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Neuromuscular disorders (NMDs) of Childhood onset are a genetically heterogeneous

group of diseases affecting the anterior horn cell, the peripheral nerve, the neuromuscular

junction, or the muscle. For many decades, treatment of NMDs has been exclusively

symptomatic. But this has changed fundamentally in recent years due to the

development of new drugs attempting either to ameliorate secondary pathophysiologic

consequences or to modify the underlying genetic defect itself. While the effects on the

course of disease are still modest in some NMDs (e.g., Duchenne muscular dystrophy),

new therapies have substantially prolonged life expectancy and improved motor function

in others (e.g., spinal muscular atrophy and infantile onset Pompe disease). This review

summarizes recently approved medicaments and provides an outlook for new therapies

that are on the horizon in this field.

Keywords: Duchenne and Becker muscular dystrophies, spinal muscular atrophies, Pompe disease, Zolgensma,

Spinraza, AAV (adeno-associated virus)

INTRODUCTION

Neuromuscular disorders (NMDs) include conditions affecting the anterior horn cell (e.g., Spinal
muscular atrophy = SMA), the peripheral nerve (e.g., Charcot-Marie-Tooth disease = CMT),
the neuromuscular junction (e.g., Congenital myasthenia), or the muscle itself (e.g., Duchenne
muscular dystrophy = DMD). In general, NMDs are progressive, impair motor function, and
often reduce life expectancy as well as quality of life. Most of the more prevalent NMDs have been
first described at the end of the nineteenth century. Although the genetic basis of these disorders
has been unraveled during the last century, treatment remained symptomatic or even palliative
for many decades. The vast majority of NMDs manifesting in childhood have a genetic basis.
Therapeutic agents targeting to treat these conditions can either attempt correcting the genetic
defect, or try mitigating the pathophysiological consequences that originate from the genetic error.

NMDs as a whole are not infrequent, but every single one is a rare or orphan disease (prevalence
<1 per 1,500 persons in the U.S. and <1 per 2,000 persons in Europe) (1–3). An orphan drug is a
pharmaceutical agent developed to treat medical conditions which, because they are so rare, would
not be profitable to produce without government assistance (4). Acknowledging the need for better
care of patients with rare diseases has led to legislations in the U.S. and in Europe that resulted in tax
incentives, enhanced patent protection and marketing rights, and research subsidies, encouraging
pharmaceutical companies to develop orphan drugs (4).

These measures together with recent progress in the understanding of pathophysiological
mechanisms underlying specific NMDs and in genetic engineering, has resulted in the development
of several highly innovative pharmaceutical agents for children with NMDs. This short review gives
an overview about recently approved drugs and promising therapeutic agents currently investigated
in pre-clinical and clinical trials by focussing on more prevalent pediatric NMDs (Table 1).
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DISEASES OF THE ANTERIOR HORN
CELL/SPINAL MUSCULAR ATROPHIES
(SMAs)

Spinal muscular atrophies are characterized by premature

degeneration of the second motor neuron. 5q-associated SMA

is by far the most common form with an incidence of about
one in 6,000 to 10,000 live births. The phenotype is broad and

ranges from infants dying within the first year of life due to
respiratory insufficiency to patients showing first symptoms of

mild proximal muscle weakness beyond the age of 18 years. The

disease is caused by biallelic mutations in the Survival Motor
Neuron (SMN1) gene. SMN1 encodes the SMN protein that is

ubiquitously expressed and essential for proper function of the

anterior horn cells in spinal cord and brainstem. About 95% of
patients carry homozygous SMN1 deletions of exon 7 or exons
7 and 8, resulting in a truncated and unstable SMN protein.

Humans have 1–8 copies of a paralogous gene, SMN2, located
next to SMN1 that differs by five nucleotides. This results in a
splicing defect diminishing the SMN protein produced by one
copy of SMN2 to ∼10% of the normal value (5, 6). Based on age
at onset of clinical symptoms and best motor function 3–5 SMA
subtypes (SMA 0, 1, 2, 3 + 4) are distinguished. While biallelic
mutations in SMN1 cause SMA, disease severity is related to the
number of SMN2 copies.

The Food and Drug Administration (FDA) in 2017 and the
European Medical Agency (EMA) in 2018 approved nusinersen
(Spinraza R©), an antisense oligonucleotide that modifies the
splicing process of SMN2, thereby enhancing the production
of stable and functional SMN-protein, for all patients with
5q-associated SMA. Since nusinersen does not pass the blood
brain barrier, it has to be administered intrathecally every 4
months following 4 loading doses within the first 2 months.
A multicentre placebo-controlled phase 3 study including 121
SMA 1 patients demonstrated that significantly more nusinersen
treated subjects were alive and that they had better motor
functions at the end of the trial than untreated individuals (7).
Similarly, a study with 126 SMA 2 patients aging 2–9 years
displayed that subjects receiving nusinersen had significant and
clinically meaningful improvement in motor function compared
to untreated patients (8). Finally, an observational study with 19
adult SMA 3 patients receiving nusinersen for 10 months showed
motor and respiratory improvement (9).

Onasemnogene abeparvovec (Zolgensma R©) is a AAV9 vector
based gene therapy approved in 2019 by the FDA for children
with SMA under the age of 2 years (10), and by the EMA in
2020 for SMA 1 patients and for all SMA subjects with up to 3
SMN2 copies regardless of their age and weight (11). The Adeno-
associated virus subtype 9 (AAV9) is able to cross the blood-brain
and to transfect motor neurons. The vector contains a single
strain copy of the SMN1 gene that persists in the cell nucleus
as an extrachromosomal episome. The drug is given as an one-
time intravenous infusion over 60minutes. An open-label study
including 15 SMA 1 patients showed that all patients were alive
and without permanent ventilation by the age of 20 months
compared to only 8% of patients from a natural history cohort

TABLE 1 | Current status of new therapeutic approaches in pediatric

neuromuscular disorders.

Disease Therapeutic approach Status of

development

SMA

Gene replacement therapy

Onasemnogene abeparvovec Approved

Splicing modification

Nusinersen

Risdiplam

Approved

Approved*

Other mode of action

SRK-015 Phase 3

CMT1A

Gene replacement therapy

AAV1 Phase 2

Splicing modification

ASOs Preclinical

Other mode of action

PXT3003

L-Serine

Phase 3

Phase 2

CMS

Increasing acetylcholine

Pyridostigmine

3,4-Diaminonpyridine

Approved

Approved

Modulating channel opening

Fluoxetine

Quinidine

Approved

Approved

Unknown

Salbutamol Approved

DM1

Splicing modification

Metformin Phase 2

Other mode of action

Tideglusib

Small molecule

Phase 2

Preclinical

DMD

Gene replacement therapy

AAVrh74 Phase 1

Splicing modification

Ataluren

Eteplirsen

Golodirsen

Arbekacin

Gentamycin

Approved*

Approved*

Approved*

Phase 2

Phase 1

Reducing inflammation

Prednisone

Vamorolone

Edasalonexent

Approved

Phase 3

Phase 3

Targeting Cardiomyopathy

ACE inhibitors

Angiotensin receptor antagonists

Beta-blockers

Approved

Approved

Approved

Other mode of action

Idebenone

ACE-031

Phase 3

Phase 2

LGMD

Gene replacement therapy

AAVrh7 beta-sarcoglycan

AAVrh74 alpha-sarcoglycan

Phase 2

Phase 2

(Continued)
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TABLE 1 | Continued

Disease Therapeutic approach Status of

development

AAV1 gamma-sarcoglycan

dual AAVrh74 dysferlin

Phase 1

Phase 1

Congenital myopathies

Gene replacement therapy

AAV8 Myotubular myopathy Phase 2

Splicing modification

DYN10 Dynamin-2

centronuclear myopathy

Phase 2

Lamin A/C related muscle disease

Splicing modification

Exon Skipping Preclincial

Pompe

Gene replacement therapy

AAV Preclinical/Phase 1

Enzyme replacement therapy

Lumizyme/Myozyme

Neo-GAA

ATB200

Approved

Phase 3

Phase 4

Other mode of action

Albuterol Phase 1/2

SMA, spinal muscular atrophy; CMT1A, Charcot-Marie-tooth 1A; CMS, congenital

myasthenic syndromes; DM1, myotonic dystrophy 1; DMD, Duchenne muscular

dystrophy; LGMD, limb-girdle muscle dystrophies. *Approved only by the FDA or EMA.

(12). Moreover, some patients gained motor milestones such as
sitting and standing not attained by any patient in the untreated
cohort (13). A clinical trial evaluating the safety of intrathecal
administration in patients with 3 SMN2 copies (NCT03381729)
is on hold at the time of writing (July, 2020) because of dorsal
root ganglia damage observed in non-human primates (14).

Risdiplam (Evrysdi R©) is a small molecule also modifying
pre-mRNA splicing of SMN2. The drug is studied in patients
with SMA 1–3 and in pre-symptomatic SMA 1 patients
(NCT02908685, NCT02913482, NCT03779334) (15). Risdiplam
can be given orally since it penetrates the blood brain barrier
(16). Preliminary data from clinical trials in SMA 1 patients
and from studies with children and young adults with SMA
2 indicate improved survival and motor function compared to
untreated patients (17). Based on these data, Risdiplam has been
recently approved by the FDA and is available in Europe in
the scope of a compassionate use program for SMA 1 and 2
patients deemed as not suitable for treatment with nusinersen or
onasemnogene abeparvovec.

Currently, many SMA 1 patients start treatment with one
of the above-mentioned therapeutic agents after they have
been diagnosed on clinical grounds. Although the efficacy of
these new drugs has been well-documented in clinical trials,
improvement of motor function is often modest, and swallowing
and respiration remain substantially compromised (7, 18). This
stands in sharp contrast to the results of studies with nusinersen
and onasemnogene abeparvovec in pre-symptomatic SMA 1
patients, showing that many of them achieve walking, learn to
speak, and remain ventilator-free at least within the first years of

life (19, 20). These data strongly support inclusion of SMA into
new-born screening programs (21–24).

No head-to-head studies comparing the efficacy of nusinersen
and onasemnogene abeparvovec are available. An indirect
unanchored comparison of the two pivotal trials (7, 12) among
symptomatic SMA type 1 infants suggested that onasemnogene
abeparvovec may have an efficacy advantage relative to
nusinersen (25), but this study has been criticized because of
substantial methodological shortcomings (26). The availability
of these very expensive new drugs raises many ethical questions
such as access to treatment, and start or termination of therapy
in patients with advanced disease. Unfortunately, guidelines
defining standards of care have been updated for the last time
shortly before these new therapies have been approved (27).

Besides these already licensed gene expression modifying
drugs, muscle enhancing therapies have been studied. Myostatin
is a negative regulator of muscle growth. SRK-015, a monoclonal
antibody selectively inhibiting myostatin, has been shown
to promote muscle cells growth and differentiation, thereby
ameliorating muscle force in SMA mice (28). Safety and
tolerability of this approach has been confirmed in a phase I trial
(NCT02644777), and a phase II study (NCT03921528) including
58 SMA 2 and 3 children is still ongoing. Preliminary results are
expected at the end of this year (29).

PERIPHERAL NERVE
DISEASES/CHARCOT-MARIE-TOOTH
DISORDERS (CMTs)

CMTs are a heterogeneous group of hereditary motor and
sensory neuropathies with a prevalence of 1:2,500 (30). Age
at onset varies from the neonatal period to adulthood.
Clinically, patients have sensory deficits and usually show a
slowly progressive distal muscle weakness, and foot and hand
deformities. Axonal and demyelinating forms are distinguished,
and currently mutations in more than 90 genes are known to be
involved (31).

CMT1A is the most frequent form, accounting for about 60%
of cases. The disease is caused by a duplication of the PMP22
gene. Peripheral myelin protein 22 kDa (PMP22) is produced
by Schwann cells and has an important role in proliferation and
differentiation of myelin. Overexpression of PMP22 protein leads
to demyelination and abnormal re-myelination with slowing
of nerve conduction velocity, and over time, causes secondary
axonal degeneration (32, 33). Different therapeutic approaches
are currently under investigation, attempting to regulate PMP22
expression or enhancing myelination (30).

PXT3003 is a combination preparation of three medicaments
(3mg baclofen, 0.35mg naltrexone, and 105mg sorbitol) with
the aim to reduce the expression of PMP22. A phase 2 placebo-
controlled study over 1 year was conducted in 80 patients
with CMT1A. Patients in the high-dose arm demonstrated
improvement in motor conduction velocities and in the overall
neuropathy limitations scale (ONLS) (34). Similarly, a phase 3
study with 323 patients ranging in age from 16 to 65 years
taking PXT3003 for 15 months showed an improvement in the
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10-m walking test as well as in ONLS in patients receiving the
higher dose (NCT02579759) (35). Due to a temporary treatment
interruption, the FDA requested an additional pivotal phase 3
trial expected to start in 2021.

Antisense oligonucleotides (ASOs) have been found to
effectively suppress PMP22 mRNA in affected nerves in 2
murine CMT1A models. Initiation of ASO treatment restored
impressively myelination, motor nerve conduction velocity and
compound muscle action potentials almost to levels seen in wild
type animals (36). These data demonstrate that strategies to
reduce PMP22 have potential as effective therapeutic approaches
for CMT1A (37).

Neurotrophin 3 (NT-3) is implicated in the support, survival,
and growth of Schwann cells and regeneration of peripheral
nerves (38). Preclinical studies with human recombinant NT-3
showed improved axonal regeneration and myelination, which
resulted in a subsequent placebo-controlled phase 1/2 study
including eight adult patients for 6months. Patients who received
NT-3 subcutaneously experienced a clinical improvement
as measured with the Mayo Clinic Neuropathy Score and
showed improved regeneration of myelinated fibers in nerve
biopsies (39). Because of the limited half-life of subcutaneously
administered NT-3 a preclinical AAV mediated NT-3 gene study
was conducted in animals, showing improvements in motor
function, compound muscle action potentials, and nerve biopsy
findings (40). Moreover, a phase 1/2 trial is ongoing with nine
patients aging 15 to 35 years treated with intramuscular injections
in both legs of AAV1.tMCK.NTF3 (NCT03520751). Results are
expected in 2023.

While treatment of CMT1A is still symptomatic and
classic pharmacological options have been disappointing (41),
a recent randomized trial with L-serine in 18 adults with
hereditary sensory autonomic neuropathy (HSAN) showed that
the CMT neuropathy score improved significantly in the treated
group (42).

DISORDERS OF THE NEUROMUSCULAR
JUNCTION/CONGENITAL MYASTHENIC
SYNDROMES (CMS)

CMS include a group of currently 30 genetically distinct entities
all sharing the symptoms of fatigable muscle weakness and
impaired neurotransmission (43). Application of next generation
sequencing techniques has resulted not only in identification of
new genes and proteins, but also in a better understanding of
the pathophysiology of the neuromuscular junction. This has
enabled a more tailored therapeutic approach (44). While drugs
like pyridostigmine, an acetylcholine (ACh) esterase inhibitor,
often used in tandem with 3,4-diaminonpyridine, a potassium
channel blocker increasing ACh release, are more or less effective
in some of these conditions, they may worsen symptoms in slow-
channel forms, in which prolonged ACh receptor-gated channel
opening causes deleterious entry of Ca2+ into the postsynaptic
region and consecutive degeneration of post-synaptic structures
(43, 44). In addition, treatment with sympathomimetics like
salbutamol has been shown to be beneficial in subjects refractory

to cholinesterase inhibitors (43). Moreover, ACh receptor open
channel blockers, for example, fluoxetine and quinidine, have
been shown to be effective in some of the slow channel
syndromes (44).

PRIMARY DISEASES OF THE SKELETAL
MUSCLE

Myotonic Dystrophies
Myotonic dystrophy type 1 and 2 are dominantly inherited,
progressive diseases affecting multiple tissues due to unstable
repeats in untranslated DNA. Myotonic dystrophy type 1 (DM1)
is the most prevalent neuromuscular disorder in adults and has
a broad phenotype ranging from onset of myotonia and mild
muscle weakness in adulthood to congenital forms characterized
by severe muscular hypotonia, generalized muscle weakness, and
respiratory failure in neonates due to aggravation of disease
severity through successive generations (anticipation) (45). DM1
is caused by an expansion of a CTG repeat sequence in the 3′-
UTR of the myotonic dystrophy kinase protein (DMPK) gene.
This results in DMPK transcripts with expanded CUG repeats
that are retained in the nucleus and form multiple discrete RNA
foci, triggering a cascade of toxic effects. Tideglusib is an inhibitor
of glycogen synthase kinase 3 beta that has been shown to
reduce the amount of toxic CUG-containing RNA in DM1-mice
(46). A phase 1/2 study including 16 adolescents and younger
adults with DM1 has already been completed, but results are
not yet available (NCT02858908), and a double-blind placebo-
controlled study assessing safety and efficacy in a smaller group
of children with a congenital form is planned (NCT03692312).
Metformin is an antidiabetic drug modifying RNA splicing,
autophagy, insulin sensitivity, and glycogen synthesis that has
been found to have positive effects on mobility and motor
function in a small-scale monocentric phase II study (47).
The pathophysiology of DM1 is extremely complex, and a
bundle of small molecule compounds such as up-regulators
of the muscleblind-like (MBNL) splicing factor family, H-RAS
pathway inhibitors, transcription inhibitors, and protein kinase
modulators has been shown to mitigate DM1 pathogenesis
in different experimental systems (48), giving hope that more
clinical trials will start in the nearer future (45).

Duchenne Muscular Dystrophy (DMD)
DMD is caused by mutations in the dystrophin gene, located on
Xp21. The dystrophin gene is one of the largest human genes
and has 79 exons. The incidence of DMD is 1:3,000 to 1:5,000
male births and the prevalence is 1.3–1.8:10,000 boys. Rarely
female carriers with skewed X-inactivation may also develop
symptoms (49). Boys typically present with hyperCKemia, motor
or global developmental delay, proximal muscle weakness and
calf pseudohypertrophy before the age of 5 years. Most patients
become wheelchair bound until age 12 years. Scoliosis, dilative
cardiomyopathy, and respiratory failure evolve thereafter and
result in premature death without assisted ventilation around
20 years of age (50). Recommendations for standards of care
have been published (49, 51) and their transformation into
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clinical practice (e.g., steroid treatment, spinal surgery, non-
invasive ventilation) has delayed age at loss of ambulation and
substantially increased life expectancy (50, 52, 53).

Dystrophin is part of a protein complex linking the
cytoskeleton to the basal lamina, thereby stabilizing the
muscle cell membrane. Dystrophin deficiency makes the
muscle cell more vulnerable to microtraumas that trigger a
cascade of pathophysiological reactions including inflammation,
mitochondrial dysfunction, and calcium influx, finally resulting
in cell death. Large deletions disrupting the reading frame
account for ∼65% of mutations, and about 10% of patients carry
nonsense mutations resulting in premature termination of the
protein synthesis (54). Steroids were the first drugs that have
been shown to improve muscle strength and pulmonary function
(51, 55). It is supposed that prednisone reduces the inflammatory
process as result of the cell membrane breakage, but other
effects like enhancing dystrophin expression or lowering calcium
influx are also discussed (55). Vamorolone is a synthetic variant
of cortisol specifically developed to avoid the side effects of
glucocorticoids (56). A phase 3 clinical trial showed that a
dosage of 2 mg/kg/die given for 24 weeks was well-tolerated
and improved time function tests without negative effects on
bone, metabolic, or adrenal function (57). Vamorolone recently
received a priority review approval by the FDA. Edasalonexent
(CAT-1004) is a small molecule inhibiting the transcription factor
NF-κB, which is enhancing muscle degeneration. A phase 1 trial
including 17 children has shown good tolerability and reduced
expression of NF-kB (NCT02439216) (58). There is an ongoing
placebo-controlled phase 3 study to evaluate efficacy and safety
of Edasalonexent in 131 pediatric patients (NCT03703882).

There is cumulating evidence that angiotensin converting
enzyme inhibitors (ACE inhibitors) reduce the progression rate
of dilative cardiomyopathy when initiated early, that is, prior
to decline of left ventricular ejection fraction. Similarly, it
has been found that the combination of ACE inhibitors or
angiotensin receptor antagonists with beta-blockers improves
the outcome of patients with established cardiomyopathy (59).
Current clinical guidelines recommend an early use of ACE-
inhibitors (or angiotensin receptor antagonists for those not
tolerating ACE inhibitors) in asymptomatic patients by the age
of 10 years (51).

Ataluren (Translarna R©) is approved by the EMA, but not
yet by the FDA, for treatment of ambulant DMD patients older
than age 2 years with nonsense mutations in the dystrophin gene
(60). Ataluren is a small molecule acting at the ribosome, that is
assumed to read through stop codons and in this way enhances
the rate of full-length dystrophin transcripts. The drug is given
orally three times a day. A phase 3 study with 115 ambulatory
patients treated with ataluren for 48 weeks vs. 115 patients
receiving placebo found no significant differences in the 6-min
walking test (6MWT), and thus failed the primary endpoint. But
a pre-specified analysis in a subgroup of patients with a walking
distance of 300–400m in the 6MWT at baseline demonstrated
a significantly lower decline in the walking distance in treated
patients (61). Preliminary results of an ongoing prospective study
matching the data of 181 DMD patients treated with ataluren for
on average 2 years with those of a natural history cohort, suggest a

statistically relevant later loss of ambulation in the ataluren group
(11 vs. 14.5 years) (62). Further substances assumed to improve
read through that have been investigated in phase I and II studies
are arbekacin and gentamycin (NCT01918384, NCT00451074).

Exon skipping therapies aim to restore the reading frame
in DMD patients with deletions. This allows production of a
shortened and defective, but still functional dystrophin protein
(63). Among boys with deletions, about 20% patients are
amenable to skipping of exon 51, 13% to skipping of exon 53,
12% to skipping of exon 45, and 11% to skipping of exon 44.
Eteplirsen (Exondys51 R©) received an accelerated approval by the
FDA in 2016 for the treatment of DMD patients with mutations
amenable to skipping of exon 51. The drug is an antisense
oligonucleotide that binds to the dystrophin pre-mRNA and
supresses correct splicing of exon 51. Results of a phase 2 study
showed an increase of dystrophin in muscle biopsies as well as
a significantly lower decline in the 6MWT when given to 12
patients for 48 weeks and compared to a placebo group (63).
Following up these patients for 3 years and matching their data
with those of a natural history cohort also revealed a significant
difference in the 6MWT in favor of the eteplirsen group (64).
The drug is given intravenously over 30–60min. Golodirsen
(Vyondys53 R©) has also been approved in December 2019 by the
FDA for treatment of DMD patients amenable to skipping of
exon 53 (65) after a phase 1/2 clinical trial showed an ∼16-fold
improvement in dystrophin production (66). The phase 2 and 3
studies are still ongoing (NCT02310906 and NCT02500381). As
eteplirsen golodirsen is infused once a week (65). Both drugs are
yet not approved by the EMA.

Systemic gene therapy is a promising way to treat DMD. But
the size of the dystrophin gene is a major hurdle, since it exceeds
the packaging capacity of the AAV vector (67). To overcome
this problem different highly abbreviated micro-dystrophins
have been invented, and several independent systemic AAV
vector mediated gene phase I therapy trials are conducted
(NCT03368742, NCT03375164, NCT03362502, NCT03333590).
Recently published data on four young DMD patients followed-
up for 12 months after a rAAVrh74.MHCK7.micro-dystrophin
gene transfer showed that this treatment was well-tolerated, and
was associated with robust micro-dystrophin expression, reduced
serumCK levels, and functional improvement asmeasured by the
North Star Ambulatory Assessment (68).

Idebenone is an antioxidant that is assumed to improve
mitochondrial energy production. In a phase 3 randomized
controlled study (DELOS) in DMD patients 10–18 years of age
idebenone reduced significantly the loss of respiratory function
over a 1-year period, and a post-hoc analysis suggested that
more patients in the placebo group compared to the idebenone
group experienced bronchopulmonary adverse events (69, 70).
In addition, the reduced decline of the pulmonary function
assessed in a retrospective cohort study (SYROS) from 18 patients
was maintained for several years (71). Despite these promising
results, the drug has not yet been approved neither by the FDA
nor by the EMA.

Preclinical studies exploring myostatin inhibition have shown
increased muscle growth as well as reduced fibrosis. ACE-031
is a fusion protein that inhibits myostatin. In a phase 2 clinical
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trial ACE-031 was injected subcutaneously in 24 patients. This
study was stopped because of safety concerns (epistaxis and
telangiectasia), but preliminary results showed positive trends
concerning distance in the 6MWT and increase of lean bodymass
(NCT01099761) (72).

Further therapeutic concepts studied in DMD are utrophin
upregulation, anti-fibrotic substances, neuronal nitric
oxide synthase upregulation and other anti-inflammatory
medications (73).

Limb-Girdle Muscle Dystrophies (LGMDs)
LGMDs are a heterogeneous group of diseases characterized by
progressive proximal weakness of the pelvic and/or shoulder
muscles. Disease onset is usually after the age of 2 years and
the estimated prevalence is 1:100,000 (74). CK concentrations
vary from slightly to highly elevated, while muscle biopsy
findings range from mildly abnormal to severely dystrophic.
Autosomal dominant (LGMD D) and recessive (LGMD R)
forms are distinguished. Currently, more than 30 genetically
different types are known. Sarcoglycans are proteins that form
a tetrameric complex at the muscle cell plasma membrane.
This complex stabilizes the association of dystrophin with the
dystroglycans and contributes to the stability of the plasma
membrane cytoskeleton. Dysferlin or dystrophy-associated fer-1-
like protein is encoded byDYSF. Several lines of evidence indicate
that dysferlin is linked with muscle cell membrane repair.
DYSF defects can result in different forms of neuromuscular
disorders such asMiyoshimyopathy (MM), limb-girdlemuscular
dystrophy type R2 and Distal myopathy (DM) (75).

LGMD R4 (Beta-Sarcoglycanopathy)
Preclinical studies in ß-sarcoglycan deficient mice treated with
AAVrh7 containing a β-sarcoglycan transgene targeting to treat
skeletal, diaphragm and cardiacmuscles demonstrated functional
and biochemical improvements (76). Currently, there is an
ongoing phase 1/2 clinical trial with six patients ranging in age
from 4 to 15 years (NCT03652259). Results from an interim
analysis in three patients after 9 months displayed improvement
in motor function, reduction of CK, and increase of beta-
sarcoglycan expression in the muscle (77). Final results are
expected in 2021.

LGMD R3 (Alpha-Sarcoglycanopathy)
Preclinical studies in α-sarcoglycan deficient mice treated
with systemic AAV containing α-sarcoglycan using a muscle
specific promoter showed histological improvement, correction
of pseudohypertrophy as well as increase of global activity
(78). This prompted a phase 1/2 study that included 3 non-
ambulatory patients aging 12 to 14 years, who received an
intramuscular injection of AAVrh74 containing an alpha-
sarcoglycan transgene. All patients showed a positive gene
expression in muscle biopsies performed on week 6, and 3 and
6 months (NCT00494195) (79). Similar results were obtained in
two of three patients aging 23 to 43 years old, in whom muscle
biopsies were taken 6 months after gene delivery (80). It was
supposed that the negative results in the third patient were caused
by pre-existing immunity against the used vector (60).

LGMD R5 (Gamma-Sarcoglycanopathy)
Preclinical trials in γ-sarcoglycan deficient mice treated with
intramuscular AAV containing γ-sarcoglycan with a muscle
specific promoter showed histological improvement mainly in
those muscles that did not show significant fibrosis (81). In a
consecutive phase 1 study 8 out of 9 non-ambulatory patients
ranging in age from 12–14 years who received an intramuscular
AAV1 injection with a gamma-sarcoglycan transgene showed a
positive gene expression in muscle biopsies performed 1 month
after application (NCT01344798) (82).

LGMD R2 (Dysferlinopathy)
Studies in dysferlin deficient mice treated with systemic dual
adeno-associated virus vectors AAVrh74 showed histological
and radiological improvement (83). Since DYSF is a large gene
(55 exons) it has been splintered into two fragments that are
packaged into separate AAVrh74 vectors. Both fragments have
a 1 kb overlap region that allows the recombination of the two
cDNA segments after systemic co-injection (84). Currently, there
is an ongoing phase 1 clinical study that includes non-ambulatory
adults with LGMDR2 who received intramuscular delivery of
AAVrh74 with the aim to explore gene expression after 3 and 6
months (NCT02710500).

Congenital Myopathies
Myotubular Myopathy
X-linked Myotubular Myopathy (XLMTM) is a rare congenital
myopathy characterized by severe muscle weakness, respiratory
failure and early death. Mortality rate is estimated to be
50% in the first 18 months of life. The disease is caused
by mutations in the MTM1 gene that lead to absence or
dysfunction of myotubularin, a protein that is necessary for
normal development, maturation, and function of skeletal muscle
cells. The disease affects∼1 in 50,000 new-born males. In a study
with XLMTMdogs, intravenous administration of a recombinant
AAV8 vector expressing canine myotubularin at 10 weeks of age
demonstrated impressively that this treatment was well-tolerated,
prolonged lifespan, and corrected the skeletal muscle phenotype
in a dose-dependent manner. This prompted a phase 1/2 study
(NCT03199469) in children with XLMTM ranging in age from
0–5 years. While the first six patients dosed at 1 ×·1014 genome
copies/kg also showed very encouraging results, all 3 patients
administered a 3-fold higher dose (3 × 1014) experienced severe
hepatotoxicity and two of them died (85). Further development
of this product is currently on hold pending further evaluation of
these serious adverse events (86).

Dynamin-2 Related Centronuclear Myopathy
Mutations in DNM2 encoding dynamin-2 cause autosomal
dominant centronuclear myopathy, which is associated with
variable muscle weakness and wasting (87). In DNM2-mutated
mice, weekly intrapleural injections of ASOs targeting DNM2
for 5 weeks corrected muscle mass, histopathology, and
muscle ultrastructure (88). These findings prompted an ongoing
phase 1/2 study with DYN101, a synthetically manufactured
constrained ethyl gapmer ASO directed against DNM2 pre-
mRNA in 18 adolescents and young adults (NCT04033159).
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Lamin A/C Related Muscle Disease
LMNA-related disorders are caused by mutations in the LMNA
gene, encoding the nuclear envelope proteins lamin A and
C by alternative splicing. LMNA mutations are linked with
a wide range of disease phenotypes such as neuromuscular,
cardiac and metabolic disorders to premature aging syndromes.
Neuromuscular phenotypes include LMNA-related muscular
dystrophy, autosomal dominant Emery-Dreifuss muscular
dystrophy, and congenital muscular dystrophy. Apart from
symptomatic treatment including the use of steroids amelioration
of pathogenesis by exon skipping has been proposed as a potential
treatment strategy (89).

Pompe Disease
Pompe disease (glycogen storage disease type 2) is caused
by biallelic mutations of the acid alpha-glucosidase (GAA)
gene. This results in deficiency of the lysosomal enzyme GAA
and impaired autophagy. Severity of disease depends on the
amount of residual enzyme activity. Two types are distinguished,
infantile and late onset Pompe disease (IOPD/LOPD). The
incidence of IOPD is about 1:140,000 and that of all types
amounts to ∼1:40,000 in Europe. In classic IOPD, GAA activity
is <1%. Contrary to milder forms with later onset that are
characterized mainly by a progressive proximal myopathy with
early respiratory involvement, this causes marked accumulation
of glycogen not only in skeletal muscle, but also in heart and other
tissues. Affected patients present with CK elevation, hypertrophic
cardiomyopathy, failure to thrive, muscular hypotonia and axial
muscle weakness during the first 6 months of life. IOPD is rapidly
progressive and the majority of untreated subjects die within the
first year of life due to a combination of ventilatory and cardiac
failure without achieving any motor mile stone such as turning,
sitting, or standing. Survival beyond the age of 18 months is
exceptional. Although GAA activity is <1% in all IOPD patients,
two groups have to be differentiated. Patients may synthesize a
non-functional form of GAA or are completely unable to form
any kind of native enzyme. The former patients are designated as
cross-reactive immunological material (CRIM)-positive, whereas
the latter are classified as CRIM-negative (90–92).

An enzyme replacement therapy (ERT) with recombinant
human alpha-glucosidase (Lumizyme R©/Myozyme R©) was
approved in 2006 by the FDA and the EMA. The recombinant
enzyme has to be administered intravenously every 2 weeks
over about 4 h. In the pivotal phase 3 study including 18 infants
diagnosed before 6 months of age, all patients were alive and
seven walked independently after 12 months of ERT (93). In
a follow-up extension study over 3 years 13 patients were still
alive and 6 remained able to walk (94). In addition, a placebo-
controlled phase 3 study was performed in 90 ambulant LOPD
patients about 18 months. This showed that treated patients had
significantly better motor function (measured by the 6MWT) as
well as stabilized pulmonary function (95).

The positive results of the pivotal IOPD trials have been
confirmed by several real world studies, but it has been
recognized over the years that the response to ERT is imperfect
and that patients respond differently. A beginning of ERT as
early as possible and immunomodulation in CRIM-negative
subjects to avoid antibody formation against the recombinant

enzyme have been identified as important factors to improve
outcome, but morbidity and mortality are still high. Moreover,
prolonged survival of IOPD patients has resulted in a new
phenotype with variable residual muscle weakness and
worsening of motor function after some years of ERT, hearing
impairment, oropharyngeal and facial weakness causing speech
and swallowing difficulties as well as neurocognitive, respiratory
and orthopedic problems (96, 97). Strategies to further improve
outcome in IOPD and also LOPD focus on manufacturing
improved enzyme versions that allow a better uptake into
the muscle cell, and developing gene therapies. Neo-GAA
(avalglucosidasa alfa), a modified recombinant human GAAwith
higher affinity to the mannose-6-phosphate (M6P) receptor, is
currently tested in a phase 3 study and final results are expected
soon (NCT02782741). ATB200 is another rhGAA with a higher
content of M6P and bis-M6P glycan residues that is tested in a
clinical trial in association with a pharmacological chaperone.
Albuterol has also been investigated as an add-on therapy which
may enhance the lysosomal uptake of hrGAA (98). Moreover,
there are several pre-clinical and early clinical ex-vivo and
in-vivo gene therapy trials targeting different tissues with variable
transgenes (for review see Ronzitti et al. ATM 2019) (99). To
date, it is not clear which approach will finally be best suited for
this complex disease.

CONCLUSIONS

Several new therapeutic options have become available for the
treatment of pediatric NMDs in the last years, and multiple
others are currently studied in pre-clinical and clinical trials.
While some diseases have now become principally treatable,
many others are still waiting for the major breakthrough. The
new therapeutic options in SMA 1 and IOPD are examples for
drugs that have transformed rapidly progressive lethal diseases
into more chronic conditions. But it has to be kept in mind
that patients treated this way are not cured. Moreover, both
conditions show that success and efficacy of these new therapies
depend on the time point of their application and the clinical
status of the patients. Pompe disease was the first NMD that
became principally treatable. One lesson to be learned from the
use of ERT in IOPD since almost 15 years is that problems
emerged totally unexpected before. It does not take a crystal
ball to see that similar things will happen in other diseases.
Nevertheless, the development of new, highly innovative drugs
has heralded a new era in the treatment of pediatric NMDs.
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