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Congenital adrenal hyperplasia includes autosomal recessive conditions that affect

the adrenal cortex steroidogenic enzymes (cholesterol side-chain cleavage enzyme;

3β-hydroxysteroid dehydrogenase; 17α-hydroxylase/17,20 lyase; P450 oxidoreductase;

21-hydroxylase; and 11β-hydroxylase) and proteins (steroidogenic acute regulatory

protein). These are located within the three major pathways of the steroidogenic

apparatus involved in the production of mineralocorticoids, glucocorticoids, and

androgens. Many countries have introduced newborn screening program (NSP) based

on 17-OH-progesterone (17-OHP) immunoassays on dried blood spots, which enable

faster diagnosis and treatment of the most severe forms of 21-hydroxylase deficiency

(21-OHD). However, in several others, the use of this diagnostic tool has not yet

been implemented and clinical diagnosis remains challenging, especially for males.

Furthermore, less severe classic forms of 21-OHD and other rarer types of CAHs are

not identified by NSP. The aim of this mini review is to highlight both the main clinical

characteristics and therapeutic options of these conditions, which may be useful for

a differential diagnosis in the neonatal period, while contributing to the biochemical

evolution taking place in the steroidogenic field. Currently, chromatographic techniques

coupled with tandem mass spectrometry are gaining attention due to an increase in the

reliability of the test results of NPS for detecting 21-OHD. Furthermore, the possibility of

identifying CAH patients that are not affected by 21-OHD but presenting elevated levels of

17-OHP by NSP and the opportunity to include the recently investigated 11-oxygenated

androgens in the steroid profiles are promising tools for a more precise diagnosis and

monitoring of some of these conditions.
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INTRODUCTION

The most common and representative example of the congenital
adrenal hyperplasia (CAH) group of disorders (≥90%) is the
21-hydroxylase deficiency (CYP21A2-D). Less frequent types
of CAH are 11β-hydroxylase deficiency (CYP11B1-D, up to
8% cases), 17α-hydroxylase/17–20 lyase deficiency (CYP17A1-
D), 3β-hydroxysteroid dehydrogenase deficiency (HDS3B2-D),
P450 oxidoreductase deficiency (POR-D), P450 cytochrome side-
chain cleavage deficiency (CYP11A1-D), and StAR deficiency
(StAR-D). In CYP21A2-D and CYP11B1-D, only adrenal
steroidogenesis is affected, whereas a defect in the other enzymes
also involves gonadal steroid biosynthesis (1, 2) (Table 1).

Steroid Acute Regulatory Protein
deficiency—Lipoid CAH (StAR-D)
Epidemiology/Genetics
StAR-D is uncommon in most populations, but it is relatively
more frequent in East Asian (3, 4), Arab (5), and Swiss
(6) populations because of the occurrence of the p.Q258X,
p.R182L/p.R182I, and p.L260P founder mutations, respectively.
To date, ∼85 pathogenic variants of the StAR gene have been
reported (www.hgmd.cf.ac.uk) (Table 1).

Essential Biochemistry
StAR is a fundamental actor in steroidogenesis, transferring
cholesterol from the outer (OMM) to the inner mitochondrial
membrane (IMM), where CYP11A1 can convert cholesterol to
pregnenolone (Preg) (Figure 1A). The complex pathophysiology
of StAR-D is explained by the “two-hit disease model” (5): the
major part of steroidogenesis is StAR dependent, and its deficit,
the first hit, activates the ACTH axis and de novo cholesterol
biosynthesis; the consequent steroid underproduction due to the
toxic effects of accumulating cholesterol follows as the second
hit. The impairment of testicular steroidogenesis, which is active
earlier than the ovarian one, is the first consequence of StAR-
D with fetal androgen deficiency, causing undervirilization in
46,XY genetic newborns (7). Fetal adrenal androgen deficiency
also leads to reduction of maternal estriol (E3) levels, prenatally
measurable in a maternal urine sample (8). As placental

Abbreviations: 14A, 14-androstenedione; 11K14A, 11-keto-androstenedione;

11KT, 11-keto-testosterone; 17OHP, 17α-hydroxyprogesterone; 17OHPreg,

17α-hydroxypregnenolone; Aldo, aldosterone; AMH, anti-Mullerian hormone;

Andr, androgens; B, corticosterone; CAH, congenital adrenal hyperplasia;

CYP11A1-D, P450 cytochrome side-chain cleavage deficiency; CYP11B1-D,

11β-hydroxylase deficiency; CYP17A1-D, 17α-hydroxylase/17-20 lyase deficiency;

CYP21A2-D, 21-hydroxylase deficiency; DHEA, dehydroepiandrosterone;

DHT, dihydrotestosterone; DOC, deoxycorticosterone; E1, estrone; E2,

estradiol; E3, estriol; F, cortisol; EGS, External Genitalia Score; EMS, External

Masculinization Score; GC, glucocorticoid; HDS3B2-D, 3β-hydroxysteroid

dehydrogenase deficiency; IMM, inner mitochondrial membrane; LC/MSMS,

liquid chromatography/tandem mass spectrometry; MC, mineralocorticoid;

NIPD, non-invasive prenatal diagnosis; NSP, newborn screening program; OMM,

outer mitochondrial membrane; POR-D, P450 oxidoreductase deficiency; Preg,

pregnenolone; Prog, progesterone; S, 11-deoxycortisol; StAR-D, steroidogenic

acute regulatory deficiency; SV, simple virilising; SW, salt wasting; T, testosterone;

THDOC, tetrahydro-deoxycorticosterone; THS, tetrahydro-deoxycortisol;

US, ultrasound.

steroidogenesis is not StAR dependent, Prog production is able
to maintain pregnancy to term.

Clinical Presentation and Diagnosis
In its most severe form, the affected newborns cannot produce
significant amounts of any steroid (9, 10). They show high
ACTH levels, increased plasma renin activity, and engorged
adrenal glands containing excessive amounts of cholesterol
and its derivatives (5) (Table 1). Classic patients have severe
salt loss within the 1st months of life and female external
genitalia, irrespective of chromosomal sex (11). In 46,XY
babies, Sertoli cells stay intact and the anti-Mullerian hormone
(AMH) inhibits the development of Mullerian structures. The
hydrosaline balance is controlled prenatally by the placenta,
but mineralocorticoid (MC) deficiency emerges within 2–
3 weeks due to progressive cellular destruction and some
remaining StAR-independent MC biosynthesis. “As the ovary is
steroidogenically quiescent until puberty, it is protected from
cellular damage until steroidogenesis begins” (12, 13).

P450 Cytochrome Side-Chain Cleavage
Deficiency (CYP11A1-D)
Epidemiology/Genetics
CYP11A1-D is an even rarer defect than StAR-D, and it is caused
by pathogenic variants of the CYP11A1 gene (14). To date,
40 patients and 25 variations of CYP11A1 have been reported.
Almost all cases are homozygous or compound heterozygous
(15). Autosomal dominant inheritance has also been proposed in
a few cases (16, 17).

Essential Biochemistry/Pathophysiology
CYP11A1 catalyzes the conversion of cholesterol to Preg in
three consecutive rate-limiting steps: 20α-hydroxylation, 22R-
hydroxylation, and cleavage of the C20–C22 carbon side
chain (18) (Figure 1A). CYP11A1-D determines defects in
all three steroidogenic pathways: MC, glucocorticoid (GC)
in the adrenals, and androgen (Andr) in the adrenals and
gonads. Complete CYP11A1-D was considered incompatible
with term pregnancies due to impaired placental progesterone
andmaternal estrone (E1) production; the reason why some cases
survived pregnancy is still not completely clear (19–22). The
expression of CYP11A1-D occurs early in fetal testes, causing
defective gonadal steroidogenesis that dramatically impairs
virilization of 46,XY fetuses (23).

Clinical Presentation and Diagnosis
In newborns, the most severe presentation is characterized by
early adrenal insufficiency with salt wasting (SW), hypoglycemia,
skin hyperpigmentation, and complete feminization of external
genitalia, regardless of sex chromosomes. The 46,XY newborns
show normal or hypoplastic derivatives of Wolffian duct and
small testes, whereas derivatives of Mullerian duct are absent
(11). Histology of the testes reveals immature tissue without
germ cells (20). A phenotype with neonatal and transient adrenal
insufficiency, life-threatening failure to thrive, and normal male
external genitalia in 46,XY patients was reported in 2018
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TABLE 1 | A summary of genetic, early clinical, biochemical features, and therapy of the CAH deficiencies presenting in the 1st year of life [modified by (1)].

STAR PROT

OMIM 201710

CYP11A1

OMIM 118485

HSD3B2

OMIM 201810

CYP17A1

OMIM 202110

CYP21A2

OMIM 201910

CYP11B1

OMIM 202010

POR

OMIM 201750

Genetics Gene StAR CYP11A1 HSD3B2 CYP17A1 CYP21A2 CYP11B1 POR

Locus Chr. 8p11.23;

7 exons

Chr. 15q24.1;

9 exons

Chr. 1p12;

4 exons

Chr. 10q24.32;

8 exons

Chr. 6p21.33;

10 exons

Chr. 8q24.3;

9 exons

Chr. 7q11.23;

17 exons

Clinical/

biochemical

features at

birth

MC Renin ↑↑ ↑↑ ↑↑ ↓ ↑↑ ↑↓ ↓↑

Na/K ↓/↑ ↓/↑ ↓/↑ ↔ ↓/↑ ↔,↓/↔, ↑ ↔

BP ↓ ↓ ↓ ↑ (no in partial

defects)

↓ ↑ ↑

Neonatal SW +++ +++ +++ – +++ – –

GC Neonatal AI +++ +++ +++ ± +++ +++ ++

Hypoglycemia ++ ++ ++ – ± – –

Andr Genitalia 46,XY DSD 46,XY DSD 46,XY DSD;

46,XX DSD (mild

in 25% of cases)

46,XY DSD;

absence of

secondary sexual

characteristics in

both sexes

46,XX DSD 46,XX DSD 46, XY DSD;

46,XX DSD 75%

of cases

Other

features

Adrenal Gland size ↑↑ ↓↓ ↔ ↔ ↑↑ ↑ ↔ ↔

Biochemical

diagnostic

markers

MC ↓↓ ↓↓ Normal/↓ Serum: ↑ DOC

Urine:↑ MC/ GC

and ↑ androgens/

GC metabolites

↓/↔/↑* Serum: ↑ S and

DOC Urine: ↑

THS, THDOC

Normal

GC ↓↓ ↓↓ ↓ Serum ↑ B Serum: ↑ 21-DOF;

urine:21-DOF

(P’TONE)

Serum ↓ F Normal

Andr ↓↓ ↓↓ Serum: ↑

stimulated ratio

of 14 over 15

steroids;

Urine: ↑ ratios

DHEA/GC

Metabolites and

5PT/GC

Metabolite*

↓↓ Serum: ↑ 17-OHP

↑ 11-K14A,

11-KT Urine:

↑17HP,PT Saliva:

↑11-K14A and

11-KT

↑ Blood: mild ↑

17-OHP; ↑

Pregn, Prog,

17-OHP Urine:

combined

impairment of

diagnostic ratios

for CYP17A1

and CYP21A2; ↑

of Pregn

metabolites (PD)

Therapy Hydrocortisone + + + + + + ±

Fludrocortisone + + + – + ± –

Mineralocorticoid receptor antagonists – – – ± – + –

MC, mineralocorticoids; GC, glucocorticoids; Andr, androgens; K, potassium; BP, blood pressure; SW, salt wasting; AI, adrenal insufficiency. *Cross reaction with high levels of other adrenal steroids. For steroid abbreviations, see the

specific table. *It can be notoriously difficult to diagnose HSD3B2-D on urine sample alone due to the naturally high levels of 3βOH5ene steroids in neonates.
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FIGURE 1 | (A) Adrenal and gonadal steroidogenesis (Classic and Backdoor pathways). StAR, steroidogenic acute regulatory protein; OMM, outer microsomal

membrane; IMM, inner microsomal membrane; DHEA/DHEA-S, Dehydroepiandrosterone/D-Sulfate; DOC, Deoxycorticosterone; 17OH-DHProg,

5-Pregnan-17-ol-3,20-dione (diol); 17OH-ALLO, 17OH-allopregnanolone; CYP11A1, cholesterol side-chain cleavage enzyme; CYP17A1, 17-hydroxylase/17, 20

(Continued)
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FIGURE 1 | lyase; SULT2A1, dehydroepiandrosterone (DHEA) sulfotransferase; POR, P450 oxidoreductase; CYP21A2, 21-hydroxylase; HSD3B2, 3-hydroxysteroid

dehydrogenase; CYP11B1, 11-hydroxylase; CYP11B2, aldosterone synthase; HSD17B3, 17-hydroxysteroid dehydrogenase type 3; SRD5A1, 5-reductase type 1;

SRD5A2, 5-reductase type 2; Fdx/ FdR, ferredoxin/ferredoxin reductase; CYB5A, cytochrome b5. (B) The metabolic pathways of classic and non-classic androgens.

The gray box indicates 11-oxygenated C19 steroids. The red, orange, and yellow boxes depict steroids with strong, mild, and weak androgenic activities, respectively.

HSD17B3, 17-hydroxysteroid dehydrogenase type 3; HSD3B2, 3-hydroxysteroid dehydrogenase type 2; AKR1C3, aldo-keto reductase family 1 member C3;

CYP11B1, cytochrome P450 11B1; HSD11B1, 11-hydroxysteroid dehydrogenase type 1; HSD11B2, 11-hydroxysteroid dehydrogenase type 2; HSD17B2,

17-hydroxysteroid dehydrogenase type 2; SRD5A1, 5-reductase type 1; SRD5A2, 5-reductase type 2; Pregn, pregnenolone; 17-OHpregn, 17-OHpregnenolone;

DHEA-S, dehydroepiandrosterone-sulfate; SULT2A1, sulfotransferase family 2A member 1; DHEA, dehydroepiandrosterone; Prog, progesterone; 17-OHP,

17-OH-progesterone; D4-A, androstenedione; 11-OHD4A, 11-hydroxyandrostenedione; 11-KD4A, 11-ketoandrostenedione; 11-OHT, 11-hydroxytestosterone;

11-KT, 11-ketotestosterone; 5-dione, 5-androstanedione; DHT, dihydrotestosterone; 11-OHDHT, 11-hydroxydihydrotestosterone; 11-KDHT,

11-ketodihydrotestosterone.

in three heterozygous related cases (17). One case of mid-
shaft hypospadias and cryptorchidism at birth and another
with penoscrotal hypospadias associated with late-onset adrenal
insufficiency (9 and 2 years of age, respectively) were reported in
2009 (24) and 2012 (25). In newborns, blood tests showed severe
hyponatremia, hyperkalemia, extremely elevated levels of ACTH,
and renin activity with low or inappropriately normal levels of
cortisol and aldosterone. Unlike most classic lipoid-CAH (26),
adrenal glands are reduced in size in CYP11A1-D (27).

3β-Hydroxysteroid Dehydrogenase
Deficiency (HSD3B2-D)
Epidemiology/Genetics
HSD3B2-D is a very rare form of CAH (estimated incidence
of < 1/1,000,000 live births) (18, 28) caused by mutations
in the HSD3B2 gene (Table 1) that encode the 3β-HSD2
enzyme. It is involved in all three steroidogenic pathways:
aldosterone, cortisol, and androgen precursors in the adrenals
and testosterone (T) in the gonads (18). Loss-of-function
mutations (<5% residual enzyme activity) predict the neonatal
SW phenotype. Mutations causing >5% 3β-HSD2 activity lead
to residual MC production without SW (29).

Essential Biochemistry/Pathophysiology
3β-HSD2 enzyme converts 15-3β-hydroxysteroids into
corresponding 14-3-keto isomers, Preg to Prog, 17α-
hydroxypregnenolone (17OHPreg) to 17α-hydroxyprogesterone
(17OHP), dehydroepiandrosterone (DHEA) to 14-
androstenedione (14A), and androstenediol to T. In SW
HSD3B2-D, glucocorticoid and mineralocorticoid are impaired
causing hyponatremia, hyperkalemia, and elevated renin
concentrations in both sexes. In females, 3β-HSD2 deficiency
prevents the flooding of 17OHP and 14A to backdoor and
11-oxyandrogen production pathways (see CYP21A2-D)
(Figures 1A,B); in males, T production is impaired during the
critical period of sexual differentiation and dihydrotestosterone
(DHT) production is subsequently reduced by classical and
backdoor pathways (30).

Clinical Presentation and Diagnosis
Historically, the clinical presentation of HSD3B2-D at birth
is described as the “classic form,” with or without SW,
hypoglycemia, ambiguous genitalia, and hypogonadism in both
sexes. Recent studies have shown that HSD3B2-D rarely causes
ambiguous genitalia in females and thus the affected 46,XX

newborns may present mild clitoromegaly only, whereas affected
46,XY newborns may present some degree of external genitalia
undervirilization or isolated hypospadias, which need to be
graded based on reliable tools (EGS) (31), (EMS) (32), (Prader)
(33). The frequency of HSD3B2-D could be underestimated
in females without SW and normal genitalia. However, in
countries with NSP for 21-OHD, it is possible that newborns
with HSD3B2-D may show false positivity for elevated levels
of 17-OHP (34–37). The principal diagnostic test for HSD3B2-
D is the serum measurement of 17-OHpreg, cortisol, 14A,
17-OHP, and DHEA (basal or post-ACTH stimulation) (28)
with a predominance of 15 steroids (i.e., Preg, 17OHPreg, and
DHEA) over 14 steroids (Prog, 17OHP, and 14A). Guran et
al. (30) reported that high baseline 17OHpreg-to-cortisol ratio
and low 11-oxyandrogen concentrations by LC/MSMS provide
an unequivocal biochemical diagnosis of patients with HSD3B2-
D. Although urinary steroid profiling is considered to be similarly
accurate and less invasive for diagnosis (38), it can be notoriously
difficult to diagnose HSD3B2-D on urine sample alone due to the
naturally high levels of 3βOH5ene steroids in neonates.

17α-Hydroxylase/17,20 Lyase Deficiency
(CYP17A1-D)
Epidemiology/Genetics
The incidence of CYP17A1-D is estimated to be about 1 in 50,000
(39). The disease prevalence is higher in certain countries such as
the Netherlands (Friedlanders), Brazil, China, and Japan, where it
is the second leading cause of CAH. This is attributable to loss-of-
functionmutations in theCYP17A1 gene (40) (Table 1). Over 100
mutations in the CYP17A1 gene are known, mostly resulting in
complete loss of enzymatic activities of both 17-hydroxylase and
17–20 lyase (39). Researchers have also reported partial loss of
enzymatic activity and loss of either hydroxylase or lyase activity
alone (41).

Essential Biochemistry
CYP17A1 mediates three major transformations in cortisol and
sex steroid biosynthesis. In particular, 17-hydroxylase mediates
the synthesis of 17-Preg from Preg and 17OHP from Prog,
whereas 17–20 lyase controls the production of DHEA from
17OHPreg. This latter step is of paramount importance as DHEA
is the progenitor of steroid sex hormones (Figure 1A). The
biochemical markers used to diagnose CYP17A1-D are shown in
Table 1.
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Clinical Presentation and Diagnosis
In 46,XX patients, external genitalia are normal on the neonatal
exam as are the internal one to ultrasound (US). They may
have no complaints before the typical age of puberty when the
deficiency in sex hormones becomes apparent and they may
develop hypertension or hypokalemia and high gonadotropin
levels (hypergonadotropic hypogonadism).

In 46,XY patients, the presentation is typically under
masculinization and can range from phenotypic female to
ambiguous or small male genitalia (41). On physical examination,
they may have a blind pouch instead of a vagina with a lack
of internal female genitalia. The testes are undescended
or located in the inguinal canal on imaging studies. Early
diagnosis and treatment allow for the prevention of morbidity
associated with hypertension, electrolyte abnormalities, and
impairment of sexual development. As NSP identifies classic
CYP21A2-D but does not detect CYP17A1-D, provider
awareness and consideration of this condition are imperative for
appropriate diagnosis.

21-Hydroxylase Deficiency (CYP21A2-D)
Epidemiology/Genetics
The most common form of CAH is represented by CYP21A2-D
(90% cases). The severity of the enzymatic deficiency determines
three clinical forms: SW (<1% enzyme activity), simple virilizing
(SV; 1–2%), and non-classical (NC; 20–60%). The incidence of
classic forms (SW and SV) ranges between 1 in 13,000 and 1
in 15,000 live births (42): in most populations, the frequency
of heterozygous carriers is 1 in 60. CYP21A2-D is caused by
mutations in the CYP21A2 gene (6p21.3). Microconversions or
apparent gene conversions that cause the transfer of an inactive
pseudogene (CYP21P) to the functional gene are responsible for
95% of pathogenic variations (43). Rare patients with classic
CAH (SW) show a “contiguous gene syndrome”, with CAH
and Ehlers–Danlos Syndrome (EDS) features, which is called
“CAH-X” (44).

Essential Biochemistry/Pathophysiology
In SW CYP21A2-D, GC, and MC production is severely
impaired, whereas abnormal amounts of Andr are produced,
stimulated by the increased levels of ACTH. 17OHP elevation
represents the hallmark of the disease, and the large majority
of classic CYP21A2-D patients show basal levels of 17OHP as
>300 nmol/L (>10,000 ng/dL) (45). 17OHP is converted to T
and 5α-DHT, two androgens with potent activity, by the so-called
“front door” pathway and directly to DHT via an alternative
pathway known as “the backdoor pathway” (46, 47) (Figure 1A).
The latter could lead to hyperandrogenism less responsive to
GC treatment (48). 11-Keto-testosterone (11KT) is derived from
11-hydroxylation of 14A and T by CYP11B1 and acts as a
potent androgen with a fundamental role in the pathophysiology
of classic CYP21A2-D (49) (Figure 1B). It could be utilized in
the future as a more precise biochemical marker of the disease
(measured by means of LC/MSMS) than DHEA, 14A, and T
(49, 50).

Neonatal Presentation
All fetuses affected by classic CAH show varying degrees of
genital virilization due to exposure to intrauterine androgen
excess, so that any newborn with ambiguous genitalia or in
extreme cases apparently male genitalia and non-palpable gonads
(45) should be suspected of having SW CAH (2, 45). Patients
with 46,XX very often show a vagina that opens into a common
urogenital sinus with enlarged clitoris and normal cervix, uterus,
and ovaries; 46,XY children may show macrogenitosomia and
genital hyperpigmentation but are generally unrecognized at
birth. Sodium loss and potassium retention occur in newborns
with SW CAH, due to mineralocorticoid deficiency. This may be
detected biochemically from 4 to 7 days of life, but takes longer
to present clinically (2nd week to 1st month of life).

Newborn Screening
In several countries, NBS has been developed for early diagnosis
of CYP21A2-D by measuring 17OHP blood levels on dried blood
spots. NBS is fundamental in preventing SW crises in males
and male sex assignment in affected females. The diagnosis of
CYP21A2-D is made when 17OHP levels are above the cutoff
levels that should be elaborated and adjusted for gestational age at
each screening center (51). A second-tier test on the same blood
sample by LC/MSMS multi-hormonal profile could improve the
positive predictive value of the CAH screening (52) and be
helpful in diagnosing other rarer forms of CAH (35, 53).

Prenatal Treatment
The prenatal diagnosis of affected CAH fetuses is usually made
by chorionic villous sampling at 10–12 weeks of gestation
or by amniocentesis at 15–16 weeks of gestation. Treatment
in utero of potentially affected CAH patients is feasible by
administering dexamethasone to the mother starting from
the first weeks of pregnancy, with the aim of containing
adrenal hyperandrogenism by reducing ACTH hypersecretion
and avoiding genital masculinization in the CYP21A2-D female
fetuses (2). However, it should still be considered an experimental
therapy due to potential adverse effects on both unaffected
children that need to be treated until diagnosis is achieved and
their mothers (45). A non-invasive method using cell-free fetal
DNA in maternal plasma (NIPD at 5 weeks of gestation) could
allow selective treatment in affected females only (54) but is not
routinely performed due to its complexity and associated cost.

11β-Hydroxylase Deficiency (CYP11B1-D)
Epidemiology/Genetics
11-OHD is among the most common causes of CAHs in the
world, after 21-OHD, and accounts for about 5% of CAH patients
with a European ancestry (55) and for about 15% of CAHpatients
in the Muslim and Jewish Middle Eastern populations (56). The
classical form of 11-OHD has an estimated frequency of 1 in
200,000 live births (57). This is caused by mutations in the
CYP11B1 gene (Table 1). Approximately 130 mutations of the
CYP11B1 gene have been described so far.
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Essential Biochemistry
In the normal adrenals, 11β-hydroxylase is expressed in the
zona fasciculata and converts 11-deoxycortisol to cortisol in
response to ACTH. 11β-hydroxylase and aldosterone synthase
can convert DOC into corticosterone (B). 11-OHD disrupts
the synthesis of cortisol with normal production of aldosterone
(1). The key steroid used in diagnosis for the classic form is
elevated 11-deoxycortisol basal levels (27). Serum B, DOC, and
17-OHP are also elevated, and elevated levels of the latter can
cause CYP21A2-D misdiagnosis. The urinary metabolites, such
as tetrahydro-cortisone, tetrahydro-11-deoxycorticosterone, and
tetrahydro-11-deoxycortisol (2), are useful for diagnosis.

Clinical Presentation and Diagnosis
The classical form is characterized by excess androgen and
hypertension. ACTH excess due to cortisol deficit causes
overproduction of androgens and DOC: androgens lead to
virilization similar to CYP21A2-D in affected female patients
(46,XX DSD); excess of DOC causes low-renin hypertension
(2). Hypertension might not be apparent during the neonatal
period (in about one-third of patients) due to mineralocorticoid
resistance, and some patients can present with salt loss during
the neonatal period, especially after the start of the GC
treatment (58).

P450 Oxidoreductase Deficiency (POR-D)
Epidemiology/Genetics
POR-D was first described in 2004 (59) as a rare form of
CAH. Currently, about 100 cases of POR-D have been reported
worldwide with a broad clinical spectrum, and most occurring
in neonates and children (60). Since 2004, some pathogenetic
variants causing defective binding of co-factors and others
causing altered interaction with partner proteins have been
described (61). The homozygous null mutations appear to be
lethal (62, 63).

Essential Biochemistry
POR is involved in the metabolism of drugs and steroid
hormones because “all cytochrome P450 enzymes located in the
endoplasmic reticulum get electrons for their catalytic activities
from the co-factor” (61) NADPH through POR (64, 65). The
main microsomal POR-dependent enzymes are involved in the
biosynthesis of steroid hormones in both the adrenal cortex
and gonads (CYP17A1, CYP19A1, CYP21A2, and CYP15A1), as
well as in the metabolism of drugs and endogenous substrates
(CYP3A4 and CYP2D6) in the liver (66–68). Several studies also
suggest a possible role for POR in bone development and retinoic
acid metabolism, which lead to skeletal anomalies (60).

Clinical Presentation and Diagnosis
POR-D was initially identified as a difference of sex development
(DSD) with ambiguous genitalia similar to some cases of Antley–
Bixler syndrome (ABS), a bone malformation syndrome due to
the presence of mutations in FGFR2 (69). A recent review (60)
meta-analyzed the phenotypic features in newborns with POR-
D, with DSD at birth in 69% of patients (78% 46,XX and 60%
46,XY) (60). Maternal virilization during pregnancy, due to a

defect in aromatase (CYP19A1) activity, is described in 21% of
mothers, with the highest incidence (44.4%) when at least one of
the mutations was R457H (60).

Skeletal malformations resembling ABS features were
described in the 84% of PORD patients without mutations
in FGFR2 (60), such as midface hypoplasia (71%), large joint
synostosis (69%), craniosynostosis (65%), hand and feet
malformations (61%), and bowing of the femora (21%) (63). A
latent form of adrenal insufficiency rarely becomes clinically
evident in the neonatal period (70–72). “Due to a very complex
effect on steroid metabolism, it is preferable to diagnose PORD
by performing mass spectrometry analysis of urine and blood
samples” (61). Hormonal analysis is characteristic of mild to
moderate increase in 17OH progesterone levels (found through
neonatal screening or biochemical analysis), normal baseline
ACTH, and cortisol levels with an inadequate increase in
cortisol production after ACTH stimulation, normal values for
renin and aldosterone, and elevated values for progesterone,
corticosterone, 18OH corticosterone, 11-deoxycorticosterone
(DOC), 18OH DOC, and 21-deoxycortisol (59). Low E3 and
increased metabolites of Preg in urine or amniotic fluid of the
mother can be useful for prenatal diagnosis (73). However,
definitive diagnosis of PORD needs to be done by genetic
analysis of the POR gene.

THERAPEUTIC APPROACH

Glucocorticoids (GCs)
Substitutive treatment with oral hydrocortisone (10–15
mg/m2/day, divided into three daily doses) is mandatory for all
classic forms of CAH presenting during the neonatal period.
In CYP21A2-D and CYP11B1-D, GC administration prevents
further genital virilization. Higher doses (15–30 mg/m2/day,
divided into 3 or 4 daily doses) are often indicated both initially,
to slow down the excessive production of potentially unfavorable
metabolites (21OHD), and subsequently, as neonates and young
infants often require higher doses per surface area than older
children or adults. Other forms of GC are not recommended
due to possible ineffectiveness (cortisone acetate) or detrimental
effects on child growth (prednisolone and dexamethasone).
Alawi et al. (28) suggested administering hydrocortisone at
slightly higher doses (12–18 mg/m2/day) in HSD2B3-D due to
the greater difficulty in suppressing androgens.

We recommend educating parents and caregivers for adrenal
crisis prevention and at least doubling the dose of GC (but
not MC) for situations such as febrile illness (>38.5◦C)
and gastroenteritis with dehydration. Parenteral hydrocortisone
administration (i.v. bolus of 12.5mg in neonates and young
infants, often with glucose and saline and administered within
3–10min; bolus repetition every 4–6 h in the first 24 h or a
continuous infusion of 100 mg/m2/day) is mandatory in cases
of adrenal crisis with vomiting, major surgery accompanied by
general anesthesia, and major trauma.

In patients <18 months of age, close monitoring in the
first 3 months of life and every 3 months thereafter is
recommended (45).
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Mineralocorticoids (MCs)
Fludrocortisone (0.05–0.2mg, once or twice daily) together with
sodium chloride administration during the first 6–12 months of
life (5 mmol/kg/day, divided into 4–5 meals; 17 mmol or mEq =
1 g NaCl) aims to prevent adrenal crisis in StAR-D, CYP11A1-D,
SW HSD2B3-D, and SW CYP21A2-D. Monitoring of K and BP
levels is important for dose management.

Other Medical Treatments
In undervirilized 46,XY newborns with StAR-D, CYP11A1-
D, CYP17A1-D, or POR-D reared as male, sex steroid
replacement (T or DHT) might be useful during minipuberty
(74). In newborns with CYP11B1-D or CYP17A1-D, if
blood pressure control is not achievable by glucocorticoids
alone, then appropriate antihypertensives should also be
administered. Sometimes, treatment with mineralocorticoid
receptor antagonists may be necessary (75). In POR-D, the
supplementation of sex steroids and glucocorticoids must be
based on the steroid profile of the patient, considering the
possibility of impaired drug metabolism. Skeletal malformations
require orthopedic management. Potential therapeutic options
include the introduction of external flavin (66) and treatment
with cysteamine in case of arginine to cysteamine mutations (76).

Surgical Treatment
A multidisciplinary team with competence in DSD management
is recommended. In all pediatric patients with CAH, particularly
minimally virilized girls (Prader I–II) and mildly undervirilized
boys (EMS 7–11) (32), parents must be informed about surgical
options, including delaying surgery and observation until the
child is older.

Usually, the sex assignment in 46,XX newborns with
CYP21A2-D or CYP11B1 is female, and genital surgery may be
necessary, but the timing of the surgery remains controversial.
In patients for whom early surgery is selected, vaginoplasty
using urogenital mobilization is suggested, and if selected,
neurovascular-sparing clitoroplasty for severe clitoromegaly is
suggested (45). With early management (started <2 years of
age), 46,XX patients generally have a satisfactory psychosocial
outcome (77–79).

In male newborns with severe hypospadias, urological surgery
is certainly indicated for functional repair (80). Although a
recent review (81) found that 80% of men are satisfied with
childhood hypospadias repair, it is advisable to refrain from
invasive surgery that is not essential for health and to encourage
patient participation and decisions in the choices regarding the
sexual sphere (82).

Psychological Support
Diagnosis of classic CAH during neonatal age activates concerns
and anxiety in parents related to the risk of electrolyte crises,
genital ambiguity at birth, and the effects of hyperandrogenism
on the brain, gender behavior, and body perception. The option
of genital surgery, in case of highly virilized genitalia, represents a
strong stress factor for families. Although studies in the literature
show controversial results regarding the quality of life of people
with CAH, case reports show that they can be psychosocial
consequences related to the ambiguity of the genitalia (impaired
bodily self-image, stigmatization, etc.). Therefore, we believe that
psychological support is a useful complement to endocrinological
and surgical management, in agreement with the Endocrine
Society guidelines (45).
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