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We constructed an optimal machine learning (ML) method for predicting intravenous

immunoglobulin (IVIG) resistance in children with Kawasaki disease (KD) using commonly

available clinical and laboratory variables. We retrospectively collected 98 clinical records

of hospitalized children with KD (2–109 months of age). We found that 20 (20%) children

were resistant to initial IVIG therapy. We trained three ML techniques, including logistic

regression, linear support vector machine, and eXtreme gradient boosting with 10

variables against IVIG resistance. Moreover, we estimated the predictive performance

based on nested 5-fold cross-validation (CV). We also selected variables using the

recursive feature elimination method and performed the nested 5-fold CV with selected

variables in a similar manner. We compared ML models with the existing system

regardless of their predictive performance. Results of the area under the receiver

operator characteristic curve were in the range of 0.58–0.60 in the all-variable model

and 0.60–0.75 in the select model. The specificities were more than 0.90 and higher

than those in existing scoring systems, but the sensitivities were lower. Three ML

models based on demographics and routine laboratory variables did not provide reliable

performance. This is possibly the first study that has attempted to establish a better

predictive model. Additional biomarkers are probably needed to generate an effective

prediction model.

Keywords: area under the curve, extreme gradient boosting, support vector machine, logistic regression, nested

cross-validation, predictive model

INTRODUCTION

In developed countries, Kawasaki disease (KD) is the major cause of acquired heart disease in
children (1). The main complication of KD is coronary artery abnormality (CAA) due to systemic
vasculitis (1). The effectiveness of high-dose intravenous immunoglobulin (IVIG) therapy has been
established as an initial KD treatment (2). However, approximately 10–20% children with KD are
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refractory to this treatment and develop persistent or recurrent
fever after initial IVIG therapy (3, 4). IVIG resistance is a risk
factor for the occurrence of CAA (5). Moreover, the development
of a more effective treatment options has been challenging. The
American Heart Association has reported that patients who
were predicted to be at a high risk for development of CAA
may benefit from primary adjunctive therapy such as IVIG
and corticosteroids (2). Therefore, developing a reliable tool for
predicting IVIG resistance is important to reduce the occurrence
of CAA.

Several scoring systems (6–12) have been proposed.
However, the predictive capacity of the existing scoring
systems may not be sufficient, and some scoring systems
have poor predictive performance for external datasets (13–
15). Machine learning (ML) techniques have been applied
to clinical diagnosis and prognosis prediction in many fields
of medicine (16). To the best of our knowledge, few studies
have applied ML methods for predicting resistance to initial
IVIG therapy in patients with KD (17). We aimed to construct
an optimal ML method for predicting IVIG resistance in
children with KD using commonly available clinical and
laboratory variables.

MATERIALS AND METHODS

Patients and Data Collection
We retrospectively collected clinical records of patients with
KD who were diagnosed based on the Japanese diagnostic
guidelines for KD (18) and hospitalized at Tsugaruhoken
Medical COOP Kensei Hospital between January 2010 and
October 2019. Patients diagnosed with KD presented with
minimum five of the six major symptoms, including fever.
Patients with only four or less major symptoms and those with
CAA were not included. We excluded children who received
initial IVIG treatment ≥10 days after the onset and children
administered initial doses of <2 g/kg/day. We defined the
first illness day as the first day on which a patient had fever.
We defined a responder as a patient whose temperature had
decreased to <37.5◦C within 36 h after initial IVIG treatment
(9, 15).

We collected the following data before the initial IVIG
treatment: months of age, gender, illness days with IVIG
administration, white blood cell count (WBC), neutrophil
percentage, hematocrit (Ht), platelet count (PLT), aspartate
aminotransferase (AST), alanine aminotransferase (ALT),
total bilirubin (TBil), and sodium (Na), albumin (Alb), and
C-reactive protein (CRP) levels. All these variables were available
before treatment.

We defined coronary arteries as abnormal when the luminal
diameters were more than 3.0mm in children younger than

Abbreviations: Alb, albumin; ALT, alanine aminotransferase; AST, aspartate

aminotransferase; AUC, area under the receiver operator characteristic curve;

CAA, coronary artery abnormality; CRP, C-reactive protein; CV, cross-validation;

Ht, hematocrit; IVIG, intravenous immunoglobulin; KD, Kawasaki disease; LR,

logistic regression; ML, machine learning; Na, sodium; PLT, platelet count; SVM,

support vector machine; TBil, total bilirubin; WBC, white blood cell count; XGB,

eXtreme gradient boosting.

5 years or more than 4.0mm in those 5 years and older,
when the internal diameter of a segment was 1.5 times or
greater than that of an adjacent segment, or when the luminal
contour was evidently irregular (19). We recorded the maximum
coronary artery diameter within 1 month after the onset of
the disease.

Statistical Analysis
We performed statistical analyses using Python version 3.6
(Python Software Foundation). We applied Mann–Whitney
U-tests for continuous variables and Chi-square tests for
categorical variables.

We evaluated the predictive performance of the three
supervised ML classifiers and existing scoring systems.
We trained logistic regression (LR) with L2 regularization,
linear support vector machine (SVM), and eXtreme gradient
boosting (XGB) models to predict IVIG resistance, using scikit-
learn and XGBoost packages. We evaluated the predictive
performance based on sensitivity, specificity, and area
under the receiver operator characteristic curve (AUC). We
produced three ML models with 10 variables that did not
contain missing values (months of age, gender, illness days
with IVIG administration, WBC, Ht, PLT, AST, Na, Alb,
and CRP).

To evaluate the predictive performance of the three ML
models and algorithms, we used the nested 5-fold cross-
validation (CV) approach (20) with GridSearchCV for hyper-
parameter optimization. We applied a nested CV procedure
to estimate an unbiased generalization performance of ML
algorithms (21). The two CV cycles included an inner loop
for tuning hyper-parameters and outer loop for estimating
performance in nested CV (Figure 1). First, the original dataset
was divided into five data folds with approximately equal
numbers of respondent and non-respondent cases. One data fold
was reserved for test fold. The remaining four data folds (training
folds) were passed to the inner loop. The inner loop performed
5-fold CVs to identify the best hyper-parameter combination.
We selected the hyper-parameter combination that maximized
each performance metrics over all steps of the inner loop. In LR
and linear SVM models, the penalty parameter C was explored
in [0.01, 0.1, 1, 10, and 100]. In XGB model, the maximum
depth of a tree (max_depth), the minimum sum of instance
weight needed in a child (min_child_weight), and gamma were
explored in [3, 5], [1, 2, 3], and [0, 3, 10], respectively. For the
other hyper-parameters, we used default values of the scikit-learn
method. These were tuned by testing all possible hyper-parameter
combinations in the inner CV. We then trained our model
on training folds using the best hyper-parameter combination;
thereafter, we evaluated model performance on the test fold. This
process was repeated five times, once for each iteration of the
outer loop. Finally, we calculated the average performance over
5-folds. We also repeated nested CVs 10 times in separate splits
and derived the average of the results to avoid sampling bias and
data overfitting.

Additionally, we selected variables using the recursive feature
eliminationmethod. Then, we performed a nested 5-fold CVwith
selected variables in a similar manner. In all, we have constructed
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FIGURE 1 | Flow chart of the 5-fold nested cross-validation. Vali., validation.

and then evaluated two types of models: all-variable model and
select-variable model.

RESULTS

Characteristics of Patients
We collected data from 109 children with KD treated at our
hospital. We excluded data from 11 children because 9 children
had received initial IVIG at <2 g/kg/day and 4 had received
initial IVIG treatment ≥10 days after the onset of the disease.
Consequently, we statistically analyzed data from 98 children
aged 2–109 months. Table 1 summarizes the demographic and
laboratory data of patients. Among them, 20 (20%) children were
resistant to the initial IVIG therapy. Only the AST and ALT
levels were significantly higher in the IVIG-responsive group
than in the IVIG resistant group. The proportion of CAA in
the IVIG resistant group was higher than that in the IVIG-
responsive group.

Predictive Performance of the ML Model
As shown in Table 2, the AUCs of the all-variable models were
0.58–0.60 in all models, and those of the select-variable models
were 0.60–0.75. The results on specificity and accuracy were 0.94–
0.99 and 0.78–0.79 in the all-variable models, and 0.96–1.00 and
0.78–0.80 in the select-variable models. The results of specificity
and accuracy were high, but those on sensitivity were all lower.

DISCUSSION

We retrospectively evaluated the performances of three ML
models to predict the resistance to initial IVIG therapy in a
single-center pediatric population of KD. Our results revealed
that the three ML models based on demographics and routine
laboratory variables did not perform reliably.

TABLE 1 | Comparison of clinical and laboratory characteristics in

IVIG-responsive and -resistant patients.

Responsive

(n = 78)

Resistant

(n = 20)

P-value

Age, months of age, median (IQR) 22 (9–37) 26 (17–30) 0.49

Illness days with IVIG administration,

days, median (IQR)

5 (4–6) 4 (3.8–5) 0.16

Gender, male, n (%) 40 (51) 13 (65) 0.40

White blood cell count, ×102/mm3,

median (IQR)

151

(121–175)

144

(113–179)

0.96

Neutrophil, %, median (IQR) 66 (59–76) 73 (67–79) 0.12

Hematocrit, %, median (IQR) 34 (32–36) 35 (33–36) 0.65

Platelet count, ×104/mm3, median

(IQR)

35 (28–42) 32 (27–38) 0.41

Aspartate aminotransferase, IU/L,

median (IQR)

30 (24–43) 96 (34–308) <0.001

Alanine aminotransferase, IU/L,

median (IQR)

20 (12–32) 75 (20–232) 0.004

Total bilirubin, mg/dl, median (IQR) 0.53

(0.41–0.69)

0.81

(0.50–1.37)

0.36

Sodium, mmol/L, median (IQR) 133

(131–134)

132

(131–134)

0.88

Albumin, g/dl, median (IQR) 3.3 (3.1–3.6) 3.4 (3.1–3.6) 0.85

C-reactive protein, mg/dl, median

(IQR)

6.3 (3.8–9.3) 7.4 (5.3–10.6) 0.26

Coronary artery abnormalities, n (%) 5 (6.4) 6 (30) ×0.007

IVIG, intravenous immunoglobulin; SD, standard deviation; IQR; interquartile range.

Data are analyzed by Mann–Whitney U tests for continuous variables and Chi-square tests

for categorical variables.

Different clinical scoring systems have been established to
predict IVIG resistance, including those by Kobayashi et al. (6),
Egami et al. (7), and Sano et al. (8) in Japan. The sensitivities
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TABLE 2 | Prediction performances of the three machine learning models and existing scoring systems.

Feature AUC Sensitivity Specificity Accuracy

All-variable model LR All 10 variables 0.59 ± 0.052 0.22 ± 0.055 0.94 ± 0.017 0.79 ± 0.021

Linear SVM All 10 variables 0.58 ± 0.040 0.20 ± 0.059 0.95 ± 0.014 0.79 ± 0.018

XGBoost All 10 variables 0.60 ± 0.048 0.26 ± 0.095 0.99 ± 0.021 0.78 ± 0.026

Select-variable model LR Model 1 AST 0.75 ± 0.011 0.15 ± 0.039 0.97 ± 0.006 0.79 ± 0.012

Model 2 WBC, AST 0.67 ± 0.027 0.16 ± 0.037 0.97 ± 0.008 0.80 ± 0.011

Model 3 Day, WBC, PLT, AST, CRP 0.67 ± 0.022 0.19 ± 0.049 0.96 ± 0.049 0.80 ± 0.010

SVM Model 1 AST 0.75 ± 0.011 0.14 ± 0.037 0.96 ± 0.012 0.79 ± 0.015

Model 2 WBC, Ht, PLT, AST 0.66 ± 0.035 0.16 ± 0.039 0.97 ± 0.010 0.80 ± 0.010

Model 3 WBC, AST 0.68 ± 0.024 0.14 ± 0.035 0.97 ± 0.006 0.79 ± 0.007

XGBoost Model 1 Na, AST 0.65 ± 0.032 0.28 ± 0.078 1.00 ± 0.008 0.78 ± 0.021

Model 2 Age, Day, Ht, Na, AST, CRP 0.61 ± 0.036 0.31 ± 0.073 0.99 ± 0.008 0.79 ± 0.025

Model 3 Age, Day, Ht, Na, AST, Alb, CRP 0.60 ± 0.035 0.33 ± 0.078 0.99 ± 0.008 0.79 ± 0.022

Existing scoring systems Kobayashi (8) system (n = 93) NA 0.70 0.62 0.63

Egami (9) system (n = 98) NA 0.55 0.81 0.76

Sano (10) system (n = 62) NA 0.41 0.96 0.81

AUC, area under the receiver operator characteristic curve; LR, logistic regression; SVM, support vector machine; XGB, eXtreme gradient boosting; Age, months of age; Day, illness

days with IVIG administration; WBC, white blood cell count; Ht, hematocrit; PLT, platelet count; AST, aspartate aminotransferase; Na, sodium; Alb, albumin; CRP, C-reactive protein;

NA, not applicable.

and specificities of those systems were reported to be 0.76–0.78
and 0.76–0.86 in the original studies. However, almost all clinical
scores published are limited in their predictive capacity. Similar
predictive accuracies were not achieved in other populations
(13–15). As shown in Table 2, the existing scoring systems also
did not achieve a good prediction against our dataset.

Additional clinical information may be needed to improve
the prediction model. Owing to the similarity of each clinical
and laboratory characteristics between IVIG-responsive and -
resistant patients in the current dataset, neither our model nor
the existing model may have performed reliably. There may be a
need to construct and evaluate new models that also incorporate
clinical major symptoms (10) and/or other laboratory data such
as erythrocyte sedimentation rate (10) or N-terminal pro-brain
natriuretic peptide (22).

Our prediction models using three ML techniques have
equally less reliable performance as the existing scoring systems;
particularly, the sensitivity were low in all ML algorithms.
Our results serve as a first step to establish a good prediction
tool. Feature engineering or ensemble learning, which combines
several ML techniques into one predictive model, may help
improve performance. Alternatively, MLmodels have advantages
over the existing prediction scoring systems. The predictive
performances of scoring systems could differ depending on
countries or ethnicities (11, 13, 23). ML is flexible and can be
suitable for many tasks. Therefore, the ML approach makes
it easy for the model to retrain and update the using the
newest data.

To our best knowledge, this is the first study to compare the
performances of ML methods for predicting IVIG resistance.
There is a study which was designed to develop the prediction
model using random forest (17). However, validation procedures
were not conducted, though the performance was excellent.

Conversely, there are certain limitations. First, the dataset
was relatively small. However, we used nested CVs to obtain
unbiased estimates of the true error. We also repeated the
nested CVs 10 times and averaged the validation error to reduce
sampling bias. Nested CV can choose the classification model
by obtaining reliable classification performance and avoiding
overfitting (24). Second, the present study was conducted based
on dataset derived from a single center. Accordingly, our results
may not apply to other populations. However, we consider it
meaningful to rebuild the model, similarly using the center’s
original data. Third, this is a retrospective study. We need
to perform a combined analysis of three ML models on a
prospective basis.

In conclusion, we evaluated the performance of ML models
for predicting resistance to IVIG therapy in children with KD.
However, our three ML models based only on demographics
and routine laboratory variables did not provide reliable
performances. Further studies are needed to improve predictive
models. Additional biomarkers are likely to be needed to generate
an effective prediction model.
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