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During the COVID-19 pandemic, children have had markedly different clinical

presentations and outcomes compared to adults. In the acute phase of infection, younger

children are relatively spared the severe consequences reported in adults. Yet, they

are uniquely susceptible to the newly described Multisystem Inflammatory Syndrome in

Children (MIS-C). This may result from the developmental “immunodeficiency” resulting

from a Th2 polarization that starts in utero and is maintained for most of the first decade of

life. MIS-C may be due to IgA complexes in a Th2 environment or a Th1-like response to

COVID-19 antigens that developed slowly. Alternatively, MIS-C may occur in vulnerable

hosts with genetic susceptibilities in other immune and non-immune pathways. Herein,

we present a brief overview of the host immune response, virologic and genetic factors,

and comparable inflammatory syndromes that may explain the pathophysiology leading

to drastic differences in clinical presentation and outcomes of COVID-19 between

children and adults.
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INTRODUCTION

SARS-CoV-2, a novel coronavirus, was first reported in December 2019 from Wuhan, China. The
disease caused by SARS-CoV-2, COVID-19, subsequently spread in pandemic fashion over the
following 10 months causing a wide spectrum of clinical symptoms from asymptomatic disease
to death (1). Mortality correlated with preexisting inflammatory conditions including obesity,
hypertension, sex (mortality rates in males 1.5 higher than in females), and most notably, age (2).

The natural history of COVID-19 in children has been different. In adults, initial reports of
case fatality rates approached 15% compared to <1% in children (3). An initial report of a Chinese
cohort of 36 children with documented COVID-19 infection revealed relatively mild symptoms (4).
A larger cohort of 110 children documentedmostly asymptomatic infection with a shorter duration
of viral detection (11 vs. 17 days). These early reports indicated that symptomatic children were
more likely to have fever, pneumonia, and lymphopenia (5).

Considerable information on COVID-19 is already available based on review of clinical
and laboratory data, allowing for molecular, epidemiological, physiologic and clinical disease
characterization. Given the information we have thus far, we construct hypotheses to explain some
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of the variation in infection and clinical outcomes of COVID-19
in children. This report attempts to apply our knowledge of
virology, developmental immunology, comparable inflammatory
syndromes, and host genetics to explain the drastic differences
in clinical presentation and outcomes between children
and adults.

ORIGINS AND TRANSMISSION

Molecular sequencing identified SARS-CoV-2 as a relative of the
SARS Coronavirus, most closely related to a bat coronavirus (6).
Spread to humans may have occurred via an intermediate host,
possibly the pangolin, and perhaps in the setting of exotic food
markets (7). Experience from Wuhan suggested viral doubling
time was every 2–3 days early in the epidemic (8), and the
infection soon was recognized in Europe (9). It is now recognized
that viral evolution has resulted in strains dominant in different
parts of the world with amino acid mutations that impact
infectivity (10).

Using surveillance and contact tracing, earlier studies
suggested that children appear to acquire COVID-19 infection at
a rate similar to that seen in adults (11). However, other studies
document a risk 30% of that seen in exposed adults (12), and
more recent mathematical modeling studies based on available
epidemiologic data suggest that under age 20, susceptibility to
infection is half that of those over age 20 (13). In contrast, a study
indicated higher viral loads (lower threshold concentrations
on RT PCR nasopharyngeal specimens) in children < 5 years
of age with mild to moderate COVID-19 (14). Children have
been studied as index cases in households, and some studies
show that children over age 10 transmit COVID-19 at rates
similar to adults (15), but other studies with slightly different
age breakdowns suggest this is not the case (16). Indeed, with
few exceptions, while children may not suffer from significant
disease with COVID-19, their role in transmission remains to
be clarified (17), although recent meta-analyses suggest children
have a lower risk of being infected with SARS CoV2 and “play
a lesser role than adults in transmission at a population level
(18).” These factors have significant implications for back-to-
school programs for children and need to be evaluated carefully
in the context of existing data and return-to-school programs
ongoing in other countries, such as Denmark. Indeed, a recent
study in Germany suggested that child to child transmission, in
the context of reduced class size, face mask wearing (inside),
exclusion of sick children, and with frequent ventilation of
rooms, even with limited physical distancing among children,
resulted in the maintenance of low COVID-19 transmission
rates in children (19), and summer camps with stricter COVID-
related measures (20). Nonetheless, transmission from children
infected in daycare settings has been demonstrated (21). In
addition, with heterogeneous approaches and persistently high
levels of community transmission in the context of schools
returning to in-person learning, such as is the current situation
in states like Mississippi (Hobbs, C. pers. comm.), other locations
will continue to suffer higher rates of pediatric COVID-19
infection (22).

RECEPTOR PRESENCE

Themajor host target for SARS-CoV-2 is the ACE type 2 receptor
(ACEr2). This receptor target distinguishes SARS-CoV-2 from
bat coronaviruses, SARS and MERS. Infection of pulmonary and
other epithelial cell types is facilitated by a protease, particularly
a membrane embedded cysteine cell protease, TMPRSS2 (23).
The viral entry receptor, ACEr2 is expressed mainly in lung
type 2 alveoli but also in some nasal epithelial cells, and there
is limited expression on pulmonary alveolar cells (24). It is
also present in blood vessels, kidneys, cardiac and neural tissue
(25). It has been speculated that younger children suffer less
severe acute COVID-19 due to reduced ACEr2 expression (26),
although recent studies have shown younger children have
lower ACEr2 expression but not viral load (27). Expression is a
function of clinical states (e.g., hypertension) and the presence
of TMPRSS2 (a serine protease encoded on Chromosome 21)
which increases ACEr2 expression, allows the virus to enter the
cell after cleavage. Recently, it has been shown that COVID-19
can also infect small intestinal enterocytes via TMPRSS2 and
TMPRSS4, another serine protease which facilitates fusogenic
function of the virus (28). Androgen levels increase the protease
expression (29), perhaps explaining the increase in infection
among males. Importantly, ACEr2 gene expression is lower in
children (30).

EARLY INNATE IMMUNE RESPONSES

Innate responses are variable in early life and generally below
what is seen in adults, but likely sufficient to deal with low levels
of virus seen early in infection. Early antiviral defense is mediated
by the innate immune system with a variety of extracellular
RNA sensors (TLRs) and intracellular sensors (IFIH1/MDA5,
ZBP1, DDX58, RIG-1) to elicit a protective response. These
innate defenses are genetically regulated and vary across different
species (31). A variety of cytokines and chemokines, often under
genetic control, would be expected to activate inflammatory
responses (STAT1 or STAT3) that could eliminate low-level
infection. This involves innate immune natural killer cells and
polymorphonuclear cells. A recent study by transcriptomics
highlights the importance of activated dendritic and neutrophils
in the respiratory tract of subjects with COVID-19 (32).
Viral antigens have been shown to subvert these responses.
Innate immune responses (particularly IFNλ or IL28/29), play
a significant role in determining the likelihood of developing
bronchiolitis after RSV infection (33). One study showed that
an interferon response element (IFTM3) is associated with
excessive immune response to virus in an age dependent manner
(34). Interferon lambda, a cytokine in the IL-10 family of
cytokines (35) made by epithelial and dendritic cells, plays a
significant role in defense against low levels of respiratory viruses.
It binds to IFNLR1 and IL10RB, eliciting responses different
from that of IFN1/2 (36). Different allelic variants of an IFN
lambda SNP affect the outcome of Dengue infection in children,
suggesting such genetic variation may be at play with other RNA
viruses (37).
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LATER ADAPTIVE IMMUNE RESPONSES

If early immune responses fail to eliminate virus, adaptive
responses are initiated to interfere with pulmonary infection.
Local mucosal responses precede pulmonary responses and
might be capable of eliminating virus sufficiently to modify
pulmonary disease. A recent publication suggests that T cell
trafficking to different target organs is highly associated with
sex and age, perhaps determining where inflammation will
occur (38). Although lymphocytopenia is associated with disease
activity, this may be a result of trafficking from blood to target
organs. Autopsy material reveals an influx of mononuclear T
cells, particularly Th1 CD4T cells and Tc1 CD8T cells. Also seen
are microthrombi and fibrin, possibly trapping viral antigens (39,
40). An excessive release of proinflammatory IL-12, interferon
gamma (IFNγ), tumor necrosis factor (TNF) and IL-6 produce
a “cytokines storm” which can lead to tissue damage and death
(39, 40). Subsequent “control” of viral infection may be impaired
due to immune exhaustion of the T cells (41), perhaps prolonging
the clinical state in the face of other inflammation. In this
later stage, treatment with methylprednisolone and/or anti-IL6
monoclonal antibodies may reverse the storm and slow down the
damage (42).

An important factor determining T cell tropism is antigen
concentration (43). Like other coronaviruses, there are several
proteins involved in viral replication, the S or spike protein, the
M or matrix protein, the E or envelope protein, and the N or
nucleoprotein. Viral titer in the throat, peaks in the 1st week
and declines by day 14. Antibody is documented in some by
day 7 and most by day 14. They consist of IgM, IgA and IgG
to spike or nucleoprotein antigens. The appearance of antibody
did not preclude the ability to detect virus in some as they may
not be neutralizing antibodies (44). Moreover, some individuals
with mild SARS-CoV-2 infection developed T cell responses in
the absence of antibody seroconversion (45). Experience derived
from SARS and MERS showed that neutralizing antibody and B
cell responses fade after 1–2 years (46). However, HLA-restricted
central memory CD4 and effector memory CD8T cell responses
to spike proteins persist for several years (47, 48).

In children, adaptive responses are more Th2 polarized (49).
This holds true for responses to respiratory viruses. When there
is pulmonary pathology seen, airway CD8 Tc1 response is seen
(50). Th2 responses downmodulate Th1 responses which likely
induces tissue damage of infected cells. This Th2 predominant
response would ameliorate the cytokine “storm” seen in adults
and resulting in significant clinical disease. After infection with
the SARS virus in children, high levels of IL-1 were seen in the
1st week. The traditional Th1 cytokines, IL-6 and TNF, that were
high in adults with COVID-19, were not overly expressed at first
and declined thereafter in children (51).

COINFECTIONS WITH RESPIRATORY
VIRUSES

Children commonly experience multiple viral infections,
such as rhinovirus, RSV, and influenza, causing respiratory

symptoms, including rhinorrhea in most, and often cough
and gastrointestinal complaints (52). Previous infection or
coinfection with these may modify the immune response to the
COVID-19 virus. Children are frequently infected with multiple
agents at the same time (53–55). However, there is a paucity of
data related to coinfections due to shortage of viral transport
media paired with lack of availability to make home-brew media
based on CDC recommendations1, and so the true co-infection
rates at this time require further study.

Seasonal human coronaviruses HCoV-229E, -NL63, -OC43,
and -HKU1 contribute to a considerable share of upper and lower
respiratory tract infection in children. The majority of children
are seropositive for HCoV-229E and -NL63 by the age of 3.5 years
(56, 57). Interestingly, there may be cross-reactive immunity
between seasonal human coronaviruses and COVID-19. In one
study of samples stored prior to the COVID-19 pandemic,
nearly 50% of healthy adults were found to have SARS-CoV2-
specific CD4T cells (58). In this study, there were also SARS-
CoV2-specific CD8T cells in a smaller subset of COVID-19
unexposed adults. It is conceivable that these pre-existing SARS-
CoV2-specific T cells contribute to an overly robust T cell
response after COVID-19 infection leading to cytokine storm
and severe disease. Young children may be naïve to seasonal
human coronavirus strains or mount weaker T cell responses that
cross-react with SARS-CoV2, ironically protecting them from
cytokine storm and the inflammatory process associated with
severe disease. Indeed, among children hospitalized in intensive
care units, over half were above the age of 10 years (59), which
parallels when we would expect higher seropositivity to seasonal
human coronaviruses and immunologic maturity that has shifted
from Th2 to Th1 predominance and stronger T cell responses.

Conversely, smaller studies have shown that children who
develop multi-system inflammatory syndrome in children (MIS-
C) were less likely to have antibodies to seasonal coronaviruses:
this could be itself because MIS-C children represent an older
age group, or because having these antibodies plays a role
in controlling later hyperinflammatory COVID-19 associated
complications (60). Interestingly, a study from Seattle Children’s
in the early pandemic showed a surprisingly low seroprevalence
of SARS CoV2 antibody in children, although neutralizing
antibody activity was detected in children in whom SARS CoV2
infection had not been suspected (61). Perhaps this is not
surprising though given that we know in adults, detectable
antibody is more likely to be seen those who are symptomatic
(62). Moreover, some individuals with mild SARS-CoV-2
infection develop T cell responses in the absence of antibody
seroconversion (45). In addition, a recent study examining
immune responses in pediatric compared with adult patients
with COVID-19 infection (and for pediatrics, acute COVID-
19 and MIS-C patients were included) found that adults with
COVID-19 were more likely to have neutralizing antibody titers
compared with children, as well as lower IL-17A and interferon
gamma responses, and children in this study did not have
differences in anti-spike antibody titers when compared to adults

1CDC. Available online at: https://www.cdc.gov/coronavirus/2019-ncov/

downloads/Viral-Transport-Medium.pdf (accessed May 20, 2020).
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(63). Of note, some of these studies so far have relatively small
numbers and larger studies to clarify the immune response profile
distinctions amongst children with acute COVID-19 compared
with MIS-C compared with adults with acute COVID-19 (severe
and less severe/asymptomatic) are needed, especially in the
context of the COVID-19 vaccine development efforts.

SPECTRUM OF COVID-19
MANIFESTATION IN CHILDREN

In adults, coexisting health issues associated with inflammatory
states such as obesity, type 2 diabetes, cardiac disease with
impaired function, pulmonary insufficiency associated with
exposure to respiratory toxins, liver disease facilitated by alcohol
exposure, and declining renal function were associated with
worse outcomes (64). Similarly, a recent report from pediatric
ICUs in the United States revealed that among 48 COVID-19
infected children the mortality was 4% (59). Almost 90% of
these children had preexisting comorbidities (59). Management
of acute COVID-19 based on available evidence is reviewed
in the Infectious Disease Society of America COVID-19
Guidelines (65).

However, the spectrum of disease in children continues
to be described, and co-morbidities in children, as they are
in adults, may not account for the entire picture. Basic
knowledge of immunologic ontogeny, paired with what we have
seen thus far with COVID-19, suggests that infected children
develop varied manifestations of the COVID-19 infection: (1)
asymptomatic infection, if innate immunity resolves upper
respiratory infection; or (2) mild fever with upper respiratory
symptoms; or (3) lower respiratory infection with some
symptomatology which resolves after a few days. These would
be expected with a Th2 preponderance, based on immunologic
maturity. If the virus were allowed to disseminate to other tissue
and the child developed adaptive responses to the virus over
the following one or more weeks, the response to SARS-CoV-2
antigens might provoke a delayed inflammatory state. Therefore;
(4) IgA immune complexes may result in systemic inflammatory
responses that mimic Th1 responses and that also may produce a
diverse set of syndromes that they are genetically at risk for.

LATER MANIFESTATIONS OF COVID-19

There have been recent individual reports of hyperinflammatory
disease with parallels to other multisystem inflammatory disease
syndromes in children, experienced by relatively small numbers
of children with evidence of COVID-19 infection by PCR or
antibody testing (66). The first and largest case series were
published from the Italian, British, and American (New York)
experiences, prompting emergency announcements regarding
what is being termed as “Multisystem Inflammatory Syndrome
in Children” or MIS-C, and case definitions released by the U.S.
and European Centers for Disease Control as well as the WHO
on May 14 and 15, 2020 (67–69). Many of these cases cluster at
least a month after the peak of community transmission, with the
vast majority testing SARS-CoV-2 IgG positive. The definitions
comprise the clinical symptoms and lab findings of inflammation

as well as evidence of, or exposure to, COVID-19. Abnormal labs
include overall increasedWBC, low lymphocytes, increased CRP,
lower albumin, increased ferritin, increased troponin, elevated
d-dimers, increased LDH, and abnormal troponin and BNP (67).

Children are presenting with a spectrum of manifestations
with prolonged fevers in the absence of alternative diagnosis,
and in worst cases, frank cardiogenic shock with myocardial
dysfunction (70). There is no known predictive factor as to which
children will have worse disease, and there may be host genetics
at play as these cases were described in Europe and have not yet
been described in East Asian countries (for example, China) that
have gone through COVID-19 epidemic peaks (71). In addition,
a recent small study from Paris reported MIS-C was more
commonly seen in children of African ancestry (72). The initial
reports of this condition from the U.K. showed this diagnosis
also was frequent in children of Afro-Caribbean descent (68), and
data from the Centers for Disease Control and Prevention suggest
this condition is more commonly described in racial and ethnic
minority (Hispanic and black) children (73). Moreover, we know
MIS-C is a relatively rare complication, suggesting potential
host genetic factors at play. In addition, we do know that acute
COVID-19 is more commonly diagnosed in racial and ethnic
minority children, and the more frequent occurrence of MIS-
C in racial and ethnic minority populations may reflect factors
that contribute to acute COVID-19 being also more frequent in
these populations.

While there is data for treatment guidelines continues to
be gathered at this time, the current consensus or recurring
themes of treatment include treatment with immunomodulatory
treatment (e.g., IVIG, steroids), anticoagulant therapy, frequent
echocardiograms, and extreme caution with fluid resuscitation
and IVIG administration if it is used. Indeed the American
Academy of Pediatrics has published interim guidance at this
time, and the American College of Rheumatology has the first
set of published guidelines for this (74). Optimum follow-up
for cardiac complications also requires further study (75). Other
more specific immunomodulators have also been employed,
including anti-IL-6 and anti-IL-1 inhibitors, with a preference
toward the latter due to its safety profile and short half-life.
Parallels between MIS-C and the hyperinflammatory response
in the acute phase of COVID-19 in adults have been drawn,
but whether the mechanisms are similar or different remains
to be defined. Implications for vaccine development are also a
concern given the severe post-inflammatory syndrome seen with
these children.

MIS-C, OTHER INFLAMMATORY
CHILDHOOD DISEASES, AND PARALLELS
DRAWN

The clinical phenomena of MIS-C shares features of other
genetic, inflammatory and post-infectious childhood diseases,
and in fact, calls to streamline the case definition have been
made to avoid diagnostic overlap (76). Some of these syndromes
share features of Monogenic Autoinflammatory Disease which
is marked by overexpression of IL-1 and in some who develop
Macrophage Activating Syndrome, overexpression of IL-18. A
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review of clinical and laboratory features referenced below and
peculiar to each disease is summarized in Table 1.

Kawasaki Disease
Kawaski Disease (KD) demonstrates some pathophysiologic
features of COVID-19 related inflammation. KD-experts are
very cautious to distinguish MIS-C from KD, though, and there
remains the question of what exactly MIS-C is, as it is not KD
itself. MIS-C occurs in older children (although there are possibly
cases in adults) (77), and presenting symptoms include more
prominent gastrointestinal symptoms and cardiac features, with
parallel distinct laboratory features such as elevated ferritin, D-
dimers, and triglycerides (67), which bear more resemblance to
Macrophage Activation Syndrome (MAS) (71).

Clinical diagnostic criteria of KD include persistent fever,
rash, cervical lymphadenopathy, bilateral conjunctival erythema,
mucositis and peripheral swelling, which overlap with MIS-
C. In KD, there are increased levels of IL-1, IL-6 and IL-
8. Neutrophils predominate in the 1st week and may invade
the wall of medium-sized arteries such as the coronaries.
With time they are joined by macrophages, dendritic cells
and CD8T cells. Immune complexes are prevalent but there
is little evidence for a major role in pathogenesis, and no
target antigen has been identified reliably. Many different stimuli
(e.g., commensal bacteria, mycoplasma, candida, different viral

classes) have been suggested. Early treatment with high dose
IVIG and/or steroid plus aspirin resolves fever and prevents
coronary artery aneurysms.

Children who do not meet diagnostic criteria may have
“Atypical” KD and are treated as if they are “classical,” with
good resolution of the symptoms. The pathogenesis may
share common mechanisms but also elements of macrophage
activation, resulting in inflammatory cytokine release and
thrombotic phenomena (78). However, atypical KD often affects
older children. Their platelet counts, which continue to rise to
over 500,000 in KD, are often low or normal in the atypical
disease. In comparison, the ability of COVID-19 to produce a
hypercoagulable state may allow for clots to develop without
elevated platelet counts.

COVID-19 infection induces antibody production 2–3 weeks
after infection, although these antibody levels are higher in
symptomatic patients compared with asymptomatic, and fall
within months of infection (62). Although most antigens
typically produce IgM followed by IgG, this infection produces
IgA at the time IgM is seen, and the response is stronger and
more persistent than IgM (79). Patients with COVID-19 produce
increased IgA-secreting cells following TLR9 stimulation (80).
IgA complexes can promote proinflammatory cytokines (TNFa,
IL-1b, IL-6, IL-23) through FCalphaR1-TLR (TLR 3,4,5) crosstalk
via gene transcription of macrophages, monocytes and Kupffer

TABLE 1 | Characteristics of MIS-C and other Hyperinflammatory Syndromes.

MIS-C KD HLH MAS HSP

System/organ manifestations

Skin/rash + + + +

Kidney + +

GI tract + +

Vasculitis ? Medium vessel Small vessel

Central nervous system + +

Clinical labs

WBC ↓ ↑

Polymorphonuclear cells ↑ ↑↑ (early) ↓ ↓

Lymphocytes ↓ ↓ ↓

Platelets ↓ ↑↑↑ ↓

RBC ↓ or normal ↓

Albumin ↓ ↓

CRP ↑ ↑ ↑ ↑ ↑

D-Dimer ↑↑ ↑↑ ↑↑

Ferritin ↑ ↑↑↑

Fibrinogen ↑ ↓ ↓

Triglycerides ? ↑ ↑

Troponin ↑ ↑ or normal

BNP ↑↑ ↑

Immune labs

IL-6 ↑ ↑ ↑ ↑↑ ↑

IL-1 ? ↑ ↑ ↑

IL-8 ? ↑ ↑

IFNγ ↑ ↑ ↑ ↑

IgA ? ↑ ↑ ↑
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cells (81). Such a process would result in Th1-like inflammation
that occurs several weeks after COVID-19 infection. A mouse
model of KD vasculitis demonstrated that intestinal permeability
and IgA provoked an immune vasculitis linked to cardiovascular
inflammation (82).

Hemophagocytic Lymphohistiocytosis
(HLH)
HLH, in its familiar form, is typically seen in children under
18 months and is associated with genetic abnormalities. It can
occur sporadically at any age. Two-thirds of patients have genetic,
autoimmune or cancer predispositions (83). Prolonged PTT
with hypofibrinogenemia and increased fibrin-split products are
associated with easy bruising. Evidence of hemophagocytosis in
the bone marrow is pathognomonic. There are increased levels
of soluble CD25 (IL-2) and CD163 (macrophage marker). This
disorder may be a result of an infectious trigger such as COVID-
19 re-exposure.

Some children have developed a late-onset purpuric skin
lesion in the lower extremities. While this may represent
easy bruising, it also resembles the vasculitis rash of Henoch-
Schonlein Purpura (HSP) in which there are deposits of
IgA and IgG complexes in the affected area. There are
also mesenteric areas with the same complexes, causing pain
and perhaps diarrhea. The COVID-19 individuals also have
enteric symptomatology and renal issues such as hematuria
and proteinuria. There are likely genetic factors that play a
role in HSP, particularly MHC class 2 and polymorphisms in
the renin-angiotensin system, which may parallel COVID-19
pathophysiology (84). In contrast to some other inflammatory
conditions, HSP doesn’t respond well to corticosteroids but does
improve with colchicine, a macrophage stabilizer.

Some children with MIS-C have developed macrophage-
activated phenotypes, seen in HLH and MAS. In a multicenter
study of 362 patients which predates COVID-19 and which
aimed to describe MAS, symptoms included: fever (95%),
hepatomegaly (70%), splenomegaly (58%), cardiac involvement
(26%), hemorrhagic manifestations (20%), renal involvement
(15%) and CNS symptomatology. Increased levels of ferritin, D-
dimer, ALT, triglycerides and LDH are seen (85). Platelet counts
and albumin levels are depressed. Treatment consists of anti-
inflammatory drugs such as corticosteroids, cyclosporin, anti-
IL1 agents and etoposide. Plasma exchange is often needed. In
a quarter of patients, infection with EBV or other Herpesviruses
may be a trigger (85).

Post-streptococcal Acute Rheumatic Fever
(ARF), an Historic Reference
ARF set a precedent for the development of a systemic disease
that occurred weeks after an initial infection with a pathogen,
and comparisons to COVID-19 and its associated syndromes
have been explored (86). ARF followed a pharyngeal infection
with a common bacterial pathogen, the Group A Streptococcus.
The initial infection was frequently asymptomatic. In a few
individuals (∼1/1,000) over age 2, fever developed about 2
weeks later. In one study, the majority presented with pain
in the joints, manifested as arthritis in 81% and arthralgia

in 15%. Four percent presented with congestive heart failure.
Carditis developed in 42%, with a high incidence of pericarditis
(6%) and congestive heart failure (15%) and a mortality of
2% (87). In another study, although antibodies to streptococci
developed, and may have recognized myosin, the disease was
due to T cell stimulation (88). The M protein of certain
streptococci can produce superantigen-like stimulation of T cells,
resulting in cytokine release (89–91). Treatment of ARF with
anti-inflammatory doses of aspirin or corticosteroids resolved
the inflammation. If treatment was initiated early enough,
the arthritis and/or carditis resolved. If treatment occurred
later, valvular damage was irrevocable. There were instances of
recurrent inflammation after exposure to group A streptococcus,
which was prevented by antibiotic prophylaxis. When recurrence
did occur, there was a reprise of the original syndrome of
carditis or arthritis. This suggests a likely genetic predisposition,
which is supported by twin studies showing a high concordance
of ARF in monozygotic twins (92). Genetic and genome-wide
association studies have reproducibly found a link between
ARF and the HLA locus on chromosome 6 as well as the
immunoglobulin heavy chain locus which includes IGHV4-
61 (93).

ARF, while not uncommon prior to 1970 in the USA, has
become uncommon since then. Its rarity in children under 2
years was thought to be related to their relative inability to
develop sufficiently high levels of Th1 responses. The delay
from primary SARS-CoV-2 infection to disease is reminiscent
of ARF in the past, which also occurred in a small fraction of
at-risk individuals.

Other Potential Host/Genetic Factors

The first genetic association studies looking at host genetic factors
in COVID-19 patients published as preprints have suggested
a link between severe disease and certain ABO blood types
including A and B (32) and Rh positivity (94). Furthermore,
preliminary results of a genome-wide association study of Italian
and Spanish patients found not only an association between
the ABO locus (chromosome 9q34) and more severe disease,
but also a gene cluster on chromosome 3p21 which includes
a gene that encodes a proline transporter that interacts with
ACE2 (SLC6A20) as well as two chemokine genes, CC-motif
chemokine receptor 9 (CCR9) and the C-X-C motif chemokine
receptor 6 (CXCR6) (95). It has yet to be determined if either
of these loci will play a role in the development of MIS-
C or severe disease in children. There are several ongoing
international collaborative efforts (including the COVID Human
Genetic Effort and the COVID-19 Host Genetics Initiative)
which aim to uncover common and rare host genetic variation
that contributes to either COVID-19 infection severity or the
development of the rarer complications and clinical syndromes,
including those that seem to affect only younger patients and
children (96, 97). Indeed, there is now at least one convincing
report describing 2 pairs of brothers from the Netherlands who
all developed severe COVID-related disease and after whole
exome sequencing were found to have loss-of-function variants
in the X-linked gene TLR7 which encodes toll- like receptor 7, an
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TABLE 2 | Primary Hemophagocytic Lymphohistiocytosis and Kawasaki Disease-Associated Genes.

Phenotype Gene name Gene product’s putatuve function, mendelian disorder association (NCBI Gene, OMIM)

Primary hemophagocytic lymphohistiocytosis

Familial HLH PRF1 Forms membrane pores that allow the release of granzymes and subsequent cytolysis of target cells.

Hemophagocytic lymphohistiocytosis, familial, 2.

STX11 Implicated in the targeting and fusion of intracellular transport vesicles. Hemophagocytic

lymphohistiocytosis, familial, 4.

STXBP2 Involved in intracellular trafficking, control of SNARE (soluble NSF attachment protein receptor) complex

assembly, and the release of cytotoxic granules by natural killer cells. Hemophagocytic

lymphohistiocytosis, familial, 5.

UNC13D Appears to play a role in vesicle maturation during exocytosis and is involved in regulation of cytolytic

granules secretion. Hemophagocytic lymphohistiocytosis, familial, 3.

Primary Immunodeficiencies

associated with HLH

AP3B1 May play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and

lysosomes. Hermansky-Pudlak syndrome 2.

BIRC4 Functions through binding to TNF receptor-associated factors TRAF1 and TRAF2 and inhibits apoptosis

induced by menadione, a potent inducer of free radicals, and interleukin 1-beta converting enzyme. Also

inhibits at least two members of the caspase family of cell-death proteases, caspase-3 and caspase-7.

X-linked lymphoproliferative syndrome.

CD27 Required for generation and maintenance of T cell immunity. Binds ligand CD70, plays key role in

regulating B-cell activation and immunoglobulin synthesis. Transduces signals that lead to the activation

of NF-kappaB and MAPK8/JNK. Lymphoproliferative syndrome 2.

ITK Encodes an intracellular tyrosine kinase expressed in T-cells. Lymphoproliferative syndrome 1.

LYST regulates intracellular protein trafficking in endosomes, and may be involved in pigmentation.

Chediak-Higashi syndrome.

RAB27A May be involved in protein transport and small GTPase mediated signal transduction. Griscelli syndrome

type 2.

SH2D1A Plays a major role in the bidirectional stimulation of T and B cells. Lymphoproliferative syndrome, X-linked

1, or Duncan disease.

Kawasaki disease

Development of KD ABCC4 Member of the superfamily of ATP-binding cassette (ABC) transporters, MRP subfamily involved in

multi-drug resistance. Plays a role in cellular detoxification as a pump for its substrate, organic anions.

May also function in prostaglandin-mediated cAMP signaling in ciliogenesis.

CD40 Part of TNF-receptor superfamily. Receptor on antigen-presenting cells, essential for mediating variety of

immune and inflammatory responses including T cell-dependent immunoglobulin class switching,

memory B cell development, and germinal center formation. Hyper-IgM immunodeficiency, type 3.

FCGR2A Immunoglobulin Fc receptor gene, found on the surface of many immune response cells. Cell surface

receptor found on phagocytic cells such as macrophages and neutrophils, involved in the process of

phagocytosis and clearing of immune complexes.

TLR6 Plays a role in pathogen recognition and activation of innate immunity. Recognizes pathogen-associated

molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of

cytokines necessary for the development of effective immunity.

Resistance to IVIG +/- CAD

development in KD

ITPKC Encodes a member of the inositol 1,4,5-trisphosphate [Ins(1, 4, 5)P(3)] 3-kinase family of enzymes that

catalyze the phosphorylation of inositol 1,4,5-trisphosphate to 1,3,4,5-tetrakisphosphate+/NFAT

pathway

CASP3 Cysteine-aspartic acid protease that plays a central role in the execution-phase of cell apoptosis

ORAI1 Membrane calcium channel subunit that is activated by the calcium sensor STIM1 when calcium stores

are depleted. Primary way for calcium influx into T-cells. Immune dysfunction with T-cell inactivation due

to calcium entry defect, type 1.

inducer of the interferon I and II responses in the innate immune
system (98).

As we try to establish the host genetic factors underlying
the emerging pediatric COVID-19-related syndromes like MIS-
C, it may be helpful to review what is known about the
genetic etiologies behind HLH and KD (Table 2). Indeed,
COVID19-related illnesses in children (in particular MIS-C) may
share patho-etiological origins, or genetic susceptibilities, with
other pediatric hyperinflammatory syndromes. HLH is usually

categorized into a primary (or familial) form and a secondary (or
acquired) form (99). The former is a classic Mendelian disorder,
inherited in an autosomal recessive fashion2. There is, however,
also evidence that heterozygotes (carriers) of pathogenic alleles
in one of the known HLH genes might also develop HLH (100).
The pathological basis of HLH (or the macrophage-activating

2OMIM: Available online at: https://www.omim.org/entry/613101 (accessed May

16, 2020).
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syndrome as it is sometimes called when it occurs in a patient
with an antecedent rheumatological disease) is the disordered
loading, moving, priming and/or docking of the cytotoxic T-
lymphocyte’s toxic granules leading to target cell death and
overproduction of cytokines, in particular IFNγ and TNFα
(101). The products of the genes that are associated with HLH
all seem to play a role in this process and therefore may be
potential susceptibility loci in those with severe COVID-19-
related syndromes, especially wherein there is immunological
and clinical evidence of an HLH-like process.

The host genetic factors contributing to the development of
KD are less clear. The currently accepted hypothesis is that KD is
a multifactorial disorder that develops in a genetically susceptible
child after an environmental/infectious trigger. So far, no one
has established any Mendelian forms of KD; KD does not have
a Mendelian entry in OMIM. Twin studies in KD are conflicting
but suggest some concordance in the development of KD-related
vasculitis (102). There are also reports of familial clustering of KD
in Japan (103).While the genes implicated inmonogenic forms of
HLH tend to converge on a single T-cell process, the genes so far
associated with KD and its complications are more biologically
diverse and roughly fall into four categories: T-cell activation, B-
cell signaling, cellular apoptosis and dysfunctional transforming
growth factor beta signaling (104). Furthermore, there is at least
one report of a specific viral trigger (EBV) leading to KD in a
patient with Familial Mediterranean Fever due to mutations in
MEFV which encodes pyrin, a protein involved in the innate
immune response (105). Interestingly, a rare complication of
KD is HLH itself (106), suggesting that, at least in some, the
pathological mechanisms of both disorders may overlap.

CONCLUSION

COVID-19 infection in children ismarkedly different from adults
in a number of ways, including differences in transmission itself,
as well as differences in severity and pathogenesis including
viral genetic diversity, sex-related-impacted protease and viral
susceptibility differences, and age-related and potentially genetic
innate and adaptive immune response differences. Parallels to
other hyperinflammatory syndromes and comparisons in the
context of some of these factors may also continue to lead

to understanding pediatric susceptibility to COVID-19 disease

and its associated syndromes. Understanding transmission and
pathogenesis in children is essential to optimizing the care of
children, and also very practically, implementing strategies to
allow children to attend school and adopt back to some degree
of normalcy.

Children have relatively little symptomatology upon acute
infection. This may be a consequence of developmental
“immunodeficiency” resulting from a Th2 polarization that
starts in utero and is maintained for most of the first decade
of life. Th2 responses may suppress Th1 proinflammatory
processes seen in adults and are responsible for some of
the increasingly severe symptomatology in advancing age.
Th2 responses also allow for improved antibody responses,
although the contribution of antibody responses to pathology
compared with control of infection remains to be clarified in
adults and children. With maturation of this process in the
second decade of life, increasing symptoms are sometimes seen
with acute infection. In a very small subset of children, a
diffuse set of inflammatory syndromes are seen several weeks
after infection with COVID-19. These entities may develop
in a genetically vulnerable population with susceptibilities
that are similar to those already illuminated for other
inflammatory syndromes (e.g. Kawasaki Disease, HLH/MAS
and HSP). Another possibility is that these inflammatory
syndromes occur as a consequence of IgA complexes resulting
from the Th2 environment or as a result of a Th1-like
response to COVID-19 antigens that were slow to develop
after infection.

Fortunately, children respond to typical treatment for the
syndromes. However, as children are certainly not just little
adults, we need to learn and model through vaccines or immune-
modulatory treatments how children handle this infection so
much better than we do. We as adults can learn from our
children–as we always should.
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