Nabs)
and the second one as the “reverberant NICU” (Nreverb).
The designation “Nabs” is used to characterize the incubator
acoustically. In Nabs, nearly all of the energy is attenuated by
the absorbent walls. Conversely, the Nreverb is used to study
the influence of the NICU on the incubator and represents an
actual reference for the characteristics of the incubators and
NICUs. Acoustic insulation measurements generate very high
noise levels; therefore, they must be performed in NICUs without
patients. Since there was no NICU meeting this requirement, it
was necessary to use another room with similar characteristics;
hence, we chose Nreverb. The dimensions of the incubator are
∼0.85 × 0.41 × 0.40m. The incubator was turned off, the access
portholes were closed during measurements, and the mattress
was contained inside (Figure 1A).
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FIGURE 1 | (A) Incubator was studied with mattress inside. (B) Incubator, sound source, and microphone positions in the reverberant (Nreverb) and absorbent

(Nabs) rooms.

The Simulation Medic Center staff provided the facilities and
gave advise on the general features and disposition of the NICU
and incubators, and the Neonatal Unit of the Santa Bárbara
Clinic of Quito provided the incubator studied.

Incubator acoustic isolation was measured using the standard
ISO16283-1 (37) as a reference. It was used only as a reference
because this standard is suitable for rooms with volumes between
10 and 250 m3, and the incubator space is significantly smaller.
The incubator interior was considered as the receiver room
(for both groups of measurements) because of the newborns’
sensitive natures and the suggestion of the ISO standard in
selecting the smallest room as a receiver (to ensure that the
standardized level difference (DnT) is not overestimated) (37).
To ensure straightforward data interpretation and to obtainmore
representative outcomes, the acoustic isolation was calculated
in octave bands and not in 1/3 octave bands, as the ISO16283-
1 recommends.

Incubator Acoustic Isolation in Nabs Room

(Figure 1B)
The Nabs dimensions only provided for four microphone
locations, requiring the sources to be placed at the corners
to measure noise levels outside of the incubator. Levels were
measured twice for each microphone–source combination (i.e.,
sixteen mic–source measurements). For measurements of the
incubator energy distribution, 15 microphone positions were
used inside the incubator; this matches the procedure used for
small rooms in previous studies conducted by the authors (38,
39). A total of 60 noise level measurements were conducted,
with four measurements in each of 15 positions. Subsequently,
reverberation time (RT) and background noise were measured
in the same fifteen microphone locations for each of the two
impulsive sound source (balloon burst) locations.

Incubator Acoustic Isolation in Nreverb Room

(Figure 1B)
Noise level measurements outside of the incubator were carried
out using two sound sources and five microphone positions.

Levels were measured twice for each microphone–source
combination (i.e., 20 mic–source measurements). The number
of measurements and mic-source combinations used to evaluate
noise levels within the incubator, the background noise, and the
RT were the same as those used in Nabs.

The ISO16283-1 standard recommends conducting
measurements at low frequencies (from 50 to 80Hz) when
one or both rooms have a volume of <25 m3. In such small
rooms, it is not easy to achieve a diffuse field, and additional
measurements are required. In our case, the receiver has a
volume of V= 0.147 m3

< 25 m3, so it was necessary to conduct
low frequency measurements for noise level, background noise,
and RT at the receiver. Noise level and background noise must be
measured at least in four corners and the RT in a position other
than a corner. The measurements carried out in the 15 incubator
locations fulfill the previous requirements. Four additional
measurements were also made in the corners of Nabsorb since
its volume is below 25 m3. Although it is not required by
ISO16283-1, the RTs of Nabs and Nreverb were also measured.

As a result of the measurements described above, four
groups of acoustic parameters were obtained in each room
for each of the octave bands studied; these included noise
levels inside the incubator, Lin (Lin_63, Lin_125, Lin_250, Lin_500,
Lin_1000, Lin_2000, Lin_4000), noise levels outside the incubator,
Lout (Lout_63, Lout_125, Lout_250, Lout_500, Lout_1000, Lout_2000,
Lout_4000), reverberation time inside the incubator, RTin (RTin_63,
RTin_125, RTin_250, RTin_500, RTin_1000, RTin_2000, RTin_4000),
and reverberation time outside the incubator, RTout (RTout63,
RTout125, RTout250, RTout500, RTout1000, RT22000, RTout 4000).

The level difference (D), the apparent sound reduction index
(R′), and DnT were calculated in this study (see ISO16283-1
for further information). The D index constitutes the simplest
approach to the definition of sound insulation, and it is the level
difference between the emission and receiver rooms. However,
it is not suitable for comparing constructive solutions because
the acoustic isolation also depends on the acoustic treatment
of the receiver room. The second index is typically used to
compare different materials, and it is the reference value used
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by manufacturers to characterize products acoustically. The third
index is used for evaluating complex building solutions and
for comparing in situ measurements, and it considers the RT
measured in the receiver room. Considering that the scope of the
present study does not include comparing different construction
solutions because we were using the same incubator, indexes D
and DnT were expected to yield more useful results.

The Mann–Whitney U test was applied to check the statistical
significance of the differences between the measurements of the
four subsets of acoustic parameters (Lin, Lout, RTin, and RTout)
conducted in Nabs and Nreverb. The same test was applied to the
RT measurements conducted in Nreverb, outside and inside the
incubator (RTin_Nreverb and RTout_Nreverb). The acoustic indexes
of both rooms were calculated with each sound source considered
independently and for the overall number of measurements.
The Mann–Whitney U test was also applied to determine if the
differences between the acoustic indexes obtained for each room
are statistically significant. Pearson’s correlation coefficient was
also calculated to determine if there is a relationship between the
RT and the noise indicators and between RTin and RTout.

Room Impulse Response Measurements
The impulse response of a room (RIR) is a signal that contains
information on the direct sound and early and late reflections
arising when the room is excited by a sound source (38, 40).
Additionally, the RIR describes the room sound energy and its
decay; thus, by gathering the RIR of the incubator or NICU,
it is possible to determine RTs and the sound pressure levels
(SPLs). Subsequently, the RT and SPL may be used to estimate
the acoustic isolation of the incubator.

The electroacoustic chain used for the measurements consists
of a Gras 1/2" CCP free-field microphone, an external AVID
sound card (i.e., AD/DA converter), and a computer-running
Matlab to gather the data. In addition, the ITA toolbox (41) was
used to obtain the RT and the SPL at each measurement position.
For measurements of the incubator RIR, balloons were used
instead of an omnidirectional source. A CESVA omnidirectional
source and Gaussian white noise were used for measurements of
RIR in the Nabs and Nreverb.

RESULTS

Since the measured noise levels were 10 dB higher than the
background noise, no background noise correction was applied.
Measurements of RT, designated T30, were considered in this
study; T30 is a measure of the time in which the SPL decays 30
dB, multiplied by 2.

The Kolmogorov–Smirnoff test was calculated to establish the
goodness of fit to normality for the variables studied. Since some
variables did not satisfy normality criteria, the non-parametric
Mann–WhitneyU test was applied as an alternative to parametric
statistical studies. The data used for the analyses meet the
assumptions necessary for the application of this test (42). The
groups of the categorical-dependent variables are Nabs and
Nreverb. The independent variables are the acoustic parameters
and the acoustic isolation indexes in octave bands.

Results show that there are statistically significant differences
between Nreverb and Nabs for all noise levels except for
Lout_1000, Lin_1000, Lin_2000, and Lin_4000, with a significance
level of 5% (Table 1). Within the frequency range, 250–
4,000Hz, the noise levels inside and outside the incubator are
higher in Nreverb than they are in Nabs, but are lower in
Nreverb for the other frequencies. Similarly, the RTs exhibit
statistically significant differences between the rooms at all band
frequencies and the values in Nreverb are higher than those
in Nabs, with the exception of RTin_63. The RTs measured
at 63 and 125Hz in Nreverb are significantly higher inside
the incubator than those measured outside. Still, the reverse
is true (i.e., higher RTs outside the incubator) for frequencies
from 500 to 4,000Hz. No significant differences were found at
250 Hz.

The outcome of the Mann–Whitney U test applied to the
isolation acoustic indexes shows that significant differences (p-
value ≤0.05) existed between Nabs and Nreverb for all of the
variables, except for Dnt_125 and R63. From the data with p-value
≤0.05, it can be concluded that the acoustic indicators calculated
for Nreverb are significantly higher than those for Nabs, with the
exception of D125, D250, and D2000 (which are lower).

Pearson’s correlation coefficient (r) was calculated to compare
the RT outside the incubator and the acoustic isolation indexes
(for all the band frequencies). The correlation coefficients with
the DnT index are very high for all the band frequencies (r >

0.9, p-value <0.001). High correlations also occur with D at 63,
500, 1,000, and 4,000Hz and with R at 125 and 1,000Hz (r >

0.9, p-value <0.001). The same trend can be observed for the
correlation coefficients resulting for the RTin and Rout at high
band frequencies, although the correlations at low frequencies are
slightly lower (r63 = −0.494, p-value63 = 0.019; r125 = −0.515,
p-value125 = 0.014).

Figure 2A shows D, R′, and DnT isolation indexes for the
incubator located within Nreverb. The highest D attenuation is
approximately 11 dBA at 1 kHz; the poorest attenuation is at
62.5Hz (D = −0.25 dBA), followed by 125Hz (D = 6.15 dBA),
and the attenuation for other frequencies is approximately 8.5
dBA. A comparison of DnT and D for the Nreverb room shows
that DnT is higher at all frequencies except for 4,000Hz.

Figure 2B shows D, R′, and DnT indexes for each room. The D
index at 62.5Hz is also negative in Nabs (−5.13 dBA). The DnT is
higher when the incubator is in Nreverb than when the incubator
is in Nabs (Figure 2B).

Figure 3A shows that the average incubator RT is higher in
the Nreverb than in the Nabs. However, there is an exception at
62.5Hz; at that frequency, there was a small difference between
the signal and background noise level in Nreverb, and it was not
possible to measure T30. In this case, T20 was used as a substitute
for T30 (T20= time at which the SPL decays 20 dB, multiplied by
3). T30 was normally higher than T20 in the present experiments,
and therefore, the T30 at 62.5Hz could have also been higher
in Nreverb than in Nabs at 62.5Hz. Excluding that exception,
the incubator RT in both rooms decreased as the frequency
increased. In Nreverb, the RTs for low frequencies are higher
inside the incubator than outside (Figure 3B). Furthermore,
when both spaces (Nreverb and incubator) are independently
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TABLE 1 | Mann–Whitney test applied to the acoustic parameters measured and to the noise indexes (level difference D and standardized level difference DnT) calculated

for Nreverb and Nabs.

Noise levels Reverberation times Noise indexes

Variable p-value Subset of higher

mean rank

Variable p-value Subset of higher

mean rank

Variable p-value Subset of higher

mean rank

Lout_63 0.000* Nabs RTout_63 0.000* Nreverb D63 0.037* Nreverb

Lout_125 0.000* Nabs RTout_125 0.000* Nreverb D125 0.037* Nabs

Lout_250 0.000* Nreverb RTout_250 0.000* Nreverb D250 0.037* Nabs

Lout_500 0.000* Nreverb RTout_500 0.000* Nreverb D500 0.037* Nreverb

Lout_1000 0.080 (Nreverb) RTout_1000 0.000* Nreverb D1000 0.037* Nreverb

Lout_2000 0.000* Nreverb RTout_2000 0.000* Nreverb D2000 0.037* Nabs

Lout_4000 0.004* Nreverb RTout_4000 0.000* Nreverb D4000 0.037* Nreverb

Lin_63 0.000* Nabs RTin_63 0.000* Nabs DnT_63 0.050* Nreverb

Lin_125 0.000* Nabs RTin_125 0.000* Nreverb DnT_125 0.827 (Nabs)

Lin_250 0.009* Nreverb RTin_250 0.000* Nreverb DnT_250 0.050* Nreverb

Lin_500 0.000* Nreverb RTin_500 0.000* Nreverb DnT_500 0.050* Nreverb

Lin_1000 0.174 (Nreverb) RTin_1000 0.000* Nreverb DnT_1000 0.050* Nreverb

Lin_2000 0.692 (Nreverb) RTin_2000 0.000* Nreverb DnT_2000 0.050* Nreverb

Lin_4000 0.224 (Nreverb) RTin_4000 0.000* Nreverb DnT_4000 0.050* Nreverb

*p-value ≤ 0.05.

Subsets of mean rank in parentheses indicate that the difference between groups is not significant.

excited by a 125-Hz signal, the sound persists 0.8 s longer in the
incubator than it does in the NICU.

DISCUSSION

The statistical analysis shows thatmost of the acoustic parameters
measured in the two rooms are different. It is important to
highlight that, although the same configuration of the sound
source and measuring equipment was used in both rooms,
measured noise levels for frequencies from 250 to 4,000Hz were
higher in Nreverb than they were in Nabs; this illustrates that a
reverberant room amplifies noise levels. The fact that noise levels
at low frequencies are lower in Nreverb results from the poor
isolation of the glass walls for those frequencies, which leads to
a higher noise transmission to the adjoining rooms. Therefore,
similar to the case for the incubator and the room in which it is
located, there is an acoustic coupling of the NICUs (with a high
percentage of glass) with the adjoining rooms. This is undesirable
because many electronic devices located in adjoining rooms may
generate low frequency noise and the glass walls cannot protect
the NICU environment from this noise.

When the incubator is in Nreverb, the highest acoustic
isolation D occurs at 1 kHz and is approximately 11 dBA,
which means that the incubator dome only poorly attenuates
the noise coming from outside. Therefore, most of the low
frequency sounds coming from the heating, ventilation, and
air conditioning systems (HVAC) and other incubator engines
reach the neonate easily. Similarly, and with regard to mid-
high frequencies, poor attenuation results with human voices
and noises from equipment with alarms. The incubator isolation
is so poor that the RT of the containing room influences its

RT. Pearson’s correlation coefficient between the RT inside and
outside the incubator is higher than 0.9 (p-value < 0.001),
supporting this statement. For example, the incubator RT at
500Hz is 0.72 s higher in Nreverb than it is when the incubator is
in Nabs.

The negative D value at 62.5Hz in Nabs and Nreverb means
that the reverberant nature of the incubator causes amplification
of the noise, leading to a higher noise level inside the incubator
(relative to outside) at that frequency. These findings are in
accordance with the suggestions made in other reports (43, 44).

DnT is an acoustic isolation index that considers the influence
of the RT of the receiver room on the isolation. It is equal to
D+10∗log(T/T0), where T is the measured RT at the receiver and
T0 is the reference RT value; the ISO16283-1 recommends a T0

= 0.5 s. Consequently, the term 10∗log(T/T0) is positive when
T > 0.5 s and in that case, DnT is higher than D. Comparing
DnT and D for the same Nreverb room, DnT is higher at all
frequencies except for 4,000Hz, meaning that the RT inside the
incubator exceeds the reference T0. For example, the RT inside
the incubator for a frequency of 125Hz is 1.59 s, three times
higher than the aforementioned reference T0 (0.5 s). In Nabs,
however, the DnT equation shows that the RTs at 62.5 and 125Hz
are higher than T0, but they are shorter than T0 at the other
frequencies (Figure 2B).

Although the incubator DnT is higher when the incubator is
in Nreverb than it is when the incubator is in Nabs (Figure 2B),
this does not mean that the acoustic isolation is higher; this is
also a result of the T0 used in ISO16283-1. Since the incubator
acoustic isolation is so poor, sound waves go in and out through
the incubator walls readily. Therefore, the RT of the room in
which the incubator is located affects the incubator RT (note
that this phenomenon is not usually observed in the ordinary
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FIGURE 2 | (A) Level difference (D), apparent sound reduction index (R′), and standardized level difference (DnT) isolation indexes (in dBA) for the incubator in the

reverberant room. (B) Comparison of the level difference (D) and standardized level difference (DnT) isolation indexes of the acoustic absorbent (Nabs, gray) and

reverberant (Nreverb, pink) rooms.

dwelling rooms for which ISO16283-1 was designed). Since the
RT of Nreverb is higher thanNabs, the incubator RT is also higher
when it is in Nreverb than when in Nabs, and consequently, so
is DnT.

The T0 recommended in the ISO16382-1 standard was chosen
for typical dwelling rooms containing furniture, for which the
RT is reasonably independent of volume and frequency and is
approximately equal to 0.5 s for most frequencies (37). According
to the present results, a T0 = 0.5 s is not suitable for small and
reverberant rooms. In this regard, the authors of (45) conducted
RT measurements in furnished and unfurnished rooms; their
results showed that the average RT for unfurnished rooms is
∼2.5 s at frequencies below 500Hz and decreases to 1.3 s at
frequencies of 5 kHz. In addition, the standard deviations for
unfurnished rooms were higher than the furnished one, which
is probably because the authors evaluated rooms with different
volumes (ranging from ∼10 to 200 m3) (45). Consequently, the
RTs for unfurnished rooms are volume and frequency dependent.
However, it is difficult to establish a reference value for the DnT
equation that suits the characteristics of the incubator, since the
volume is not comparable with those studied in (45). Thus, more
research on the RT reference value (T0) is needed to calculate the

isolation indexes for small and reverberant spaces, since neither
the DnT nor the D indexes show the real effect of the RT on the
acoustic isolation.

Although the traditional isolation indexes used in
construction seem to be inappropriate for characterizing
the acoustic isolation of neonatal incubators, the present
outcomes show that incubator isolation is very poor,
especially at low frequencies. This is quite problematic
since many studies affirm that most of the time, there are
elevated low frequency intensities in NICUs (3, 32) caused
by electronic devices (46). Although the information is
limited, some studies suggest that low frequency exposure
may have negative effects on neonates, as is the case for
animals with auditory thresholds higher than those of
humans (35).

There is a strong relationship between the RT outside the
incubator and the DnT index for all band frequencies (r > 0.9,
p-value < 0.001), although the DnT equation does not consider
the RT outside, but only inside, the incubator. Moreover, the
high correlation between D (Lout-Lin) and the RT outside the
incubator implies a strong influence of the RT of the room
containing the incubator on incubator isolation.
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FIGURE 3 | (A) Average reverberation time within the incubator in the reverberant (Nreverb, pink) and absorbent (Nabs, gray) rooms. (B) Reverberation time inside

(pink) and outside (gray) the incubator in the reverberant room Nreverb.

Since Nreverb is a room designed for teaching activities, it
has an acoustic absorbent false ceiling not normally found in
traditional NICUs. Therefore, although it is quite reverberant
for its volume, in a real NICU, the reverberation times obtained
would have been higher.

Not only does the incubator exhibit poor isolation, but it
also amplifies sound at low frequencies; therefore, the problem
of high noise levels in NICUs is worsened from the perspective
of the preterm infant. It would seem that incubators must
be designed for improved acoustic comfort since Coston and
Aune (18) have shown that reducing NICU noise levels is
complicated. Conversely, another way to decrease noise levels
inside incubators is to treat NICUs acoustically, since our results
show that the incubator reverberation time is influenced by the
NICU reverberation time; therefore, reductions in NICU RTs will
lead to reductions in the RTs and SPLs of the incubator.

CONCLUSIONS

The results of the present study on the acoustic isolation
and reverberant nature of neonatal incubators establish that
incubators and traditional NICUs provide acoustic environments
that are inappropriate for neonates. The results of the present
study may provide clinical managers with evidentiary support for
the need to redesign traditional NICUs.
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