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Robust and applicable risk-stratifying genetic factors at diagnosis in pediatric T-cell acute

lymphoblastic leukemia (T-ALL) are still lacking, and most protocols rely on measurable

residual disease (MRD) assessment. In our study, we aimed to analyze the impact of

NOTCH1, FBXW7, PTEN, and RAS mutations, the measurable residual disease (MRD)

levels assessed by flow cytometry (FCM-MRD) and other reported risk factors in a

Spanish cohort of pediatric T-ALL patients. We included 199 patients treated with

SEHOP and PETHEMA consecutive protocols from 1998 to 2019. We observed a better

outcome of patients included in the newest SEHOP-PETHEMA-2013 protocol compared

to the previous SHOP-2005 cohort. FCM-MRD significantly predicted outcome in both

protocols, but the impact at early and late time points differed between protocols. The

impact of FCM-MRD at late time points was more evident in SEHOP-PETHEMA 2013,

whereas in SHOP-2005 FCM-MRD was predictive of outcome at early time points.

Genetics impact was different in SHOP-2005 and SEHOP-PETHEMA-2013 cohorts:

NOTCH1 mutations impacted on overall survival only in the SEHOP-PETHEMA-2013

cohort, whereas homozygous deletions of CDKN2A/B had a significantly higher CIR

in SHOP-2005 patients. We applied the clinical classification combining oncogenetics,

WBC count and MRD levels at the end of induction as previously reported by the FRALLE

group. Using this score, we identified different subgroups of patients with statistically

different outcome in both Spanish cohorts. In SHOP-2005, the FRALLE classifier

identified a subgroup of high-risk patients with poorer survival. In the newest protocol

SEHOP-PETHEMA-2013, a very low-risk group of patients with excellent outcome and

no relapses was detected, with borderline significance. Overall, FCM-MRD, WBC count

and oncogenetics may refine the risk-stratification, helping to design tailored approaches

for pediatric T-ALL patients.

Keywords: measurable (minimal) residual disease, T-cell acute lymphoblastic leukemia, oncogenetics, NOTCH1,

flow cytometry, pediatrics, risk-factors

INTRODUCTION

Compared to the particularly good outcome of pediatric patients
with B-cell precursor acute lymphoblastic leukemia (BCP-ALL),
T-ALL patients still do worse, and 15–20% of pediatric and
40% of adult T-ALL patients relapse. Importantly, relapsed T-
ALL is often highly resistant, and such patients present a dismal
prognosis (1, 2). Hence, prevention of relapse is imperative, and
patients are allocated to intensive and often very toxic therapeutic
regimes with short- and long-term side effects. A precise risk
stratification of T-ALL patients would allow to dynamically
adjust the intensity of treatment, helping to balance the risks
of relapse and treatment-related toxicity. Current therapeutic
protocols aim to tailor treatment by applying less intensive
therapy to low-risk patients, thus reducing the risk of treatment-
related toxicity, while reserving intensive therapy to high-risk
patients. In contrast to BCP-ALL, the new biological insights in
T-ALL have scarcely been incorporated to current protocols, and
risk stratification relies mainly on response to treatment. Thus,
although white blood cell (WBC) count and early response to
prednisone at day 8 are used, measurable residual disease (MRD)

quantification post-remission remains the most important risk
factor (3–5). T-ALL patients show a slower blast clearance
compared to BCP-ALL, and the MRD detection at a late time
point (day 78) may define better the risk of relapse in T-ALL
patients than earlier evaluation at end of induction (day 33)
in some therapeutic protocols (6). The MRD gold standard
method is real-time quantitative polymerase chain reaction for
immunoglobulin and T-cell receptor clonality (IG-TR PCR-
MRD) (6–8). Flow-cytometry MRD measurement (FCM-MRD),
based on the leukemia-associated immunophenotype, is also used
for risk stratification in some collaborative groups and provides
reliable identification of patients eligible for reduced-intensity
therapy in T-ALL and BCP-ALL (9–12). However, even in the
setting of MRD-oriented protocols, some T-ALL patients relapse,
and it is important to identify additional prognostic factors.

Multiple genetic abnormalities have been identified in T-
ALL cases (13, 14), including proto-oncogene activation, tumor-
suppressor gene deletions and constitutive activation of the
NOTCH1 pathway, present in 40–60% of patients (15–17).
The prognostic impact of NOTCH1 and FBXW7 mutations
is controversial; it has been usually associated with favorable
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prognosis (18–20), but other studies have found no significant
effect (21, 22), and some authors have reported that mutant
FBXW7 independently predicts an inferior survival (23). Recent
studies indicate that the impact of NOTCH1/FBXW7 mutations
could be modulated by concomitant mutations in PTEN and
RAS genes (3). PTEN loss through mutation or genomic deletion
occurs in up to 35% of T-ALL pediatric patients, and ∼10%
harbor N- or K-RAS mutations. Although these abnormalities
are usually associated with unfavorable prognosis, their impact
in pediatric T-ALL patients is still unclear (24–27). The Group
for Research in Adult Acute Lymphoblastic Leukemia (GRAALL)
validated in adult T-ALL patients the clinical utility of a
new oncogenetic classifier based on the mutational status of
NOTCH1/FBXW7/PTEN/RAS (NFPR) genes (28). In this model,
the presence of NOTCH1 and FBXW7 mutations without lesions
involving PTEN/RAS defined the genetic low-risk subgroup
(gLoR), and other genotypes were allocated to the genetic high-
risk group (gHiR). In contrast, in a study in 145 pediatric T-ALL
patients treated with the MRC UKALL2003 trial, neither PTEN
nor RAS significantly impacted on outcome, and none of these
mutations changed the highly favorable outcome of patients with
double NOTCH1/FBXW7 mutations (29). Recently, the FRALLE
group (French Acute Lymphoblastic Leukemia Study Group)
suggested a new classifier based on WBC count, MRD by IG-
TR PCR-MRD and the oncogenetic mutational status, which
improved prediction of the relapse risk for their pediatric T-ALL
patients (3).

Copy number alterations (CNA) have been reported as
prognostic markers, both in BCP-ALL and in T-ALL (30, 31).
CDKN2A/B loci deletion is present in up to 70% of T-ALL
patients. In adult T-ALL, CDKN2A/B homozygous deletion
(CDKN2A/Bhomo) was associated with a favorable prognosis only
within themature/cortical group (32), while other studies showed
a correlation with poor survival or no association with outcome
(31, 33). Overall, the role of oncogenetics as risk factors in
T-ALL is controversial and seems to differ according to the
treatment protocol.

We present a retrospective collaborative study of the
Biological Committee of the Leukemia Group of the SEHOP
(Spanish Society of Pediatric Hematology and Oncology) on
a series of 199 pediatric T-ALL patients treated according
to SEHOP and PETHEMA (Programa para el Estudio de la
Terapéutica en Hemopatías Malignas) Cooperative Groups. In
both protocols, we aimed to: (1) confirm the clinical impact of
FCM-MRD measurement, (2) assess the prognostic significance
of MRD at late time points, and (3) test whether the previously
reported oncogenetic classifier by the FRALLE group could
refine the risk stratification in our patients receiving BFM-
based protocols.

MATERIALS AND METHODS

Study Design, Cohort of Patients, and
Therapeutic Protocols
The study design is shown in Supplementary Figure 1. This
is a retrospective study, designed to include pediatric patients

diagnosed with T-ALL in Spain with available biological material.
The participation in the study was offered to all the Spanish
centers belonging to the SEHOP Group of Leukemias. DNA
samples from 26 different Spanish centers were sent to Hospital
Sant Joan de Déu to perform the oncogenetic studies. The
referring centers provided data about clinical and basic biological
characterization of their patients at diagnosis and the levels
of MRD during follow-up. The clinic-biological data of the
patients included in our study are detailed in Table 1 and
Supplementary Table 1. A total of 199 pediatric T-ALL patients
treated according to SEHOP and PETHEMA Cooperative
Groups from 1998 to 2019 were collected. We analyzed the
molecular features of 189 patients, after excluding cases with
T-cell lymphoblastic lymphoma, and patients with insufficient
sample or no clinical data. For the survival analysis, we excluded
those patients treated as per PETHEMA protocols, as they had
been treated heterogeneously according to different therapeutic
regimes. The 142 patients selected for the survival analyses were
treated according to the consecutive protocols SHOP-2005 (n =

51) and SEHOP-PETHEMA-2013 (n = 91). These patients were
representative of the whole SHOP-2005 and SEHOP-PETHEMA-
2013 population in terms of clinical characteristics at diagnosis
and outcome and only differed in a longer follow-up for the
patients included in the study (Supplementary Table 2).

SHOP-2005 (2005–2013) and SEHOP-PETHEMA-2013
(2013-present) are two consecutive therapeutic protocols
BFM (Berlin-Frankfurt-Münster)-inspired. The former
has been previously described (5), and the full details
of SEHOP-PETHEMA-2013 protocol are provided in the
Supplementary Material. Patients with T-ALL were not eligible
for standard risk group stratification in either protocol. To
summarize the main differences between both protocols, in the
newer SEHOP-PETHEMA-2013: (1) prednisone response was
incorporated as initial stratification criteria; (2) an Induction IB
course was added; (3) craniospinal irradiation was omitted and
increased number of doses of triple intrathecal therapy were used
instead; (4) there was a more intensive use of asparaginase, with
more doses of asparaginase, use of PEG-asparaginase and longer
periods of asparagine depletion; (5) there were more restrictive
indications of allogeneic stem cell transplantation (allo-SCT),
mainly based on FCM-MRD criteria, and (6) eight-colors FCM-
MRD was performed in reference laboratories, in contrast with
decentralized 4-color FCM-MRD in SHOP-2005 (see below).

FCM Characterization and MRD
Assessment
The immunophenotyping by FCM was performed in each
laboratory using the combination of antibodies and panels
detailed for each protocol in the Supplementary Material.
Briefly, in SHOP-2005 protocol, 4-color panels were used in each
center for identification and monitoring of leukemia-associated
immunophenotypes (LAIPs), according to the guidelines of
group EGIL (34). For residual disease analysis, either patient-
tailored antibody combinations or those employed at diagnosis
were used. In this protocol, MRD levels >0.1% were considered
positive and used for clinical decisions. However, lower values
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TABLE 1 | Clinical and molecular features of patients included in

SEHOP-PETHEMA-2013 and SHOP-2005 protocols for the survival analyses.

SHOP-2005

(n = 51)

SEHOP-PETHEMA-2013

(n = 91)

p-value

Sex n = 51 n = 91

Male 38 (74.5%) 67 (73.6%) 1.00

Female 13 (25.5%) 24 (26.4%)

Age, years, median

[range min; max]

8.72 [1.69; 19.0] 7.49 [1.43; 16.0] 0.30

Age n = 51 n = 91 0.37

<10 years 29 (56.9%) 60 (65.9%)

≥10 years 22 (43.1%) 31 (34.1%)

WBC count, median

[range min; max]

56.9 [1.00; 675] 72.2 [1.90; 897] 0.51

WBC count n = 51 n = 89 0.88

<200 × 109/L 37 (72.5%) 67 (75.3%)

≥200 × 109/L 14 (27.5%) 22 (24.7%)

CNS n = 51 n = 83

1 47 (92.2%) 55 (66.3%)

2 4 (7.84%) 12 (14.5%) 0.001

3 0 (0.00%) 16 (19.3%)

Phenotype n = 37 n = 83

Cortical 21 (56.8%) 41 (49.4%) 0.58

Other 16 (43.2%) 42 (50.6%)

NOTCH1 n = 47 n = 90

Wild type 32 (68.1%) 57 (63.3%) 0.72

Mutated 15 (31.9%) 33 (36.7%)

FBXW7 n = 51 n = 89

Wild type 42 (82.4%) 77 (86.5%) 0.68

Mutated 9 (17.6%) 12 (13.5%)

PTEN n = 51 n = 89

Wild type 46 (90.2%) 79 (88.8%) 1.00

Abnormality 5 (9.80%) 10 (11.2%)

N/K-RAS n = 51 n = 89

Wild type 45 (88.2%) 84 (94.4%) 0.21

Mutated 6 (11.8%) 5 (5.62%)

Oncogenetics n = 44 n = 82

gLoR 15 (34.1%) 31 (37.8%) 0.83

gHiR 29 (65.9%) 51 (62.2%)

Fusion-gene n = 41 n = 81

NUP214-ABL1 3 (7.32%) 2 (2.47%) 0.23

STIL-TAL1 6 (14.6%) 12 (14.8%) 0.36

WBC, white blood cell; CNS, central nervous system; meaning 1: no blasts in CNS, 2:
blasts in CNS with ≤5 WBC/µl and/or traumatic lumbar puncture, and 3: blast in CNS
with <5 WBC/µl or CNS symptoms.

were reviewed and recorded for the analysis in the present
study. In SEHOP-PETHEMA-2013 protocol, an 8-colors panel
according to EuroFlow consortium was recommended at
diagnosis (35), and FCM-MRD was centralized in 10 reference
laboratories. For MRD detection down to the 0.01% level (with

a required resolution of at least 20 events to refer a sample as
positive), an optimum of 500,000 nucleated cells needed to be
acquired. MRD was assessed at day 15, end of induction (time
point 1, TP1) and after the second course of chemotherapy,
around day 78 (timepoint 2, TP2). In this protocol, MRD levels
>0.01% were considered positive, and the thresholds considered
for clinical decisions varied according to the timepoint. Thus,
patients were stratified to high-risk arm if FCM-MRD levels were
>10% at day 15,>1% at the end of induction (TP1) and>0.1% at
the end of consolidation (TP2). Patients were allocated to receive
an allo-SCT in case of: (1) not complete remission (CR) after TP1;
(2) day 33 FCM-MRD level >1%, and FCM-MRD level >0.1%
at TP2; or (3) persistence of positive FCM-MRD (>0.01%) after
high-risk blocks of chemotherapy.

Globally, irrespectively, of the protocol treatment, we used a
sensitivity threshold of 0.01% in this study to try to reproduce
the previously reported results in the FRALLE and GRAALL
protocols (3, 28).

Mutation Screening and CNA Analysis
We analyzed the hotspot regions reported for NOTCH1 (exons
26, 27, 28, 34), FBXW7 (exons 9 and 10), PTEN (exon 7), NRAS
(exons 1 and 2), and KRAS (exons 1 and 2) by Sanger sequencing
as previously described (25, 36). CNAs were screened by
MLPA using the SALSA MLPA P383 T-ALL kit (MRC Holland,
Amsterdam, The Netherlands), according to the manufacturer’s
instructions. We used the Coffalyser software v.140721.1958 for
the analysis (MRC-Holland, Amsterdam, The Netherlands). The
P383 T-ALL kit assesses alterations (deletions or amplifications)
in transcription factors (LEF1 and MYB), genes involved in
signal transduction (PTEN, NF1, and PTPN2), in cell cycle
(CDKN2A, CDKN2B, and CASP8AP2), in epigenetic regulation
(EZH2, SUZ12, and PHF6), and identifies the STIL-TAL1 and
NUP214-ABL1 fusion genes. Full experimental details are given
in the Supplementary Methods.

Outcome Analyses
To assess the predictive value of the conventional and new
oncogenetic risk factors, we analyzed the prognostic impact of the
NFPR mutational status, first addressing each gene individually,
and then grouped as previously reported (20). We applied the
GRAALL oncogenetic classifier (28), and grouped our patients
into gLoR and gHiR to compare their outcome. We also analyzed
our patients with the FRALLE score, combining the oncogenetic
classifier by GRAALL group with WBC count≥200× 109/L and
the MRD levels at TP1 (3), plus an additional time point at TP2.

Statistical Analysis
Statistical analyses were carried out using R software (37),
considering all p-values lower than 0.05 to be statistically
significant. Details are provided in Supporting Information.

Ethical Aspects
The ethical issues are detailed in Supplementary Material.
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RESULTS

Molecular Findings and Association With
Clinical Features at Diagnosis
Molecular findings are shown in Table 1 and
Supplementary Figure 2. Sixty-four patients (35%) harbored
NOTCH1 mutations (NOTCH1mut), 45% at HD-N domain,
5% at HD-C domain and 9% at PEST domain. No mutations
were found at TAD domain (Supplementary Figure 3). Out of
NOTCH1mut patients, eleven cases with HD-C mutations
also had concomitant mutations at the PEST domain
(NOTCH1double). FBXW7 was mutated in 25 cases (13%),
alone in 16 patients and combined with NOTCH1mut in 9
cases. Overall, we observed NOTCH1/FBXW7 mutations in
80/182 cases (44%), in line with previous reports, albeit in
the lower range. PTEN abnormalities (mutation or major
deletion, PTENabn) were found in 30 patients (20%), including
9 with NOTCH1/FBXW7 mutations. K/N-RAS mutations were
identified in 14 patients (8%). Overall, 108 patients (57%)
harbored at least one mutation/deletion in NOTCH1, FBXW7,
PTEN, or K/N-RAS. The mutations included point mutations,
insertions, deletions and indels (Supplementary Table 3 and
Supplementary Figure 3). CDKN2A and CDKN2B were deleted
in 109 out of the 160 tested cases (68%) and 95 patients (60%),
respectively, including 89 homozygous deletions for both genes.

The association ofNOTCH1, FBXW7, PTENabn, andK/N-RAS
status with clinical variables is shown in Supplementary Table 4.
Globally, and in each protocol, NOTCH1mutations significantly
associated with females, while K-RAS mutations associated with
WBC count ≥200× 109/L.

We could classify 168 patients according to the previously
reported oncogenetic stratifier (Table 1). Fifty-eight patients
(34.5%) presented NOTCH1/FBXW7 mutations without a
PTEN/RAS mutation (NFmutPRwt) and were considered as
gLoR; the remaining 110 cases (65.5%) were classified as
gHiR. The gHiR group included 15 positive patients for
both NOTCH1/FBXW7 and PTEN/RAS mutations, 26 patients
harboring PTEN/RAS mutations only and 69 patients with all
genes in a wild-type status. The distribution of oncogenetic
risk-groups between SHOP-2005 and SEHOP-PETHEMA-2013
cohorts was similar (Table 1).

Patients’ Outcome in Consecutive SEHOP
Protocols
The outcome of the 142 assessable patients according to the
therapeutic protocol is shown in Supplementary Figures 4, 5.
The median follow-up of the patients was 7.7 years for SHOP-
2005 and 2.8 years for SEHOP-PETHEMA-2013 cohort. Overall,
we observed a non-significantly better outcome in the newest
protocol: the 5-year overall survival (OS) was 85.9 ± 4.0 vs.
76.5 ± 5.9% (p = 0.22), and the disease-free survival (DFS) was
85.3 ± 4.1 vs. 70.5 ± 6.4% (p = 0.080) for SEHOP-PETHEMA-
2013 and SHOP-2005 patients, respectively. Noticeably, the
cumulative incidence of relapse (CIR) was not statistically
different in both protocols (12.1 ± 3.8% vs. 18.1 ± 5.5%,
p= 0.49).

FCM-MRD Predicted Outcome in
Consecutive SEHOP Protocols
FCM-MRD data in the SHOP-2005 cohort was available for 46
and 35 out of 51 patients at TP1 and TP2, respectively. At TP1,
patients with MRD < 0.01% (n = 33) showed a significantly
better outcome than patients with MRD ≥ 0.01%, with a 5-year
OS of 84.8 vs. 53.8%, a 5-year DFS of 78.7 vs. 46.2%, and a CIR of
12.6 vs. 38.5% (p= 0.019, p= 0.009, and p= 0.039, respectively).
At TP2, with less data available, we observed only a borderline
significant difference with worse OS in patients with FCM-MRD
≥ 0.01% (p= 0.050; Supplementary Figure 6).

In SEHOP-PETHEMA-2013 patients, FCM-MRD data was
available in 84 and 62 out of 91 cases at TP1 and TP2,
respectively. In contrast with the former protocol, FCM-MRD
significantly impacted on outcome at TP2 (5-year DFS for
MRD <0.01% 92.6 vs. 68.6% for MRD ≥ 0.01%, p = 0.026;
Supplementary Figure 7), whereas at TP1 only impacted on OS
with a borderline significance (p= 0.049).

Oncogenetics Impact on Outcome
In SHOP-2005 cohort, NOTCH1 mutations did not significantly
impact on outcome. Of note, all patients with NOTCH1double

mutations (n = 3) were alive in continuous CR (data not
shown). Using the combination of the NFPR mutational status
defined in the GRAAL oncogenetic stratifier (gLoR vs. gHiR),
we observed no differences in patients’outcome (Figure 1A). In
contrast, patients with CDKN2A/Bhomo had a trend toward a
worse DFS (p = 0.079) and a significantly higher CIR than
patients with normal or heterozygous deletions of CDKN2A/B (p
= 0.009, Supplementary Figure 8a).

In patients treated with SEHOP-PETHEMA-2013 protocol,
those cases with NOTCH1mut showed a better OS (p = 0.045),
and all patients with NOTCH1double mutations (n= 7) were alive
in continuous CR (data not shown). In contrast to the former
protocol, those SEHOP-PETHEMA-2013 patients classified as
gLoR presented a significantly better DFS (p= 0.043), and a trend
toward a better OS and a lower CIR (Figure 1B). Patients with
CDKN2A/Bhomo had a worse outcome, but the difference was not
statistically significant (Supplementary Figure 8b).

Overall, we observed a different impact of oncogenetics on the
SHOP-2005 and SEHOP-PETHEMA-2013 series of patients.

Prognostic Impact of Classical Risk
Factors
The univariate and multivariate analyses of OS and DFS for
patients in SHOP-2005 and SEHOP-PETHEMA-2013 protocols
is shown in Table 2. FCM-MRD was significantly predictive
of outcome in both SHOP-2005 and SEHOP-PETHEMA-
2013 cohorts (Supplementary Figures 6, 7), being statistically
significant at early TP1 only for SHOP-2005 (p = 0.035) and
at late TP2 only for SEHOP-PETHEMA 2013 protocol (p =

0.048). However, other classical risk factors impacted differently
depending on the protocol: patients with hyperleukocytosis≥200
× 109/L showed a significantly worse DFS only in SHOP-2005
series. Sex, age, and CNS infiltration did not impact on outcome
in either protocol.
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FIGURE 1 | Survival of patients included in SHOP-2005 and SEHOP-PETHEMA-2013 protocol according to oncogenetics. (A) OS, DFS, and CIR in patients included

in the SHOP-2005 protocol with gLoR vs. gHiR; (B) OS, DFS, and CIR in patients included in the SEHOP-PETHEMA-2013 protocol with gLoR vs. gHiR. gLoR:
presence of NOTCH1 and FBXW7 mutations without lesions involving PTEN/RAS; gHiR: all the other genotypes.

Use of a Clinical Prognostic Scores
Combining Classical and New Risk Factors
We used different combinations of classical and new risk factors
to gain additional information on the relapse risk. First, we
wanted to test in our series of patients the clinical classification
reported by Petit et al. (3) integrating oncogenetics, MRD at
TP1 (threshold 0.01%) and WBC count. By doing that, we
observed a different distribution of subgroups in the analysis
by protocols: in SHOP-2005, the outcome analysis following the
clinical classification defined by the FRALLE group showed a
poorer survival of high-risk patients as compared to the similar
outcome of the low- and intermediate-risk patients (OS p= 0.25,
DFS p = 0.024, and CIR p = 0.044; data not shown). In contrast,
in SEHOP-PETHEMA-2013 patients, the low-risk patients had
a better not significant outcome as compared to the survival of
intermediate- and high-risk groups (p = 0.15, data not shown).
We grouped the latter groups with similar outcome, and found
that the clinical classifier was able to identify with borderline
significance low-risk patients with 100% OS and no relapses (p=
0.059, p= 0.05, and p= 0.06 for OS, DFS, and CIR, respectively)
(Figure 2).

Taken together, the oncogenetics, FCM-MRD at TP1 and
WBC count, combined as defined by Petit et al. (3) in

the FRALLE group, impacted significantly on outcome, and
identified different risk populations in the analyzed cohorts.

DISCUSSION

Most pediatric T-ALL protocols only rely on MRD assessment
to guide stratification in risk-groups, and robust and applicable
risk-stratifying genetic factors at diagnosis are still lacking.
The FRALLE group built a classifier based on WBC count,
MRD at TP1 and an oncogenetic stratifier according to NFPR
mutational status. However, some questions remain open
regarding the FRALLE classifier: (1) would it be predictive of
outcome in patients treated with BFM-based pediatric protocols?;
(2) could MRD at TP2 be applied?, and (3) would this
classifier be similarly predictive of patients’ outcome when
assessing MRD by FCM? To answer these questions, we
analyzed a large cohort of pediatric T-ALL patients treated
with consecutive Spanish protocols. We confirmed MRD as a
prognostic risk-factor throughout different protocols, also when
measured by flow-cytometry. However, oncogenetics impacted
differently according to treatment, confirming that therapeutic
modifications can lead to changes in the prognostic impact of
biological variables like NOTCH1mutations.
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TABLE 2 | Univariate and multivariate analysis of OS and DFS for patients in SHOP-2005 and SEHOP-PETHEMA-2013 protocols.

SHOP-2005 protocol SEHOP-PETHEMA-2013 protocol

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR [95% CI] p HR [95% CI] p HR [95% CI] p HR [95% CI] p

OVERALL SURVIVAL (OS)

Age, years 0.99 [0.87; 1.12] 0.83 – – 1.03 [0.89; 1.19] 0.67 – –

Sex

Female Ref Ref – – Ref Ref – –

Male 4.73 [0.61; 36.39] 0.14 – – 1.71 [0.37; 7.90] 0.49 – –

WBC count

<200 × 109/L Ref Ref – – Ref Ref – –

≥200 × 109/L 2.00 [0.65; 6.11] 0.23 – – 1.22 [0.32; 4.62] 0.77 – –

CNS involvement

Yes Ref Ref – – Ref Ref – –

No 0.38 [0.00; 2.41] 0.44 – – 1.50 [0.42; 5.33] 0.53 – –

MRD TP1

<0.01% Ref Ref – – Ref Ref – –

≥0.01% 3.56 [1.14; 11.11] 0.028 – – 3.51 [0.93; 13.29] 0.064 – –

MRD TP2

<0.01% Ref Ref – – Ref Ref – –

≥0.01% 3.80 [0.90; 16.00] 0.069 – – 4.40 [0.80; 24.15] 0.088 – –

Oncogenetics

gLoR Ref Ref – – Ref Ref – –

gHiR 1.17 [0.30; 4.51] 0.82 – – 5.73 [0.73; 45.27] 0.098 – –

DISEASE FREE SURVIVAL (DFS)

Age, Years 0.95 [0.84; 1.07] 0.38 – – 1.09 [0.94; 1.26] 0.26 – –

Sex

Female Ref Ref – – Ref Ref – –

Male 5.89 [0.77; 44.82] 0.087 1.66 [0.36; 7.69] 0.52

WBC count

<200 × 109/L Ref Ref Ref Ref Ref Ref – –

≥200 × 109/L 2.88 [1.04; 7.96] 0.042 3.25 [1.12; 9.47] 0.031 1.33 [0.35; 5.02] 0.67

CNS involvement

Yes Ref Ref – – Ref Ref – –

No 0.33 [0.00; 2.41] 0.35 – – 0.99 [0.26; 3.83] 0.99 – –

MRD TP1

<0.01% Ref Ref Ref Ref Ref Ref – –

≥0.01% 3.67 [1.28; 10.50] 0.016 3.15 [1.09; 9.18] 0.035 1.11 [0.29; 4.29] 0.88 – –

MRD TP2

<0.01% Ref Ref – – Ref Ref Ref Ref

≥0.01% 3.04 [0.76; 12.21] 0.12 – – 5.59 [1.02; 30.70] 0.048 5.59 [1.02; 30.70] 0.048

Oncogenetics

gLoR Ref Ref – – Ref Ref – –

gHiR 0.98 [0.29; 3.24] 0.97 – – 6.37 [0.81; 49.76] 0.078 – –

HR, hazard ratio; CI, confidence interval; Ref, reference category; WBC, white blood cell; CNS, central nervous system; MRD, measurable residual disease; TP1, end of induction;
TP2, end of consolidation; gLoR, genetic low-risk according to the oncogenetic stratifier; gHiR, genetic high-risk according to the oncogenetic stratifier. Bold values were considered
significative as p < 0.05.

We first evaluated the outcome of Spanish pediatric
T-ALL patients in consecutive protocols. We observed a not
statistically significant improvement in the 5-year DFS with
SEHOP-PETHEMA-2013 protocol, as compared with the older
SHOP-2005 protocol. The differences between both protocols

could partly explain the different outcome. Briefly, both are
BFM-inspired protocols, but in SEHOP-PETHEMA-2013
an induction IB course with cyclophosphamide, cytarabine,
and mercaptopurine was incorporated. In this regard, an
intensive induction and multiagent consolidation including

Frontiers in Pediatrics | www.frontiersin.org 7 February 2021 | Volume 8 | Article 614521

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Vega-García et al. Prognostic Risk-Factors in Pediatric T-ALL

FIGURE 2 | Outcome of patients included in SEHOP-PETHEMA-2013 according to the clinical classifier defined by Petit et al. (3). OS, DFS, and CIR in

SEHOP-PETHEMA-2013 patients according to the FRALLE group combination, comparing the outcome of low-risk patients with the intermediate-risk and high-risk

pooled together. The clinical classifier identified a subgroup of low-risk patients with excellent outcome, 100% OS at 5 years and no relapses. We observed a trend to

the statistical significance in the outcome of the low-risk group vs. the remaining patients.

cyclophosphamide is strongly recommended in T-ALL (38), and
omitting the induction IB resulted in inferior outcome in large
reported cohorts (39, 40). Also, a more intense asparaginase
scheme including PEG-asparaginase was given in SEHOP-
PETHEMA-2013. Thus, as compared to SHOP-2005 protocol,
patients received increased doses of asparaginase and longer
periods of asparagine depletion. The response to treatment
was also differently assessed: in SEHOP-PETHEMA-2013
the prednisone response was added as stratifying criteria,
and the non-centralized 4-colors FCM-MRD was replaced
by 8-colors FCM-MRD with agreed panels, centralized
in reference laboratories. Moreover, a lower number of
patients underwent an allo-SCT in SEHOP-PETHEMA-2013
(Supplementary Figure 4), and had a lower non-leukemic
mortality (data not shown). Overall, the intensification of the
chemotherapy, a better stratification of patients and lower non-
leukemic mortality in the latter protocol, could have contributed
to the improvement of the survival in SEHOP-PETHEMA-2013
cohort. Similarly, a survival benefit dependent on mainly
reducing toxicity alongside improving efficacy was recently
described in adult T-ALL patients (41).

We then assessed the prognostic impact of conventional and
new risk factors within each protocol. Hyperleukocytosis≥200×
109/L was only predictive of a significantly worse DFS in SHOP-
2005 cohort. Next, we analyzed the prognostic value of FCM-
MRD in our cohorts. FCM-MRD levels impacted significantly on
patients’ outcome in both SHOP-2005 and SEHOP-PETHEMA-
2013 protocols, proving the usefulness of FCM-MRD with a
threshold of 0.01% to discriminate prognosis. This is especially
relevant in the difficult setting of flow-cytometry assessment
of MRD in T-ALL patients. However, FCM-MRD impacted
differently according to the protocol and time point. The impact
of MRD at late time points in T-ALL patients may vary between
protocols, as reported by AIEOP-BFM and NOPHO Groups
(6, 11). The discrepancies could be explained by differences in
the treatment protocols, stratification criteria, cutoff levels and

methods (11). In our study, FCM-MRD discriminated outcome
both at early and late time points in SHOP-2005, whereas
significant differences were observed in SEHOP-PETHEMA-
2013 cohort at TP2. This could be driven by differences
between both protocols in terms of intensity of treatment, with
earlier stratification criteria using prednisone response, and early
intensification therapy being added in SEHOP-PETHEMA-2013
patients, mimicking the backbone of current BFM protocols.
Importantly, methodological differences in the FCM-MRD
assessment between SHOP-2005 and SEHOP-PETHEMA-2013
can play a role in the results. Thus, in the latter protocol, 8-color
FCM-MRD centralized in reference laboratories, replaced the
non-centralized 4-color FCM-MRD performed in SHOP-2005.
The increased number of markers in SEHOP-PETHEMA-2013
should, theoretically, improve the accuracy of the analysis, but
we did not investigate the concordance between FCM and other
methods like IG-TR MRD. On the other hand, the sensitivity
in the FCM studies performed in SEHOP-PETHEMA-2013 was
expected to be higher than in SHOP-2005 due to a higher number
of acquired cells, but this point has not been confirmed nor
a straightforward comparison between methodologies has been
performed. Globally, in the SEHOP-PETHEMA-2013 cohort,
FCM-MRD reproduced previous remarks about the relevance of
late time points in BFM-based protocols. Overall, although the
number of patients in each protocol is low, and even considering
the less controlled setting in the older protocols, FCM-MRD
appeared as a robust risk-factor in our Spanish series of patients.

As reported, we confirmed in our cohorts recurrent
mutations in pediatric T-ALL patients. We found alterations in
NOTCH1/FBXW7 genes in 44% of our patients. The incidence
of NOTCH1 mutated cases in our series is low. However, similar
incidences have been published in other series, ranging from
23 to 70.8% (42, 43). Specifically, 23 and 40% of NOTCH1
mutations were reported in Turkish (44) and Japanese cohorts
of patients (45), respectively. FBXW7 mutations also range from
8.6 to 30.8% in the literature. Overall, the frequency of NFPR
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mutations, and mutation rates of CDKN2A/B deletions, were in
the range of previously reported incidences (42, 46–48). When
we classified patients into gLoR and gHiR, patients were grouped
in the same way in both protocols. However, we found a lower
proportion of gLoR patients compared to the FRALLE group, in
parallel to the lower incidence ofNOTCH1/FBXW7 mutations in
our cohort. The highly variable frequency in NOTCH1/FBXW7
mutations could be explained by different factors including bias
in sample storage, ethnicity, methodological aspects, and the total
number of patients.

Regarding oncogenetic impact, we first studied the impact
of individual genetic alterations. NOTCH1 mutations had a
favorable clinical impact in SEHOP-PETHEMA-2013 cohort,
and all patients with NOTCH1double mutations were alive in
continuous complete remission. Neither PTEN nor K/N-RAS
mutations had a significant impact on outcome. As reported, the
homozygous deletion of CDKN2A/B associated with higher CIR
in SHOP-2005 patients. In this line, recent studies have shown
that the lack of deletions involving CDKN2A/ARF/CDKN2B
locus, combined with undetectable MRD (≤0.01%) values,
allowed the identification of a subset of adult T-ALL patients with
better OS in the absence of allo-SCT (31).

The analysis of the combination of oncogenetic abnormalities
yielded different results according to the protocols. Hence,
the application of the oncogenetic classifier (NFPR) to our
cohorts showed no impact in SHOP-2005 patients and a
trend to a better OS and CIR, and a significantly better
DFS in SEHOP-PETHEMA-2013 patients. We next tested the
clinical classification reported by the FRALLE group, integrating
oncogenetics, MRD at TP1 (threshold 0.01%) and WBC count.
The FRALLE classifier allowed to identify different subgroups
of patients with statistically different outcome in the whole
cohort of Spanish patients. In the newest protocol SEHOP-
PETHEMA-2013, a very low-risk group could be segregated
with this score. Thereby, we reproduced the results of the
FRALLE group in different, BFM-inspired therapeutic protocols.
However, the results in SHOP-2005 and SEHOP-PETHEMA-
2013 analyzed individually varied, probably due to differences
between protocols.

The FRALLE-2000 protocol differed in several aspects from
SHOP-2005 and SEHOP-PETHEMA-2013. Briefly, FRALLE-
2000 and SHOP-2005 had similar indications of cranial
irradiation, given both prophylactically in a subgroup of
patients and therapeutically in all T-ALL patients, whereas
cranial irradiation was omitted in SEHOP-PETHEMA-2013.
The FRALLE-2000 protocol had more cyclophosphamide and
anthracycline cumulative doses than SHOP-2005. On the other
hand, SEHOP-PETHEMA-2013 had a prolonged intensification
with PEG-asparaginase compared with FRALLE-2000 and
SHOP-2005 protocols. Taken together, we observed that, even
in the setting of different protocols, the oncogenetics, FCM-
MRD at TP1, and WBC count, may be useful to refine the
risk-stratification in pediatric T-ALL patients. In BFM-based
protocols, the FRALLE classifier allowed to identify a subgroup
of patients with very low-risk, who could be considered as
potential candidates to de-intensify treatment. Our current
protocol, SEHOP-PETHEMA-2013, aims to intensify treatment,

and no de-intensification is considered. Interestingly, following
the FRALLE risk stratification, a quarter of our intermediate-
risk patients (20/76, 26%) could be considered as candidates
to receive less intense treatment, and be moved to a lower-
risk group. Our results, if confirmed in larger series, could help
to consider the option of selected de-intensification therapy in
future clinical trials.

Some factors may limit our study. Centralization in reference
laboratories and biobanking was not mandatory in former
protocols. Also, to assess the possible impact of differences in the
therapeutic regimes, we analyzed the outcome of each protocol
separately. Hence, the low number of patients in each group may
have limited the power of statistics and precluded the finding
of significant results. Finally, the median follow-up of SEHOP-
PETHEMA-2013 cohort is short (2.8 years), but it covers most of
the expected T-ALL relapses.

In summary, we present a national collaborative study of
clinical and genetic prognostic factors in a large series of T-ALL
pediatric patients. Notably, FCM-MRD predicted outcome in
both Spanish protocols, being more important in TP2 in SEHOP-
PETHEMA-2013. We could reproduce the FRALLE group’s
results in our BFM-based SEHOP protocols, and observed the
predictive value of the combination of FCM-MRD, WBC count
and oncogenetics to predict outcome at TP1. This classifier
allowed, in our current protocol SEHOP-PETHEMA-2013, to
identify a low-risk subgroup of patients with excellent outcome.
Further studies in the context of controlled clinical trials would be
necessary to confirm if the de-intensification therapy of a selected
low-risk group of patients would lead to the same good outcome.
Our results provide data that could be clinically relevant, as may
help to apply tailored risk-directed treatments to reduce both
toxicity and relapse.
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