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Hypothalamic-pituitary-gonadal (HPG) axis activation occurs three times in life: the first

is during fetal life, and has a crucial role in sex determination, the second time is during

the first postnatal months of life, and the third is with the onset of puberty. These

windows of activation recall the three windows of the “Developmental Origin of Health

and Disease” (DOHaD) paradigm and may play a substantial role in several aspects

of human development, such as growth, behavior, and neurodevelopment. From the

second trimester of pregnancy there is a peak in gonadotropin levels, followed by a

decrease toward term and complete suppression at birth. This is due to the negative

feedback of placental estrogens. Studies have shown that in this prenatal HPG axis

activation, gonadotropin levels display a sex-related pattern which plays a crucial role

in sex differentiation of internal and external genitalia. Soon after birth, there is a new

increase in LH, FSH, and sex hormone concentrations, both in males and females, due

to HPG re-activation. This postnatal activation is known as “minipuberty.” The HPG axis

activity in infancy demonstrates a pulsatile pattern with hormone levels similar to those

of true puberty. We review the studies on the changes of these hormones in infancy and

their influence on several aspects of future development, from linear growth to fertility

and neurobehavior.

Keywords: minipuberty, neurobehavior, neonate, gonadotrophins, hypothalamic-pituitary-gonadal axis,

hypogonadism

INTRODUCTION

During embryogenesis, the pituitary gland begins synthesizing both Luteinizing Hormone (LH)
and Follicle-Stimulating Hormone (FSH) at around 9 weeks of gestation (1). LH and FSH can be
detected in fetal blood from 12 to 14 weeks (2, 3) and start to be GnRH-dependent after 31–32
weeks (4, 5).

Prenatal modulation of the HPG axis activity is also due to placental hormone production.
In fact, the structure of hCG is an analog of LH and may bind to the LH receptor, with similar
biological effects on gonadal tissues (2, 6). Moreover, the placenta produces Estrogens (E) and
Progesterone (P), that rise during the third trimester. This has a negative effect on gonadotropin
levels and results in a drop in LH and FSH in cord blood at birth in healthy infants of both
sexes (6–8).

After birth, the removal of placental hormones from the neonate’s circulation results in a lack of
negative feedback on the GnRH pulse generator and reactivation of the HPG axis. This postnatal
activation that starts in the first few days of life is known as “minipuberty” (9).
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Studies on healthy term neonates indicate that the rise of
LH and FSH begins at around 1 week of age. It achieves a
peak, reaching the pubertal range, between 1 and 3 months
of life and then declines toward the age of 6 months (6–
8, 10–13). These postnatal hormonal changes have different
trends in boys and girls. Particularly in males, it seems to be
related to the development and maturation of the reproductive
system. Furthermore, the impact of gonadotropins and sex-
steroid hormones during this first period of life has been studied
and relates to many different aspects of infant growth and
behavior (14).

The aim of this review is to summarize the current
understanding on minipuberty and its role as a temporary
window of opportunity for diagnosis and possible treatment in
babies with disorders of sex development (DSD). Moreover, we
would like to highlight the extent of what happens (or not) during
minipuberty in terms of hormonal changes and trends whichmay
influence future neurobehavior.

INFANTS BORN AT TERM

Males: In male neonates, both LH and FSH levels peak between 1
and 3 months of age and then gradually decrease to prepubertal
levels at around 6-9 months (9, 12, 14). The LH peak is higher
than the FSH level. Testosterone (T) starts to increase 1 week
following the LH rise and declines to prepubertal values by 6
months of age (11, 12, 15). T levels, both in cord blood and in
serum during the first postnatal months, are higher in boys than
in girls (11–13, 15–17).

The number of Leydig cells in both testes increases
considerably until the third month of life, which correlates with
the T trend and then gradually decreases due to an apoptosis
process (18, 19). Sertoli cells also grow during the first postnatal
months under the stimulation of FSH (20) but, without the
expression of androgen receptors (AR) during infancy, they do
not complete their maturation and spermatogenesis does not
occur (21). This leads to an increase of testicular volume during
the first months after birth, which then gradually decreases until
the second year of life due to the halt in cell proliferation,
the reduction of AMH production, and the formation of the
blood-testicular barrier (22, 23).

All these hormonal changes during the first months of life
have a great impact on the urogenital system. This involves not
only the testes but also the development and growth of the penis,
prostate, and scrotal hair. In fact, the postnatal T surge within
the first three months has been associated with penile growth in
infancy (24). The increase in androgens has been associated with
cutaneous manifestations, such as sebaceous gland hypertrophy
and acne (25). There is also a link with the development of
transient isolated scrotal hair between 3 and 6 months of life with
a spontaneous disappearance within the first year of life (26).

Females: In female infants, FSH levels are higher than LH,
following a different trend than in males. FSH shows the same
gonadotropin peak as in males at 1–3 months of age but can
remain elevated up to 3–4 years of life. In contrast, LH levels
decrease at the same age as in boys (9, 12, 27).

E levels at birth are high, with similar values in the cord blood
of both sexes (28), followed by a gradual decrease during the first
days of life and a new increase after the first week only in girls.

E remains high until 6 months with fluctuating levels,
probably related to the FSH trend, and decreases toward 2 years
of life (29–31). The mammary glands and uterus are certainly E
target tissues but evidence of minipuberty effects is not univocal.
At birth, most full-term babies of both sexes have palpable breast
tissue (32) that probably results from placental E effect. In the
following months, breast tissue in females remains larger and
persists longer due to HPG axis activity and its consequent E
production (30). In contrast, uterine length increases in utero but,
after birth, there is a steady decrease from day 7 toward the third
month, after which the volume remains stable until the second
year (30).

With little evidence from few studies, the biological role of
minipuberty in girls is still controversial and partially unknown.

Babies born small for gestational age (SGA): The HPG axis
activation in SGA infants born at term is not well defined and
its short-term and long-term effects on growth and development
are still controversial. Studies on SGA females found higher
postnatal FSH levels compared with neonates born appropriate
for gestational age (AGA). This different pattern of secretion
in SGA females was also associated with reduced uterine and
ovarian size that persisted into young adulthood (33, 34).
Moreover, Anti Mullerian Hormone (AMH) levels have been
reported to be higher in SGA girls at 2–3 months of life,
suggesting possible altered follicular development (35).

In contrast with these findings, other studies have reported
higher E in SGA females after the administration of a GnRH
stimulation test, although the reported basal levels were not
significantly different (35).

In male SGA term neonates, HPG axis activation has been
linked both to lower (36) and higher (34) FSH and T (37) levels,
with uncertain effects in adult life (38).

Further studies are necessary to clarify the pattern of
minipuberty in SGA male and female infants, along with
the clinical implications. It is important to bear in mind
that SGA neonates are at increased risk of metabolic and
endocrinological disorders. These include reduced insulin
sensitivity and increased adrenal hyperandrogenism, with
consequent precocious pubarche and reduced ovulation rate (39).

PRETERM INFANTS

Little is known about the influence of prematurity on HPG
axis activity and its effects. Fewer studies have investigated this
pattern longitudinally in preterm (PT) babies compared with
those born full-term (FT). Preterm birth does not seem to
influence the postnatal HPG axis activation, as gonadotropin
levels begin to rise after birth (whenever that is, as fetal-placental
interruption) with the same timing as in FT infants.

Moreover, this hormonal surge might be even stronger
and more prolonged than in FT infants (40, 41). However,
these data are not univocal (40–42) in either the amplitude
or the duration between different sexes. Immaturity of the
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hypothalamic feedback has been suggested as a possible
mechanism for this strong and prolonged activation, although its
biological significance is still not completely understood.

The most recent longitudinal data suggest that minipuberty
declines at about the same post-term age in term neonates
compared with premature infants, suggesting that the HPG
activity is regulated in an evolutionarily way (13). In particular,
Kuiri-Hanninen et al. (13) used spot urine samples in order to
compare gonadotropin and testosterone levels in a small cohort
of FT and PT male neonates with a gestational age (GA) between
24.7 and 36.6 weeks. From day 7 to 14 months of age they
measured length, weight, penile length, and testicular volume.
They simultaneously collected urine samples to detect urinary
gonadotropins and testosterone levels until 6 months of age.
Their findings revealed higher hormonal levels in PT babies
with a positive association between testosterone levels and penile
growth, as well as between FSH levels and testicular growth after
birth until 5months of age, when a subsequent decrease occurred.
In addition, studies on PT female infants demonstrated higher
gonadotropin levels than those in FT girls with a prolonged
duration of the peak (43) but a sharp decrease around term
age (30). In these PT girls, an amplified postnatal E surge was
observed at around three months of corrected age and there was
an association with increased growth of the mammary gland and
uterine length. Possible clinical consequences of this intensive
stimulation in premature females are evidenced by features of
the ovarian hyperstimulation syndrome with edema of the vulva,
solitary or multiple cysts in the ovaries on ultrasonography,
breast growth, and occasional vaginal bleeding (44, 45).

The hormonal differences between boys and girls during
minipuberty appear to be fundamental for later sexual
differentiation and development. In particular, we think
that increasing knowledge on minipuberty in girls may give us
key information about the premature thelarche of girls below
2 years of age, and the early puberty that occurs before 8 years
of age. In SGA neonates, results are still controversial and more
studies are needed to clarify how gonadotrophins and sexual
hormones change according to sex. This may be very useful,
considering that SGA-born children may go through early
puberty and/or precocious isolated pubarche. In preterm babies,
we speculated that the prolonged activation of HPG axis may be
one of the factors influencing the early re-activation of the HPG
axis before puberty age.

BABIES WITH DISORDERS OF SEX
DEVELOPMENT

The development of internal and external genitalia is a complex
balance between gene expression and hormonal influence and an
anomaly at each stage can result in 46, XY DSD.

From this point of view, minipuberty can be considered as a
window of sensitivity, because it may allow the clinician to come
to an early diagnosis and possible treatment opportunity.

Studies on primates testing the effects of a reversible
suppression of minipuberty using GnRH agonists or antagonists
described lower testis volume and penile length in cases treated

compared with controls (46–48). Male infants with congenital
central hypogonadism (CHH) were found to have an absence
of both fetal and postnatal FSH, LH, and T surges (49). This
lack of postnatal FSH secretion seems to be the main reason
for impaired germ cell differentiation with later infertility,
especially if associated with cryptorchidism (50, 51). As a result,
minipuberty may potentially provide a short window of time to
make an early diagnosis and for treatment in male neonates that
exhibit a micropenis with or without cryptorchidism (52, 53),
improving the outcome of orchidopexy, and also reducing the
long-term consequences of an absent minipuberty.

On the other hand, the finding of elevated gonadotropins
during minipuberty in a 46, XY male neonate with undetectable
testosterone levels may suggest congenital anorchism (vanishing
testis or testicular regression syndrome). Infants with complete
androgen insensitivity syndrome may present with lower-than-
normal postnatal LH and T levels, whereas these hormones may
be normal or high in cases of partial androgen insensitivity
syndrome (54).

We have a unique opportunity to evaluate the spontaneous
function of the HPG hormone axis during minipuberty. It is
therefore recommended that serum FSH, LH, and testosterone
are measured during the first 6 months of life in infants with
DSD or suspected CHH. In particular, we would suggest checking
for these hormones at seven days of life, and one, three, and, if
possible, 6 months of life, to detect the minipuberty trend. The
use of the LH/FSH ratio may provide important information in
the workup of infants suspected of DSD, especially regarding the
sex specific ratio detected in literature (55).

MINIPUBERTY: A WINDOW FOR
TREATMENT?

Neonates affected by cryptorchidism,micropenis, and CHHmust
receive timely treatment to optimize genital development. The
current recommendation for a micropenis is brief therapy with
low-dose testosterone delivered by intramuscular injection or
by topical application to induce penile growth. This treatment
was also assumed to work for cryptorchidism. However,
while exogenous T stimulates penile growth, it does not
affect testicular development. In fact, current recommendations
advocate surgical correction for undescended testes during the
first year of life (56). Nevertheless, there are limitations to this
treatment. Small testes augment the risk of testicular trauma and
tissue loss during orchidopexy (57), increasing the likelihood
of a negative impact on future fertility. Moreover, successful
scrotal repositioning of testes does not prevent infertility.
However, a normal minipuberty after successful surgery may
lead to the presence of Ad spermatogonia (58). The role of
Ad spermatogonia is to maintain the supply of stem cells for
spermatogenesis. In 178 testicular biopsies after orchidopexy the
authors found three groups of high, intermediate, and low risk of
infertility depending on the presence of Ad spermatogonia. After
puberty, sperm concentrations were analyzed and correlated
positively with plasma gonadotropin and testosterone levels.
For all these reasons, recreating the hormonal milieu of
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minipuberty with gonadotrophin treatment could be beneficial
for these patients.

In 2002, Main et al. (59) published the first case of CHH
and micropenis treated with short-term recombinant human LH
and FSH. The outcome of this case was successful; the penile
length increased by 50% and the testicular volume almost tripled.
Similar results were described in other recent cases (60, 61).

The REMAP study (62) investigated the use of recombinant
LH plus FSH preparations in neonates and infants with a
micropenis and/or cryptorchidism due to hypogonadotropic
hypogonadism. During therapy, all ten patients increased their
height velocity: LH levels increased from undetectable to high-
normal; FSH reached supranormal levels; and Inibin-b, AMH,
and T reached normal levels. Penile length normalized among
all children and intriguingly confirms the emerging evidence
that testicular descendance is induced by gonadotrophin
treatment (61, 63). Furthermore, in this study the therapy
may have induced high/normal activation of Sertoli and Leydig
cells, restoring testicular endocrine function and improving
future fertility.

Vincel et al. (64) analyzed testicular biopsies before and
after orchidopexy or hormonal treatment in patients with
isolated bilateral cryptorchidism with a high infertility risk.
Their results showed how the number of Ad spermatogonia
and the number of germ cells per at least 100 tubular cross-
sections increased or decreased post-surgery. Indeed, patients
who received hormonal treatment showed an important increase
in the number of cells and the complete transition of gonocyte
and fetal spermatogonia to Ad spermatogonia. These findings
support the hypothesis that GnRH induces LH release; LH
increases testosterone levels acting directly on Leyding cells,
mimicking minipuberty (50, 65).

Finally, studies have focused on the molecular mechanisms
that explain the ability of GnRH to rescue fertility. The analysis
demonstrates that several IncRNAs involved in epigenetic
programming were responsive to GnRH treatment, helping
in the preparation of Ad spermatogonial stem cells for
commitment to differentiation. In particular, the authors
found that DMRTC2, PAX7, BRACHYURY/T, and TERT were
associated with defective minipuberty and were responsive
to GnRHa (66). Minipuberty may represent a “window of
opportunity” to evaluate the HPG axis by measuring basal
hormone concentrations with no need for stimulation tests
in infants with suspected reproductive disorders. Minipuberty
provides a unique opportunity to evaluate the spontaneous
function of the HPG axis which is lost thereafter for
approximately another 10 years until the HPG axis is reactivated
in puberty (67).

IS OUR ENVIRONMENT INFLUENCING
MINIPUBERTY IN HUMANS AND
PREDISPOSING THEM TO DSD?

Endocrine Disruptor Chemicals (EDC) are compounds
detectable in every setting of daily life. These chemical
compounds are found in a range of products such as those

containing pesticides, metals, additives or food contaminants,
and personal care products (68). In fact, EDCs are so common
that it is almost impossible for individuals to avoid them
during everyday activities. These substances may cause adverse
health effects, disrupting endocrine function. In particular,
they interfere with the endocrine and reproductive systems
through nuclear receptors, non-nuclear steroid hormone
receptors, non-steroid receptors, orphan receptors, enzymatic
pathways, and other mechanisms (69). Children may be exposed
both directly and indirectly to ECDs, especially during the
three main temporal windows of the DOHaD paradigm and
during breastfeeding (70, 71). Concerning breastfed children,
Ortega-Garcia et al. detected a linear positive correlation
between anogenital distance (AGD) in male infants and the
duration of breastfeeding (72). The results of this study, called
MALAMA, suggested breastfeeding to be a protective factor
against the reduction of the AGD of 2-year-old boys. The authors
hypothesized this could be related to early exposure to EDCs
through baby formula milk (72).

Moreover, EDCs may interfere with HPG activation (73),
both during fetal life or immediately after birth, throughout
minipuberty. EDCs during minipuberty in males could impair
testicular descent (74). Focusing on some of the most
analyzed compounds in this research area, several studies have
demonstrated that Bisphenol A (BPA) has an anti-androgen
function, decreasing testosterone levels, an event that impacts sex
differentiation during fetal life and modifies the AGD length (75,
76). In particular, Sun et al. showed how maternal exposure to
BPA was associated with shortened AGD in boys at 12 months of
age, highlighting a gender specific effect (77). Another family of
EDCs influencingminipuberty are phthalates. Maternal exposure
to phthalates during pregnancy showed a reduced T level inmales
at minipuberty and, because of the antiandrogenic effect of these
compounds, the testosterone-luteinizing hormone ratio (T/LH)
is also lower in the same period (78). This is probably due to
compensated Leydig cell function, requiring higher levels of LH
to maintain the necessary level of T for embryo differentiation. It
was demonstrated in animal models that phthalates can inhibit
Insl3 production and consequently modify the gubernaculum
growth necessary for the testes’ transabdominal descent (79, 80).
However, the effects of these compounds on Insl3 and T in
the human testes were less attenuated than in rodents. Table 1
summarizes the most recent studies on the effect of EDC on
HPG axis during minipuberty in humans. The impact of EDCs
is not limited to the postnatal period. Indeed, alongside this
phase there are two more windows of development: fetal and
puberty. In these phases, cells are promptly proliferating, and
epigenetic changes are more likely to occur (81). All this may
lead to additional effects in later stages of life including delayed
or precocious puberty (82–85), small testes and high levels of
follicle-stimulating hormone (FSH) (86, 87), polycystic ovary
syndrome (88), and breast cancer (89).

Our environment plays a crucial role in developmental
programming. The influence of EDCs on minipuberty
may predispose an individual to undescended testis, AGD
modifications, or reduction of T surge. We should always keep
an eye on the appearance of the external genitalia in neonates
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TABLE 1 | Possible effects in humans of the main EDCs on minipuberty and long-term consequences (68–89).

EDcs Possible mechanism of action Effects on minipuberty Future effects

BPA Increased estrogen receptor

Inhibition of apoptotic activity in breast tissue

Lower T level

Shortened AGD in boys

Premature thelarche

Breast neoplastic transformation

Infertility

Phthalates Reduced T synthesis

Modified estrogen activity

Antiandrogenic effect

Insl3 inhibition

Lower T/LH ratio

Undescended testis

Hypospadias

Shortened AGD

Early puberty

Premature thelarche

Delayed pubic hairs development

Increased breast cells proliferation

Less recruitment of primary follicles

PCOS

Spermatogenic failure and infertility

PBDEs/PBB Modified estrogen activity

Antiandrogenic effect

Undescended testis Early pubic hair stage (boys)

Early/late menarche in breastfed girls

Early puberty

Anticipated menarche

DDT/DDE Modified estrogen expression

Antiandrogenic effect

Undescended testis

Hypospadias

Precocious puberty

Anticipated menarche

Later onset of puberty

Increased risk of breast cancer

Testicular cancer

PCBs Augmented level of FSH and estradiol

Antiandrogenic effect

Undescended testis

Hypospadias

Anticipated menarche

Delayed puberty

Augmented adipose tissue in breast

Semen alteration

and on the possible maternal exposure to phthalates and BPA
through a specific interview.

HOW MINIPUBERTY INFLUENCES LINEAR
GROWTH DURING THE FIRST 6 MONTHS
OF LIFE

During minipuberty, the transient HPG axis activation results
in a sex steroid surge. Some studies have indicated a higher
growth velocity and a faster increase in weight (and lean
body mass) associated with somatic changes in boys when
compared with girls during the first 6 months of life (90–
93). Based on these results, studies have tested the hypothesis
of an association with minipuberty, particularly with the peak
of testosterone production. Kiviranta et al. (94) evaluated the
precise timing and the magnitude of this sexual dimorphism
in growth among a large cohort of full-term healthy boys and
girls during the first years of life. In a smaller sample of healthy
neonates, serial measurements of urinary and blood hormones
were assessed. Results from this study demonstrated that linear
growth was significantly faster in boys than in girls, especially
when comparing the first three months of age. Interestingly,
this observation occurred simultaneously with the peak of
postnatal gonadal activation and the authors found a positive
correlation between T levels and growth velocity in both sexes,
elucidating a possible novel biological role of minipuberty as
an engine of growth velocity during the first months of life.
Differences in sex hormones during minipuberty between boys
and girls are important for the sex differentiation in linear
growth and body composition, with males having a higher

growth velocity and accumulating more lean mass compared
to females.

HOW MINIPUBERTY MODULATES
NEUROBEHAVIORAL DEVELOPMENT

As for sexual development, the human brain is also shaped
by a combination of genetic, epigenetic, environmental, and
hormonal exposure. Sex steroid hormones are among one of
the strongest biological factors influencing neural and behavioral
development. Over the past two decades, there has been a
growing interest in understanding how sex determination and
sexual hormones may affect structural and functional brain
development (95, 96). The cellular and molecular mechanisms
induced by T (converted to estradiol in the brain) are
multifaceted and include neurogenesis, cellular differentiation,
axon guidance, synaptic pruning, apoptosis, and phagocytosis.
Several studies on mammalian brains, including humans, have
demonstrated that early androgen exposure has an influence
on sex differences in juvenile behavior (54, 96, 97). Indeed,
manipulating androgens prenatally in non-human primates
alters brain regions and behaviors (98). Many studies have been
performed in girls prenatally exposed to high levels of androgens
because of congenital adrenal hyperplasia (CAH) where there
is strong evidence of male typical play behavior, suggesting a
similar hormonal influence on human brain development (98–
104). This influence of androgen levels on the brain has been
identified not only among affected girls but also in the general
population. Fetal T measured from amniotic fluid positively
correlates with male typical play in preschool girls and boys
assessed with a standardized questionnaire (105). This prenatal
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TABLE 2 | Main studies on minipuberty and neurobehavior.

References Methods Results Future prospectives

Lamminmäki et al.

(110)

– Urinary testosterone

at 7 days of age (D7), and months 1, 2, 3, 4, 5 and 6

(M1–M6)

– The PSAI is a 24-item, standardized questionnaire

designed to discriminate gender related behavior

within the sexes, as well as between girls and boys

(111). It has been validated in the age-group 2 to 7

years. The questions covers three aspects of behavior:

play with sex-typed toys (e.g., dolls, cars),

engagement in sex-typed activities (e.g.,

ballgames, playing at cooking/cleaning) and

sex-typed child characteristics (e.g., interest in

snakes/spiders/insects, liking pretty things).

– The toy preference test: the child was seated in the

middle of a semi-circle formed by 9 toys. These toys

were selected to be female- preferred (a tea set, a

soft doll, and a baby doll and bathtub),

male-preferred (a truck, a train, and a parking

structure with two motorcycles), or gender neutral (a

teddy bear, a soft picture book, and a set of keys).

Two toys from the same category were never adjacent

to each other. The session of 10min was videotaped

and the score consisted on how long (in seconds) that

the child played with each toy, with play defined as the

child touching the toy for 1 s or longer.

– In boys, urinary testosterone concentrations peaked at 1

month postnatal and decreased to low levels by the age 6

months.

In girls, urinary testosterone concentrations were slightly

elevated at D7 and M1, and then decreased to low levels.

In the overall population, urinary testosterone was significantly

higher in boys than in girls.

– In boys, but not in girls, testosterone AUC correlated positively

with PSAI scores.

– Both boys and girls played significantly more with the same

sex-related toy.

– Testosterone in boys was negatively related to the

female-preferred toy playing, but not in girls. Testosterone in

girls was positively correlated with the male-preferred toy

playing. A significant negative association between testosterone

and time spent playing with the truck and a significant positive

association between testosterone and time spent playing with

the soft book among boys was detected.

The study underlined how testosterone may exert

organizational effects on neurobehavioral development

during early infancy both in girls and in boys.

The urinary sampling method could be easier to be used

in neonates and infants.

Constantinescu

et al. (116)

61 healthy infants (29 males, 32 females) and 59

mothers and 3 fathers.

Saliva samples of testosterone when infants were

1–2.5 months of age, and mental rotation performance

was assessed at 5–6 months of age.

Mental rotation ability was assessed using the procedure

developed by Constantinescu et al. (116).

The stimuli were video representations of dynamic 3D

objects, depicted in rotational movement around their

vertical axis in 3D space.

Testosterone concentrations were significantly higher in boys than

in girls at age 1–2.5 months.

In contrast, at age 5–6 months, testosterone concentrations were

significantly lower in both sexes than they were at the first visit.

– male infants spent a significantly longer time looking at the novel

stimulus than at the familiar one, and 65% of the male infants

preferred the novel stimulus.

– In contrast, female infants looked at the familiar and novel test

stimuli about equally, and 46% of the female infants preferred

the novel stimulus. These findings suggest that more male than

female infants had developed an ability for mental rotation at

5–6 months of age.

– The male infants’ novelty preference was significantly greater

than that of the female infants

– Testosterone concentrations at 1–2.5 months of age correlated

significantly with novelty preference scores on the 3D mental

rotation task in 5- to 6-month-old boys but not in girls.

– Testosterone may have organizational influences on

mental rotation performance

– In girls, mental rotation performance at age 5–6

months correlated negatively with parents’ traditional

attitudes on gender. This finding suggests that parents

could influence their daughters. “mental rotation

abilities” beginning very early in life.

(Continued)
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TABLE 2 | Continued

References Methods Results Future prospectives

Kung et al. (114) – -Saliva samples for testosterone between 1 and 3

months old.

– -Between 18 and 30 months, all of the parent

participants were invited to complete an online

questionnaire assessing the children’s expressive

vocabulary size

– -The toddler short form for vocabulary production from

the MacArthur Communicative Development

Inventory [CDI; (117)] is a parent-report measure

designed to assess expressive vocabulary production

in toddlers aged 16–30 months

– -boys had significantly higher concentrations of testosterone

during mini-puberty and significantly lower CDI scores at age

18–30 months than girls

– there was a significant negative correlation between

concentrations of testosterone during mini-puberty and later

CDI scores in boys

– Differences were found between boys and girls in salivary

testosterone at 1–3 months of age and in expressive vocabulary

size at 18–30 months of age. A negative link between

testosterone during mini-puberty and expressive vocabulary

was found in boys, in girls, and in the entire sample. Results

also showed that testosterone accounted for significant

additional variance in expressive vocabulary, when other

predictors, such as child’s age at vocabulary assessment and

paternal education were controlled, suggesting that the effects

of testosterone are independent from those of other predictors

– higher concentrations of salivary testosterone during the peak of

mini-puberty at age 1–3 months predicted smaller expressive

vocabulary at age 18–30 months in boys and in girls.

Similar future research might usefully assess the

independent contributions of prenatal and postnatal

androgen exposure to expressive vocabulary and to

other aspects of development that also differ by sex.

Kung et al. (118) Testosterone in saliva samples collected from children at

1 to 3 months of age (40 boys, 47 girls).

When the children reached 18 to 30 months of age,

parents completed the Quantitative Checklist for

Autism in Toddlers (Q-CHAT).

Boys had higher concentrations of testosterone postnatally and

higher Q-CHAT scores than girls. However, testosterone did not

correlate with Q-CHAT scores in boys, girls, or the entire sample.

There is no relationship between testosterone exposure during

mini-puberty and autistic traits.

This does not preclude effects of mini-puberty on other

behaviors (see the gender-typed play behavior).

Other studies have hypothesized a correlation between

prenatal exposure to testosterone and autistic traits.

Tanja Kuiri-Ha

nninen et al. (13)

Urinary gonadotropins and testosterone were measured

in serial urine samples and compared with testicular and

penile growth in preterm (PT) and full term (FT) neonates.

Urinary prostate-specific antigen was measured as an

androgen biomarker.

LH and testosterone levels were higher in PT boys than FT boys.

Compared with FT boys, FSH levels were lower at day 7 but

higher from month 1 to month 3 in PT boys.

This was associated with significantly faster testicular and penile

growth in PT boys compared with FT boys.

Postnatal HPG axis activation in infancy is increased in

PT boys and associated with faster testicular and penile

growth compared with FT boys.

As mentioned in Table 1, there is a possible long-term

consequence of hyperandrogenism in PT infant boys

warrant further research.

Pasterski et al. (113) – Penile length, Ano-genital-distance (AGD), and body

length were among the growth parameters assessed

as part of the larger baby growth study.

Measurements were taken at birth, and at 3, 12, 18,

and 24 months of age in typically developing infants.

– Gender-related behavior was measured at 3 to 4 years

of age using the Preschool Activities Inventory (PSAI).

AGD at birth and penile growth during the first three months

postnatal independently predicted increased masculine/decreased

feminine behavior in boys at 3 to 4 years of age.

AGD at birth may be employed as a biomarker of prenatal

androgen exposure, while penile growth during mini-puberty may

reliably reflect variance in early postnatal androgen exposure.

Future research could use these biomarkers in

large-scale population studies to further elucidate

neurobehavioral effects of perinatal androgen exposure.

Such large-scale investigations could also permit a

prospective assessment of other factors known to

influence variance in gender-related behavior, such as

socialization and cognitive development, along with their

interactions with early androgen exposure.
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period of HPG axis activation is therefore critical for the sexual
differentiation that drives the different organization in circuitry
and neuroanatomy between the male and female brain. The
early postnatal surge of gonadotropins and T in boys during
minipuberty can potentially provide a window of opportunity
in understanding the effects of sex steroid hormones on human
gender development (106). Emerging evidence suggests that T
levels during minipuberty have an influence not only on male
genitalia and reproductive function but also on later gender-
typical behavior. Indeed, minipuberty occurs during a period of
huge and rapid brain development in terms of volume, cortical
thickness, surface, and cortical network development (107–109).
Lamminmäki et al. (110) found a positive correlation between
T levels in FT infants from day 7 to 6 months and future sex-
typed behavior at 14 months of life. In this study, the Pre-
School Activities Inventory (PSAI) (111, 112) playroom was
used during an observation of toy choices. In boys, T levels
correlated significantly with PSAI scores and playing with trains.
Conversely, playing with dolls was significantly correlated with
a negative trend. In addition, Pasterski et al. (113) used AGD at
birth and penile growth from birth to 3 months of age to estimate
prenatal and postnatal androgen exposure. They re-evaluated
children included in the study at 3 to 4 years of age using
the PSAI suggesting that T levels in both periods, prenatal and
postnatal, are independent contributors to later gender-related
behavior. Language development is another area of investigation
of a possible correlation with early postnatal HPG axis activation.
Results based on small samples suggest a correlation between
T levels and a different expressive vocabulary in boys and girls
(114, 115). We have summarized some of the clearest studies

of the last decade in Table 2 in order to better understand the
influence of hormonal changes happening during minipuberty
on sex-related behavior. All these emerging results may support
a role for the imprinting of T during early infancy in human
neurobehavioral sexual differentiation, although its effects are
still largely unknown in both the short and long-term.

CONCLUSION

Although further studies are needed, pre- and postnatal
activation of the HPG axis could be considered an important
window of prediction on how each newborn will grow and
develop. Measurement of LH, FSH, and testosterone at 7 days,
one and three months, and, when possible, six months, may help
the clinician to better understand how minipuberty develops in
different neonates. This will give us important information once
the baby approaches puberty or when he or she shows impaired
linear growth. Moreover, minipuberty must be considered a
fundamental moment for possible therapeutic intervention in
DSD. Therapeutic interventions may be able to change the
natural history of some DSD or, at least, to improve prognosis
in terms of fertility and quality of life.
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