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Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as

a result of an aberrant reparative response following exposures to various antenatal

and postnatal insults. Despite sophisticated medical treatment in this modern era,

the incidence of BPD remains unabated. The current strategies to prevent and treat

BPD have met with limited success. The emergence of stem cell therapy may be a

potential breakthrough in mitigating this complex chronic lung disorder. Over the last two

decades, the human placenta and umbilical cord have gained increasing attention as a

highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical

cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance

and are generally devoid of ethical constraints, in addition to their stemness qualities.

They possess the characteristics of both embryonic and mesenchymal stromal/stem

cells. Recently, there are many preclinical studies investigating the use of these cells as

therapeutic agents in neonatal disease models for clinical applications. In this review, we

describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in

animal models of BPD. The source of these stem cells, routes of administration, and

effects on immunomodulation, inflammation and regeneration in the injured lung are also

discussed. Lastly, a brief description summarized the completed and ongoing clinical

trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD.

Due to the complexity of BPD, the development of a safe and efficient therapeutic agent

remains a major challenge to both clinicians and researchers.
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INTRODUCTION TO STEM CELL BIOLOGY

Stem cell therapy has evolved tremendously since its first success
story of bone marrow cells in regenerating a rodent’s infarcted
myocardium (1). In recent years, it has been advocated as a
novel yet promising treatment modality for a myriad of diseases,
including cardiovascular, neurodegenerative, musculoskeletal,
wound repair. Stem cells are unspecialized cells in the human
body that have a remarkable capability to regenerate continually.
The key abilities of stem cells to constantly self-renew,
proliferate and differentiate into specialized cells under adapted
physiological environment allow them to restore tissue to its pre-
injurious state (2). Sources of stem cells include bone marrow,
umbilical cord, cord blood and adipose tissue.

Stem cell potency is defined as its capability to self-renew
and differentiate, thus classified as totipotent, pluripotent,
multipotent, and unipotent. The term plasticity means the ability
to be molded or change to adapt to the situation. Stem cell
plasticity is defined as the ability to give rise to different cell
types (3, 4). The potency of stem cells reduces with each journey
of lineage differentiation from early embryogenesis to mature
specialized cells (4). A zygote, which is formed following ovum
fertilization by a sperm, is the classic example of a totipotent
stem cell. It has the ability to generate the embryonic as well
as extra-embryonic structures including placenta. The blastocyst,
which is formed 5 days after fertilization, consists of the inner
cell mass (also known as embryoblast) rimmed by trophoblasts
(5). The latter will develop into the placenta. Human embryonic
stem cells (hESCs) which originate from the inner cell mass,
remain undifferentiated with pluripotent potential. Similar to
totipotent stem cells, pluripotent stem cells are able to give rise to
all cell types of any of the three primary germ layers (endoderm,
mesoderm and ectoderm) in the body, but lacking the capability
to produce extra-embryonic cells. Following differentiation of
pluripotent stem cells into one of the germ layers, they become
multipotent stem cells with differentiation potential restricted
to only cells of that germ layer (5). Adult and fetal stem cells
are the examples of multipotent stem cells. Adult stem cells,
or somatic stem cells are found in adult somatic tissues (6),
whereas fetal stem cells are obtained from cadaveric fetuses
following medically terminated pregnancies. Unipotent stem cell
has the narrowest differentiation ability to only one cell type (5).
Progenitor cells are descendants of stem cells with limited ability
to differentiate and replicate. Hematopoietic, neural and cardiac
progenitor cells are among the examples (7).

Several categories of stem cells have been widely investigated
over the last few decades, such as embryonic stem cells (ESCs),

Abbreviations: AECs, amniotic epithelial cells; AMSCs, amniotic mesenchymal

stromal/stem cells; AM-MSCs, amniotic membrane-derived mesenchymal

stromal/stem cells; BM-MSCs, bone marrow-derived mesenchymal stromal/stem

cells; BPD, bronchopulmonary dysplasia; ECFCs, endothelial colony-forming

cells; ESCs, embryonic stem cells; EVs, extracellular vesicles; hAECs, human

amniotic epithelial cells; hUC-MSCs, human umbilical cord mesenchymal

stromal/stem cells; L-MSCs, lung-resident mesenchymal stromal/stem cells; LPS,

lipopolysaccharide; MSCs, mesenchymal stromal/stem cells; P-MSCs, placental

mesenchymal stromal/stem cells; PDSCs, Placenta-derived stem cells; UCDSCs,

umbilical cord-derived stem cells; UC-MSCs, umbilical cord mesenchymal

stromal/stem cells.

fetal stem cells and somatic/adult stem cells. Acquisition of
pluripotent ESCs that involved destruction of a developing
embryos and the use of fetal stem cells from aborted/living
fetal tissue however, posed some ethical and legal implications
(8). Moreover, these pluripotent ESCs and possibly fetal stem
cells which possess similar oncogenic properties with cancer
stem cells raise a major safety concern as these cells may
undergo undesirable differentiation and pose a risk of malignant
transformation post transplantation (9). For instance, in vivo
teratoma when grafted in severe combined immunodeficient
mice (10).

Human placenta, an ephemeral but crucial organ in
pregnancy, is an alternative reservoir of stem cells. Apart from its
fundamental role in determining optimal fetal growth trajectory
in utero, it represents a rich source of stem cells that could offer
additional advantages in terms of proliferation and plasticity
compared to adult stem cells (11, 12). Placenta and umbilical
cord are traditionally regarded as nothing but biological waste, is
often discarded after parturition. This helps to resolve the ethical
concern inherent in ESCs (8, 13). Unlike stem cells harvested
from other sources such as the bone marrow, adipose tissue
and endometrium, these placental and umbilical cord tissues are
readily available in large quantities and its stem-cell derivatives
are easily recovered without the donors incurring any invasive
surgical procedures (14). These unique features of PDSCs and
UCDSCs make them attractive alternatives in cell therapies and
regenerative medicine.

In this review, we first provide an overview of
bronchopulmonary dysplasia (BPD) and the disease
pathogenesis, followed by the potential roles of human PDSCs
and UCDSCs as effective therapeutic and possibly preventive
modalities for BPD as the disease in focus. Unanswered
fundamental challenges related to clinical translation of stem
cells from bench to bedside in BPD are also discussed.

BRONCHOPULMONARY DYSPLASIA AND
THE DISEASE PATHOGENESIS

Infants born extremely premature may have arrested lung
development at the canalicular-saccular phase, before
alveolarization could occur. These infants are inevitably
exposed to postnatal interventions such as positive pressure
mechanical ventilation, supplemental oxygen therapy and
sustaining recurrent bouts of infections that may exert further
harmful effects on the immature lung. Consequently, the
prematurity-induced interruption of normal alveolar and distal
vascular development, which is superimposed by pulmonary
inflammation and aberrant reparative process may collectively
contribute to the progression of BPD (15).

The lung of infants with BPD has three histopathological
features: [1] widespread but occasionally patchy interstitial
edema and fibrosis may give rise to areas of relative collapse
and fibrosis accompanied by more distended emphysematous
lung and thus less alveolar surface area; [2] arterial muscular
hypertrophy and adventitial thickening of small pulmonary
arteries leading to increased vascular resistance and pulmonary
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hypertension; and [3] less usually nowadays, acute major
airway pathology characterized by necrosis associated with an
obliterative bronchiolitis, squamous metaplasia, and collapse of
lung tissue distal to the obstructed airway (16).

Imbalance Between Pro- and
Anti-inflammatory Activities
An imbalance between pro- and anti-inflammatory activities
in the lung is proposed as the major mechanism resulting
in BPD (17). It is characterized by influx of neutrophils and
macrophages into the airways and lung parenchyma. Migration
and accumulation of these inflammatory components in the
lung may amplify and perpetuate further immune activation
by release of potentially destructive pro-inflammatory cytokines,
chemokines and tissue proteases such as tumor necrosis
factor-alpha (TNF-α), interleukin-8 (IL-8), IL-1, IL-6, matrix
metalloproteinase-8 (MMP-8) and MMP-9 (17).

Besides, adhesion molecules such as soluble E-selectin (sE-
selectin) and intercellular adhesion molecule-1 (ICAM-1) were
found elevated in the arterial plasma level of infants with
BPD (18, 19). These adhesion molecules initiate effective
immune response by triggering leukocyte rolling, adhesion
and transendothelial migration to the site of injury (20).
This results in an influx of neutrophils to the lung tissue,
followed by recruitment of macrophages, which in turn produce
macrophage inflammatory proteins (MIP-1a and MIP-1b),
causing a disturbance in pro- and anti-inflammatory factors in
the lung (21).

The release of pro-inflammatory cytokines such as TNF-
α, IL-1β, IL-6 and IL-8 activates NLR Family Pyrin Domain
Containing 3 (NLRP3) inflammasome protein complex (22),
incites the upregulation of nuclear factor kappa B (NF-κB) signal
transduction pathway. Bourbia et al. (23) revealed a high NF-
κB transcription factor concentration in the tracheobronchial
lavage of infants with BPD compared to those without (23).
Iosef et al. (24) demonstrated that NF-κB inhibitor engendered
alveolar simplification with marked reduction in pulmonary
capillary density of neonatal mice, similar to that seen in BPD.
Taken together, these suggest the physiological role of NK-
κB in the developing lung by promoting angiogenesis and
alveolarization (24). Intriguingly, whether NF-κB possesses pro-
or anti-inflammatory property depends on the timing and degree
of stimuli as well as the maturation status of the lung. By
inhibiting NF-κB after the onset of inflammation aggravates
the inflammatory response, while inhibiting NF-κB prior to
injury showed otherwise (25). Similarly, NF-κB inhibition in
the neonatal lung increased the inflammatory response, while
the same treatment in adult mice gave a protective effect by
repressing inflammation (26).

Aberrant Tissue Repair and Fibrosis
Inflammatory response is a double-edged sword, in which
inflammation can be beneficial but at the same time detrimental
to the host. Despite playing an active defense role against
diverse insults and removing offending pathogens, exuberant
inflammation can lead to paradoxical tissue destruction that
trigger tissue repair, leading to fibrosis and scarring.

Developmental pathways particularly transforming growth
factor-β (TGF-β) and Wnt signaling pathways that are involved
in regulating various stages of lung development have been
implicated in the pathogenesis of BPD. Wnt signal transduction
cascade governs a myriad of developmental processes in the
mammalian embryonic state, maintaining tissue homeostasis
and controlling stem cells in postnatal life (27); while TGF-
β is the key player in tissue healing by mediating fibroblastic
activation, myofibroblastic transdifferentiation and extracellular
matrix deposition.

Abnormal Pulmonary Vasculogenesis
In addition to defects in airway remodeling, dysmorphic vascular
growth pattern within the distal airways were observed in
various animal models of BPD, while some pulmonary arteries
underwent structural remodeling with medial hypertrophy and
distal arterial muscularization which contribute to pulmonary
hypertension (28). Several angiogenic growth factors, such as
vascular endothelial growth factor (VEGF) and nitric oxide (NO)
were noticeably reduced in their expression in experimental
models of BPD.

Dysfunction of Endogenous Lung-Resident
Stem/Progenitor Cells
The discovery of resident undifferentiated stem/progenitor cell
population residing in all organ systems including the lung, has
opened up a new door to remarkable research in the field of
regenerative medicine in recent years, with new knowledge on
their physiological roles in lung development, pathogenesis and
repair (29, 30) It is hypothesized that functional impairment or
depletion of these lung-resident stem/progenitor cell populations
has contributed to the disease pathogenesis in BPD (31).

Lung-resident stem/progenitor cells include cells of
endothelial, mesenchymal and epithelial lineages. Endothelial
progenitor cells are involved in vascular repair and regeneration
by homing to the injury site to restore endothelial integrity
and secure tissue perfusion. Endothelial colony-forming cells
(ECFCs), a subset of endothelial progenitor cells with intrinsic
self-renewal potential and capable of forming de novo vessels
in vivo (32), were found to be in lower amount in the cord blood
of infants with BPD (33). In contrast, those with high levels
of ECFCs were protected from developing BPD, indicating its
pivotal role in lung vascular maturation process. Baker et al.
(34) revealed that ECFCs were highly susceptible to hyperoxia
in vitro and lost their angiogenic potential. This observation
linked the dysfunctional endogenous stem cell theory with
occurrence of BPD in preterm neonates receiving postnatal
oxygen therapy (34).

Lung-resident mesenchymal stromal/stem cells (L-MSCs) are
stem cells found within the lung mesenchyme along with
fibroblasts and extracellular matrix. They play a crucial role in
the normal lung development and are recently discovered as the
orchestrators in alveolarization through conduct of the tightly
regulated processes of alveolar septation and angiogenesis in
a developing lung (31, 35). In murine model, these L-MSCs
were able to regenerate giving rise to differentiated daughter
cells including airway smooth muscle cells or stalk mesenchyme
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fibroblasts (36). In addition, L-MSCs directly coordinate the
proliferation and maturation of lung epithelial stem/progenitor
cells via epithelial-mesenchymal crosstalk.

Lung epithelial stem/progenitor cells, like other stem cells,
are capable of giving rise to differentiated cell lineages. For
instance, alveolar type 2 epithelial cells exhibited the ability
to proliferate and differentiate into alveolar type 1 epithelial
cells in hyperoxia-induced rodent models (37), nonetheless,
under the instruction of L-MSCs. Antenatal and repetitive
postnatal insults cause damage and injury to these progenitor
cells through various mechanisms. Failure of these cells to
repair themselves in the desired manner leads to simplification
of alveolar structures and abnormal pulmonary angiogenesis
resulting in pulmonary hypertension.

It is strongly believed that targeting inflammatory-related
and angiogenic signaling pathways could reduce the severity
of BPD (38). Hence, translation research aimed at modulating
inflammation and angiogenesis might be a new hope for an
effective remedy to treat or prevent this devastating disease of
premature newborns. The potential therapeutic value of cell-
based replacement therapy acting as anti-inflammatory and
excellent reparative agent to ameliorate BPD is further explored
in the following section.

HUMAN PLACENTA AND UMBILICAL
CORD AND THEIR STEM CELL
DERIVATIVES

The Normal Human Placenta and Umbilical
Cord
The eutherian mammalian placentas show striking
morphological and structural diversity across species (39),
and are classified as epitheliochorial, endotheliochorial or
hemochorial according to the number of tissue layers separating
the maternal blood from that of the fetus (40). Similar to rodents,
rabbits and primates, humans possess a hemochorial placental
subtype, characterized by negligible cellular barrier between the
maternal and fetal circulations, thus allowing effective transfer
of nutrients to fetuses (41). A normal term human placenta
has a flat, round to elliptical, disc-like shape that measures ∼22
and 2.5 cm in diameter and thickness, with an average weight
of 500 g (42). It comprises both the fetus (chorionic plate) and
maternal (basal plate) surfaces, held together by anchoring
villi. These villi are organized into a series of 30 to 40 lobules
or cotyledons, which are bathed directly by maternal blood
filling the intervillous space, and epitomize the most important
functional units for maternal-fetal exchange (43).

The outer surface of the chorionic villi constitutes the main
cellular barrier between the fetal and maternal circulations and
is formed by an outer layer of syncytiotrophoblasts and an
inner layer of cytotrophoblasts, the latter of which diminishes
as gestation progresses. The stroma of the villi is composed
of sinusoidally dilated fetal capillaries embedded within loose
connective tissues formed by mesenchymal cells, mesenchymal-
derived macrophages (Hofbauer cells) and fibroblasts (44). The
fetal membrane encompasses three distinct layers: [1] innermost

amnion, [2] chorion laeve connective tissue, and [3] outermost
decidua capsularis. Amnion comprises a single avascular layer
of epithelial cells and connective tissue that contacts directly
with the amniotic fluid and encloses the fetus. The chorion laeve
is usually atrophic, composed of connective tissue containing
fetal (chorio-allantoic) blood vessels, whereby decidua capsularis
represents maternal modified endometrium (45). The developing
embryo is connected to the chorionic plate (fetal surface) of
placenta by an umbilical cord containing two arteries and one
vein surrounded by gelatin-like mucoid substance, theWharton’s
jelly.Wharton’s jelly encompasses all loose connective tissue from
the external surface of the tunica media of cord vessels to the
inner margin of the amniotic epithelium (46). Wharton’s jelly is
important in keeping the integrity of umbilical cord. It prevents
kinking of the cord and protects the umbilical blood vessels (47).
The umbilical cord has an average length of 50 to 60 cm and
diameter of 2 cm, with up to 40 helical turns (42).

Placenta and Umbilical Cord-Derived Stem
Cells
The human placenta and umbilical cord represent a reliably
high yield reservoir of stem cells compared to other sources.
The observation that teratoma can arise from a term placenta
suggests that it may harbor some multipotent germ cells (48).
Studies have reported the placenta contains a population of
multipotent stem cells that express stem cells markers such
as c-KIT, octamer-binding transcription factor 4 (OCT4), sex
determining region Y-box 2 (SOX2), stage-specific embryonic
antigen-3 (SSEA3), SSEA4, T cell receptor alpha locus-1-60
(TRA-1-60) and TRA-1-81 (11). These cells possess mesodermal
phenotype and demonstrate broad multilineage differentiation
ability (12, 49, 50).

Different sources of placental stem/progenitor cells are
derived from different layers of the placenta, namely amnion,
chorion and decidua (51) as well as umbilical cord which
constitutes the Wharton’s jelly and cord blood vessels (52)
(Figure 1). The two types of stem cells from the amniotic layer
are amniotic epithelial cells (AECs), which originate from the
epiblast and amniotic mesenchymal stromal/stem cells (AMSCs),
derived from the hypoblast (53, 54). Deriving from the chorion
sheets are chorionic MSCs from the inner chorionic mesoderm,
which is similar to mesenchymal region of the amnion, and
chorionic trophoblast cells from the outer layer of trophoblastic
origin. The uterine component of the placenta, the decidua, also
harbors decidual MSCs (55). Wharton’s jelly of the umbilical
cord serves as attractive source of MSCs while cord lining
membrane (amniotic epithelium and subamniotic Wharton’s
jelly) is identified as a valuable source of epithelial stem cells
and MSCs, respectively (52). The PDSCs and UCDSCs may be
utilized in a wide range of clinical applications. In this review, we
focused on stem cells harvested from placenta and umbilical cord
that have demonstrated potential therapeutic value in BPD.

Human Amniotic Epithelial Cells (hAECs)
The human amniotic epithelial cells (hAECs) are valuable
progenitor/stem cells for regenerative medicine as these cells
offer great promise for therapeutic application due to their
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FIGURE 1 | (A) Injury models causing bronchopulmonary dysplasia (BPD) and BPD-like injuries; (B) Effects of placenta and umbilical cord-derived stem cells in

ameliorating BPD, and (C) The origin of placenta and umbilical cord-derived stem cells. AECs, amniotic epithelial cells; AMSCs, amniotic mesenchymal stromal/stem

cells; BPD, bronchopulmonary dysplasia; CMSCs, chorionic mesenchymal stromal/stem cells; CV-MSCs, chorionic villi mesenchymal stromal/stem cells; DMSCs,

decidual mesenchymal stromal/stem cells; LPS, lipopolysaccharide; UC-MSCs, umbilical cord mesenchymal stromal/stem cells.

ease of isolation, multilineage potential, immune privilege,
anti-inflammatory properties, do not have telomerase reverse
transcriptase, show a stable karyotype, do not form tumors when
injected and have a low risk of allogeneic rejection (2, 53, 56).

Cell surface antigens and other specific markers are often
used to define the “stemness” of a cell type. Investigations
demonstrated that hAECs displayed a similar set of stem cell
marker profile to that of ESCs. hAECs expressedmost of the ESCs
transcription factors and cell surface markers in the early second
trimester, namely OCT4, NANOG, SOX2, SOX3, SSEA3, SSEA4,
TRA-1-60, TRA-1-81, and GCTM2 (53, 56, 57). Although most
of these cells with stem cell markers are lost over time, some of
them are still retained in the term placental amniotic epithelium
(58). hAECs are pluripotent and have unlimited capacity for self-
renewal as well as the ability to differentiate into the derivatives
of the three primary germ layers; ectoderm, mesoderm and
endoderm (53, 56, 58, 59).

Studies showed that hAECs have low expression of the
major histocompatibility complex (MHC) class I molecules
[human leukocyte antigen (HLA)-A, HLA-B, HLA-C and β2
microglobulin] and MHC class II molecules (HLA-DR) (58,
60, 61). Since the amnion does not express MHC class II
antigens, hAECs can elude the immune system (51). The other
suggested mechanism of induction of tolerance of hAECs is
related to the expression of unique HLA class 1b molecules
(62). These HLA class 1b molecules regulate immune response

under autoimmune and transplantation conditions, while HLA
class I and II molecules contribute to the allogeneic immune
rejection (58).

hAECs express a number of distinct Toll-like receptors (TLRs)
and induce the production of inflammatory cytokines as a part
of their immunomodulatory responses. TLR4 expression induces
apoptosis, and play a role in the pathogenesis of premature
rupture of membrane. Study showed TLR4 expression in hAECs
was accompanied by reduced BCL-2 expression and increased
Bax protein (63). TLR5 and TLR6 recognize a variety of
pathogens. Both TLR2 and TLR6 are expressed in respond to
Mycoplasma-associated protein, while TLR5 ligand is expressed
in reaction with flagellated Gram-positive and Gram-negative
bacteria. Activation of TLR5 and TLR6 induced proinflammatory
response. Together, these indicate hAECs possess self-regulatory
mechanisms in immunomodulatory responses (58).

Placental Mesenchymal Stromal/Stem Cells

(P-MSCs)
Human MSCs were first described by Friedenstein in the
bone marrow in 1968 (64). Although bone marrow remains
the most common source of MSCs, these cells can also be
isolated from various human tissues, such as the lung (30),
adipose tissue (65), umbilical cord (66), skeletal muscle (67),
dental pulp (68), corneal stroma (69), synovium (70), cardiac
tissue (71), spleen, liver, kidney (72), bone marrow (73), cord
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blood (74), amniotic fluid (75), and placenta (76, 77). The
placental mesenchymal stromal/stem cells (P-MSCs) express
stromal markers, and are negative for the hematopoietic markers
(78). Additionally, some studies reported P-MSCs expressed
pluripotency markers (54, 79).

P-MSCs were first described in 2004 as plastic-adherent
cells that share a similar immunophenotype with that of bone
marrow MSCs and have multilineage differentiation potential
(80). P-MSCs are of mesodermal origin. Depending on the layer
they originate from, their stem cell derivatives include AMSCs,
chorionic MSCs, chorionic villi MSCs and decidual MSCs (78,
81, 82). AMSCs (11, 83), chorionic MSCs (82, 84) and chorionic
villi MSCs (78, 85) have been described as having a longer life
span than the decidual MSCs population obtained from the
maternal-derived decidua (82, 84).

P-MSCs have a much-limited differentiation repertoire
compared to the pluripotent ESCs. These cells display the
ability to differentiate in vitro into different mesodermal cell
lineages, including adipocytes, chondrocytes, and osteoblasts
(86). Another study suggested that P-MSCs may also be capable
of neural differentiation (87). P-MSCs are widely studied in
regenerative medicine. Other than their advantages in terms of
the ease in isolation, high plasticity, low immunogenicity and
tumorigenesis (51), P-MSCs display the ability to migrate to
inflammatory microenvironments and tumors, involvement in
angiogenesis and wound healing as well as tissue repair activity
through paracrine actions, which are important therapeutic
advantages of P-MSCs (88–90).

Umbilical Cord-Derived Stem Cells
Wharton’s jelly is a popular source of umbilical cord
mesenchymal stromal/stem cells (UC-MSCs) (91). Stem
cells isolated from the Wharton’s jelly show mesenchymal
fibroblast-like morphology, with self-renewal ability and capable
to differentiate into neuronal, osteo-chondral, adipocytic and
muscular derivatives (92). Apart from having characteristics
of MSCs as defined by the International Society for Cellular
Therapy (93), UC-MSCs also exhibit properties attributed to
ESCs, expressing markers such as TRA-1-60, TRA-1-81, SSEA1,
SSEA-4 and alkaline phosphatase. In addition, ESC pluripotent
markers that include OCT4, Sox-2, and NANOG are also
detected at a lower level (94). Although UC-MSCs are not as
pluripotent as ESCs, these cells are widely multipotent and do
not develop into teratomas in immunocompromised mice (92).

Recently, Davies et al. (2017) proposed an
anatomically/histologically-based nomenclature of the umbilical
cord structures for the purpose of standardization and ease of
comparison across cells harvested from different regions/zones
of Wharton’s jelly (46). Wharton’s jelly is further divided into
three distinct anatomical/histological zones: [1] subamnion, [2]
intervascular and [3] perivascular Wharton’s jelly. Interestingly,
the stromal cells of Wharton’s jelly are not uniformly distributed,
but in a gradually increasing manner from the cord lining up
to the proximity of umbilical vessels. Likewise, the tendency of
myofibroblast differentiation of the stroma cells is the highest
near the umbilical vessels with the least differentiated ones
predominantly located in the subamniotic zone (95).

Accumulating evidence suggests that umbilical cord contains
a unique cell family with different degree of stemness and
phenotypic profiles residing in various parts of the umbilical cord
(96). For instance, other than MSC markers (CD44, CD90 and
CD105), stem cells harvested from perivascular Wharton’s jelly
demonstrated high expression of endothelial markers CD146 like
that of CD146+ pericyte, a more differentiated MSC progenitor
cells. They are however absent for CD73, a MSC marker. On
the contrary, the intervascular Wharton’s jelly yields stem cells
positive for MSCmarkers but lacking that of endothelial markers
(CD144, CD146 and CD34). The pericyte-like properties of
the MSCs isolated from perivascular Wharton’s jelly provide
additional advantage in its rapid response to tissue damage upon
engraftment and induce angiogenesis (97).

Comparison Between Placenta/Umbilical
Cord-Derived Mesenchymal Stromal/Stem
Cells and Bone Marrow-Derived
Mesenchymal Stromal/Stem Cells
In vitro Comparison
Stem cells harvested from bone marrow are considered as the
gold standard and the most characterized source of adult MSCs
for various clinical applications. Acquisition of MSCs from
bone marrow; however, requires invasive procedure with a risk
of complications. Moreover, the cell yield from bone marrow
declines with advancing donor age. When compared to young
donor (<40 years old), older donors’ MSCs revealed smaller-
sized colonies and lower integrated density (98).

The P-MSCs and UC-MSCs are excellent alternatives to
BM-MSCs. The former is shown to share similar morphology,
cell surface markers and some pluripotency-related markers
with BM-MSCs. Interestingly, BD-MSCs have additional
advantages than BM-MSCs. For instance, a higher frequency of
colony forming unit-fibroblasts was reported in UC nucleated
cells (1:1609) compared to BM nucleated cells (1:35700)
(99). Lower immunogenicity was seen in UC-MSCs over
BM-MSCs with lower levels of lymphocyte proliferation
following allogeneic lymphocyte stimulation assay. Likewise,
UC-MSCs have a higher overall immunomodulatory effect
with increased expression of potent immunosuppressive factors
such as CD200, LIF, and TGF-β2 (99). In vitro study showed
UC-MSCs underwent slower senescence, demonstrated a
higher cell proliferation rate and greater anti-inflammatory
effects than BM-MSCs (100). The challenges remain in
understanding the heterogeneity of the isolated populations, and
to standardize the diversity in isolation protocols and culture
conditions (101).

P-MSCs were observed to consistently faster population
doubling time and longer-term expandability (up to 15 passages)
under identical culture condition compared with BM-MSCs
(102). P-MSCs are more homogeneous as compared to BM-
MSCs in culture (103). This might be due to the fact that
P-MSCs are younger cells with less exposure to harmful
substances such as reactive oxygen species, chemical and
biological agents, and physical stressors (104), thus increasing
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the efficacy and safety of the therapeutic applications of P-
MSCs in regenerative medicine. Homing of P-MSCs to damaged
tissue may be further enhanced with the demonstration of
higher expression of VLA-4 (very late antigen-4) adhesion
molecule on P-MSCs compared to BM-MSCs to allow adherence
and migration through the endothelium (105). In addition,
the advantage of P-MSCs over BM-MSCs and adipose tissue-
derived stem cells includes the ability to be obtained using
a non-invasive method and in larger quantity (106). Di
Bernardo et al. (107) reported that P-MSCs played a pivotal
role as potent stimulator of perinatal lung morphogenesis
in ex-vivo fetal lung culture model compared with BM-
MSCs (107).

In vivo Comparison
The therapeutic efficacy of BM-MSCs has been investigated
in experimental models of lung injury in adult and newborn
animals. Tian et al. (108) reported a significant improvement
in radial alveolar count and reduction in lung inflammatory
cytokines in hyperoxic mice model after intravenous BM-MSCs
injection (108). Their findings were confirmed by other studies
on hyperoxic rat models (109–111). Intra-tracheal delivery of
BM-MSCs in hyperoxic neonatal rat lungs shown to confer
protection with increased pulmonary vascular angiogenesis,
reduced pulmonary hypertension and normalized alveolar
structures (112). Conversely, intranasal administration of BM-
MSCs in newborn mice lung injury model, failed to achieve
epithelial reconstruction and transdifferentiation into respiratory
epithelial cells (113). To date, the efficacy of BM-MSCs in larger
animal BPD models such as preterm lambs, pigs and baboons
have not been explored (114).

Although there have been extensive pre-clinical studies of
BPD animal models using stem cells derived from bone marrow,
placenta and umbilical cord, to the best of our knowledge, head-
to-head comparative study on the efficacy of both the BM-MSCs
and P-MSCs/UC-MSCs in BPD animal models is still lacking.
This research gap needs to be further addressed.

MECHANISMS OF FUNCTION OF
PLACENTA AND UMBILICAL
CORD-DERIVED STEM CELLS

Cell-Contact-Mediated Effects
Upon transplantation, MSCs exert their immunomodulatory
functions at damaged sites through a synergy of direct cell-
cell contact. The direct cell-to-cell contact between PD-1
inhibitory molecule on T cells and its ligands PD-L1 on MSCs,
inhibits CD3+ T cell proliferation, induces early apoptosis
and suppressed effector T cell (e.g., IL-17 producing T cells,
Th17) responses (115). Similarly, TNF receptor superfamily
member 6 (Fas)-FasL interactions propagate the death signal and
induce T cell apoptosis (116). In addition, expression of CD106
(VCAM-1) on P-MSCs (117) and CD54 (ICAM-1) on UC-MSCs
(118) is crucial in mediating immunomodulatory functions on
T cells.

Paracrine and Extracellular
Vesicles-Mediated Effects
Despite the relatively poor in vivo engraftment rate (0–20%),
pleiotropic lung protection following transplantation is believed
to be attributed to paracrine factors such as lipid basedmediators,
growth factors and signaling peptides (119). Among the secreted
bioactive substances include lipoxin A4 (120), epithelial growth
factors (e.g., keratinocyte growth factor, pro-angiogenic factors)
(121) and TNF-α-stimulated gene/protein 6 (122), which have
potent anti-inflammatory properties. With the presence of
these molecules, administered stem cells are able to migrate
to injured tissue and promote anti-inflammatory environment
which support cell proliferation and inhibit apoptosis, thus
enhance tissue regeneration, remodeling and survival.

MSCs influence both tissue resident stem cells and
macrophages through paracrine effects like extracellular vesicles
(EVs) other than cytokines and secreted soluble factors, which
results in more efficient reparative process by tissue resident
stem cells (123). EVs (such as exosomes and microvesicles)
are nanometer-scale, cell membrane-enclosed packages of
biomolecules that are released by cells into the surrounding
environment to mediate signal transmission and cell-to-cell
communication. These vesicular cargo biomolecules carry
biological active compounds including amino acids, bioactive
lipids and nuclei acids (124). These cell-free products may serve
as safer alternatives to cell therapies. For large scale production,
adipose tissue-derived MSCs and UC-MSCs exosomes will
be easier to obtain compare to BM-MSCs (123). Compared
to BM-MSCs, UC-MSCs have a higher production rate of
EVs (125).

Kourembanas team was the first to discover pleiotropic
protective effects of EVs-based therapy in experimental
BPD models. In their study, they reported that intravenous
administration of EVs derived from both BM-MSCs and
UC-MSCs in hypoxic mice model were able to inhibit influx
of alveolar macrophages and pro-inflammatory cytokines,
besides ameliorate lung vascular remodeling and pulmonary
hypertension. Moreover, the uptakes by macrophages cause a
shift in balance to anti-inflammatory state (126). Following that,
the same group of researchers reported that the lung functions of
the EVs-treated mice were significantly improved with decreased
fibrosis, arteriole muscularization and pulmonary hypertension.
They concluded that restoration of lung function occurred
partly related to macrophage immunomodulation induced by
administration of EVs (127). Several subsequent studies have
shown that early administration of human MSC-derived EVs
improved histological and functional outcomes in experimental
BPD (122, 128).

Similar therapeutic effects were observed in hyperoxia-
induced neonatal lung injury in mice treated both with
early and late EVs interventions (129). EVs might even
potentially reverse the cardiorespiratory complications
in children with developed BPD (129). In addition, Tan
et al. (130) reported that the release of EVs from hAECs
administered intranasally exerted similar beneficial effects
to MSCs with significant reduction in lung inflammation,
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improvement in tissue-to-airspace ratio and reduction in
fibrosis in bleomycin-challenged aged mice (130). Willis et al.
(129) and Bonadies et al. (131) suggested that MSCs and EVs
are two most revolutionary treatments for BPD, not only
effective in the prevention of BPD but also may potentially
reverse the complications in children diagnosed with BPD
(129, 131).

THERAPEUTIC POTENTIAL OF PLACENTA
AND UMBILICAL CORD-DERIVED STEM
CELLS IN BRONCHOPULMONARY
DYSPLASIA

Experimental Therapeutics in Animal
Models
Animal models play a crucial role in advancing our fundamental
knowledge on the pathogenesis of this complex disease and to
direct our future clinical trials into therapeutics. Mice and rats
are among the widely usedmodels since the newborn rodent pups
are delivered at term in the saccular stage of lung development,
equivalent to that of a preterm infant at risk of BPD. Other
animal models for BPD that have been established are pigs (132),
rabbits (133), lambs (134), and baboons (135). Arguably, larger
animal models that require the need for mechanical ventilation
and other life-support care after premature delivery are more
clinically relevant and closely resemble human biology than
rodents. Nonetheless, the use of these larger animal models
increases the costs of experimentation and more labor intense,
which might have precluded their use in preclinical studies (136).
Methods of inducing BPD in animal models vary across studies
and include the use of high concentration of oxygen (hyperoxia),
mechanical ventilation, bleomycin, intrauterine inflammation via
lipopolysaccharide (LPS) injection, postnatal continuous hypoxia
or intrauterine prenatal hypoxia (137). Hyperoxia-induced lung
injury is among the most used method.

Nonetheless, these animal models are not perfect
representation of BPD in human. Induced animal models
demonstrating alveolar simplification and vascular remodeling,
may also reveal additional widespread fibrosis and inflammation
(138). Recently, Zhang et al. (139) successfully created an
innovative BPD model using premature hyperoxia-exposed
rodents which showed characteristic histological features of BPD
in humans (139), suggesting a new alternative model for future
research. Table 1 summarizes the effects of PDSCs and UCDSCs
in BPD therapeutic experimental animal models while Figure 1
illustrates how PDSCs/UCDSCs remedy the various BPD-like
injuries inflicted in the models.

Human Amniotic Epithelial Cells (hAECs)
hAECs have been shown to reduce acute inflammation, accelerate
repair and improve lung function in both immunodeficient
and immunocompetent-mouse models with bleomycin-induced
injury (140–142). Administration of hAECs to BPD models
resulted in decreased gene expression of pro-inflammatory
cytokines (TNF-α, TGF-β, IFN-γ, and IL-6), and decreased
inflammatory cell infiltration (141). hAECs reduced scarring

in lung injury by decreasing the collagen content (140). These
cells were capable of mitigating lung inflammation and alveolar
simplification in a murine model with BPD-like lung injury, by
improving lung tissue-to-air space ratio and secondary septal
crest density (143).

In larger animal like fetal sheep models, exposed to
intraamniotic LPS injection, hAECs reduced the need of
ventilation and reduced inflammatory changes (144, 145).
In addition, it restored a normal lung tissue-to-air space
ratio, reduced pro-inflammatory cytokines (145), normalized
secondary septal crests, reduced collagen and elastin deposition
and fibrosis (144). Deus et al. (152) described hAECs
having beneficial effects by the production and secretion
of various bioactive factors involved in anti-inflammation,
immunomodulation, wound healing, angiogenesis, anti-fibrosis
and anti-bacterial (152).

Studies showed host macrophages and T regulatory cells
were the main contributors toward the reparative effects of
hAECs (120, 153–155). Of note, the response to these cells
was dependent on the timing of administration and the effects
were best observed when they were administered at an early
stage of injury (142, 143). Umezawa et al. (156) showed that
placental amnion-derived cells can be reprogrammed to induced
pluripotent stem cells. These cells maintained normal karyotype
and chromosomal stability over a long period of passages. It can
be easily isolated and expanded for industrial production of large
quantities (156).

Placental Mesenchymal Stromal/Stem Cells

(Placental MSCs)
Although not as widely utilized, P-MSCs attenuated perinatal
inflammation- and hyperoxia-induced defective alveolarization
and angiogenesis as well as reduced lung fibrosis. In LPS-injected
rats, human MSCs derived from placentas improved vascular
density, reduced TNF-α and IL-6 levels and collagen density,
by exerting paracrine effects via increased VEGF and decreased
connective tissue growth factor (CTGF) expression (146).

Cargnoni et al. (147) demonstrated that P-MSCs derived from
fetal membrane showed stem cell phenotype, high plasticity,
and displayed low immunogenicity both in vitro and in vivo.
These MSCs also displayed the ability to engraft in the
lung. A 1:1 mixture of hAECs and human AMSCs/human
chorionic MSCs administered intratracheally into bleomycin-
treated, immunocompetent C57/Bl6 mice exhibited a reduction
in neutrophil infiltration and fibrosis, indicating the presence of
the anti-fibrotic effect of PDSCs (147).

Umbilical Cord Mesenchymal Stromal/Stem Cells

(UC-MSCs)
Umbilical cord mesenchymal stromal/stem cells (UC-MSCs)
were injected into bleomycin-induced lung injury models
and demonstrated reduced inflammation and fibrosis, with
the injected cells found after 2 weeks and only in areas of
inflammation and fibrosis (148). The treatment inhibited the
expression of TGF-β, IFN-γ and proinflammatory cytokines
macrophage migration inhibitory factor (MIF) and TNF-α.
Collagen level was decreased, caused by up-regulation of MMP-2
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TABLE 1 | Effects of placenta and umbilical cord-derived stem cells in BPD models.

Cell types Effects Evidence References

hAECs Anti-inflammatory ↓ Pro-inflammatory cytokines

- TNF-α, TGF-β, IFN-γ, PDGF-α, PDGF-β, IL-1β, IL-10, IL-6

↓ infiltration of inflammatory cells

↑ anti-inflammatory substances

(140–145)

Anti-fibrosis ↓ collagen density

Lung function

improvement

↓ peripheral pulmonary arterial remodeling

↑ density of pulmonary capillary bed

Improved lung tissue-to-air space ratio

Improved secondary septal crest density

Restoration of alveolar architecture

Preserved spatial pattern of elastin deposition

Promoted pulmonary angiogenesis

P-MSCs Anti-inflammatory ↓ pro-inflammatory cytokines

- IL-6, TNF-α

(146, 147)

Anti-fibrosis ↑ VEGF

↓ CTGF

↓ collagen density

↓ infiltrating macrophages

↓ neutrophil infiltration

Lung function

improvement

Restored vascular density

hUC-MSCs Anti-inflammatory ↓ Pro-inflammatory cytokines

- TGF-β, IFN-γ, macrophage MIF and TNF-α

(148–151)

Anti-fibrosis & ameliorate

elastin remodeling

↓ Collagen density

↓ MMPs

↓ Elastin expression

↑ VEGF

↑ MMP-2

↑ Vessel density

↑ Angiogenesis

Lung function

improvement &

accelerated repair

↓ BPD injury-related proteins

- CX3CL1, TNF-α, TIM-1, hepassocin, neprilysin,osteoprotegerin,

MMP-2, LIF

↑ alveolar septal widening

↑ septal crest density

Restored lung alveolarization, vascularization and pulmonary

vascular remodeling.

BPD, bronchopulmonary dysplasia; CTGF, connective tissue growth factor; CX3CL1, C-X3-C motif chemokine ligand 1; hAECs, human amniotic epithelial cells; hUC-MSCs, human

umbilical cord mesenchymal stromal/stem cells; IFN-γ, interferon-γ; IL, interleukin; LIF, leukocyte inhibitory factor; MIF, migratory inhibitory factor; MMPs, matrix metalloproteinases; P-

MSCs, placental mesenchymal stromal/stem cells; PDGF, platelet derived growth factors; SMA, smooth muscle actin; TGF-β, transforming growth factor-β; TIM-1, T cell immunoglobulin

and mucin domain; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor.

and reduced endogenous inhibitors, tissue inhibitors of MMPs.
These results suggest that UC-MSCs harbor anti inflammation
and antifibrotic properties and may augment lung repair (148).

In hyperoxia-exposed newborn mice, intraperitoneal
administration of UC-MSCs at high dose (1 x 106 cells) restored
lung structure and function (149). Characteristic arrest in
alveolar growth with air space enlargement and loss of lung
capillaries induced by hyperoxia were partially prevented
and lung function and structure were somewhat preserved,
without tumor formation following computed tomography scan
assessment. While high dosage of intraperitoneal administration
of UC-MSCs (1 × 106 cells) was associated with alveolar septal
widening probably through the modification of the interstitial
matrix, intranasal administration of UC-MSCs or lower dose at
0.1 × 106 cells intraperitoneal administration had no significant

effects on lung function or alveolar remodeling. It is suggested
that UC-MSCs may act via a paracrine effect. Purified exosomes
from various sources of MSCs including Wharton’s jelly-derived
MSCs were also reported to restore lung architecture and
improve lung development and function in hyperoxia-induced
BPD animal models (129).

Moreira et al. (150) reported that the first intranasal
administration of umbilical cord Wharton’s jelly-derived MSC
(UC-MSCs) to a hyperoxia-induced rat BPD model resulted
in restoration of lung alveolarization, vascularization and
pulmonary vascular remodeling. This was due to the combined
effect on angiogenesis, immunomodulation, wound healing and
cell survival of hUC-MSCs as indicated by the proteinmicroarray
results (150). The lungs of hUC-MSCs treated mice showed
significantly lower levels of injury-related proteins associated
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with immunomodulation (C-X3-C motif chemokine ligand 1
(CX3CL1), TNF-α, T cell immunoglobulin and mucin domain
(TIM-1), hepassocin, neprilysin), cell survival (osteoprotegerin),
and wound healing [MMP-2, leukocyte inhibitory factor (LIF)].
Moreira et al. (150) suggested the intranasal route of delivery as a
feasible, non-invasive and effective method that may bear clinical
applicability (150).

Elastin expressions stimulated by 90% O2 in human lung
fibroblasts (HLF) of a hyperoxia-induced rat model of BPD
were reduced by intratracheal-delivered UC-MSCs. HLF trans-
differentiation into myofibroblasts were also inhibited, indicating
that UC-MSCs could inhibit lung elastase activity. These
findings showed that UC-MSCs could ameliorate aberrant elastin
expression and deposition in the lung of hyperoxia-induced BPD
models, possibly through the suppression of TGF-β (151).

Clinical Translation: From Bench to
Bedside
The results following extensive in vitro and in vivo experiments
on animal BPD models using UC-MSCs and hAECs, are
promising. This has created great enthusiasm in the scientific
community with a surge in clinical trials, offering new hopes of
cure for amyriad of diseases including BPD. Notably, hUC-MSCs
are among the MSCs that had been extensively investigated over
the past decades on various small and larger animal models.

There are currently 11 registered clinical trials of PDSCs
and UCDSCs used for BPD listed in the United States National
Institute of Health database at https://clinicaltrials.gov, while two
are listed in the Australian New Zealand Clinical Trials Registry
at https://anzctr.org.au (last accessed on 15 September 2020).
At present, clinical trials are also being conducted at various
countries including Korea, United States, Spain and China.

These clinical trials have collectively embraced umbilical cord
as the main source of MSCs with only a few using hAECs.
Most of them are phase 1 clinical trials, focusing on the safety
and efficacy of PDSCs and UCDSCs in the treatment and
prevention of BPD. Intratracheal and intravenous routes are
the two preferred routes of administration, with a wide inter-
study variation in the selection of dosage that ranges from 1
million cells/kg body weight up to 30 million cells/kg body
weight. A summary of the ongoing and completed clinical trials
(excluding 5 follow up studies—NCT03873506, NCT01632475,
NCT04003857, NCT01897987, NCT02023788) is in Table 2.

hAECs were being explored for their safety and feasibility
in treating BPD. Lim et al. (157) conducted the first in-human
phase I clinical trial of allogeneic hAECs in 6 preterm babies
with BPD via the intravenous route. They reported no immediate
adverse events except one of the babies developed transient
cardiorespiratory compromise due to pulmonary embolic event.
In addition, serum C-reactive protein levels were slightly reduced
or remained unchanged 48 h following hAECs administration.
One of the six babies died a month after cell administration due
to multiorgan failure. The rest of the babies were alive at the time
of discharge (median, 174 days of life) (157) and after 2 years of
follow up (158) (Table 3).

Translational Challenges in Cell-Based
Therapy
Although cell-based intervention is hyped as the next therapeutic
pillar in medicine, there are still many challenges to be overcome
prior to its successful translation into clinical use. Comparing
to small molecule and biologic drugs, cell-based therapies are
considerably complex and are generally more challenging to
control their biological behavior in vivo, which has posed a great
obstacle to the scientific community toward establishing these
cell sources as promising and rewarding therapeutic use in the
clinics. In addition, other cell-based therapies such as ECFC and
human umbilical vein endothelial cells (HUVEC) that had been
comprehensively investigated in adult diseases (159, 160) may be
explored for their potential benefits in treating BPD.

Safety remains a primary issue in cell transplantation. The
complexity and lack of full understanding on the mode of
action of PDSCs and UCDSCs in vivo remains a major issue
(161). As compared with other small molecule or biologic drugs,
these cells are living entities that are capable of metabolism,
growth and reaction to environmental stimuli, affecting their
therapeutic abilities.

Heterogeneity of PDSCs and UCDSCs may become a barrier
that hinders treatment success. Notably, stem cells derived from
different anatomic locations of the human placenta, although
revealed to share common morphology and immunophenotypic
pattern, differ significantly with regards to the numbers of cells
in the host tissue, global gene expression patterns and their
trilineage differentiation potential ex vivo. Careful biomolecular
characterization of PDSCs and UCDSCs through genomic,
epigenetic, secretomic and proteomic profiling can further refine
their overlapping identities and hence reduce heterogeneity.

Standardization in isolation methods is hard to be achieved
as different protocols exist for PDSCs/UCDSCs isolation from
different anatomic locations. Isolation of cells from human
amniotic membrane particularly could be problematic and at
risk of cross-contamination due to both AECs and AM-MSCs
located close to one another (54). Isolation of hAECs from
amniotic fluid may inadvertently harvest trophoblast cells as well
(162). Furthermore, the number of cells isolated is often not
adequate for clinical use, requiring cell expansion by culture
method to achieve a minimum of 1.5-6× 107 cells per single dose
(163). Large-scale production of MSCs is currently made possible
with robust controlled bioreactor systems which enable rigorous
process monitoring to ensure cell cultivation under optimum
controlled conditions (164).

Lastly, it is imperative to note that the risk in transmitting
of infections such as viruses, prions and mycoplasma from
donors to the immunocompromised premature host although
minimal, but extant (165). Stringent safety assurance system with
appropriate donor selection and screening as well as employing
sensitive screening tests for infectious diseases is mandatory.

CONCLUSION AND FUTURE PROSPECTS

Currently, there is no single effective therapy for BPD and as
such, stem cells have emerged as a potential source of effective
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TABLE 2 | Ongoing and completed clinical trials on bronchopulmonary dysplasia with placenta and umbilical cord-derived stem cell.

Identification code Status Cells Phase Study design Age at treatment Target Country

Interventional model Dosage Route of

administration

NCT04062136 Recruiting hUC-MSCs I Single group 1 × 106/kg

(×2)

Intravenous 1–6 months 10 Vietnam

NCT03558334 Recruiting hUC-MSCs I Parallel assignment 1 × 106/kg,

5 × 106/kg

Intravenous Child, adult, older adult 12 China

NCT03645525 Recruiting hUC-MSCs I-II Parallel assignment 2×107/kg Intratracheal Up to 3 weeks 180 China

NCT03601416 Not yet Recruiting hUC-MSCs II Parallel assignment 1 × 106/kg,

5 × 106/kg

Intravenous Up to 1 year 57 China

NCT03631420 Recruiting hUC-MSCs I Single group 3 × 106/kg,

1 × 107/kg,

3 × 107/kg

NA 36–48 weeks 9 Taiwan

NCT04255147 Not yet Recruiting hUC-MSCs I Single group 1 × 106/kg,

3 × 106/kg,

1 × 107/kg

Intravenous 7–21 days 9 Canada

NCT03774537 Recruiting hUC-MSCs I-II Parallel assignment 1 × 106/kg, 5

× 106/kg

Intravenous 3–14 days 20 China

NCT01207869 Unknown hUC-MSCs I Parallel assignment 3 × 106/kg Intratracheal Up to 6 months 10 Taiwan

NCT02443961 Recruiting hUC-MSCs I Single group 5 x 106/kg

(×3)

Intravenous 1 month to 28 weeks 10 Spain

ACTRN12618000920291 Recruiting hAECs I Other 2 × 106/kg to

3 × 107/kg

Intravenous 14–16 days 24 Australia

**ACTRN12614000174684 Completed hAECs I Single group 1 × 106/kg Intravenous More than 36 weeks 6 Australia

HAECs, human amniotic epithelial cells; hUC-MSCs, human umbilical cord mesenchymal stromal/stem cells; hUCB-MSCs, human umbilical cord blood mesenchymal stromal/stem

cells; NA, not available; **Published clinical trials.

TABLE 3 | Published clinical trials on bronchopulmonary dysplasia with placenta derived stem cells.

Stem cells Phase Gestational

age (weeks)

Mean age at

treatment

(days)

Mean birth

weight (g)

Sample

size, n

Study designs Results References

Dosage Route

Allogeneic

hAECs

(ACTRN

12614000174684)

I 26 89 days 795 6 1x106/kg Intravenous 5 alive, 1 died (due to

multiorgan failure)

1 transient cardiorespiratory

event

No other adverse effect

(157)

During the 2 years follow up:

2 resolved pulmonary

hypertension

No long-term

transplant-related

adverse effect

(158)

HAECs, human amnion epithelial cells.

therapy. Stem cell insufficiency in preterm infants may be
one of the underlying pathological mechanisms for disordered
development of alveolar and vascular structures. The placenta
and umbilical cord are readily available source of stem cells,
although the properties of these stem cells may differ depending
on the regions they are isolated from.

To date, there are still very limited studies on the direct
comparison between the value of MSCs from different sources,
especially between BM-MSCs and P-MSCs/UC-MSCs. It would

also be valuable to compare stem cells-derived EVs from various
sources such as placenta, bone marrow, and adipose tissue.
Accumulating evidence has demonstrated the beneficial effects
of these placenta/umbilical cord-derived stem cells on both
in vitro and in vivo experimental animal BPD models. Pre-
clinical studies showed they are able to treat established BPD
and can prevent BPD from developing in preterm neonates
exposed to lung insults. The effects include reduced in the levels
of inflammatory mediators such as IL-6 and TNF-α, improved
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pulmonary angiogenesis, ameliorated lung fibrosis and restored
alveolar structures in BPD experimental models. Although
paracrine activities seemed to be the most likely mechanism
involved, the exact functions of how these stem cells work in vivo
remain unclear, leaving a knowledge gap in this area.

At the present moment, hAECs and hUC-MSCs are
two stem-cell based therapies that are leading the way as
potential treatment of BPD. In our opinion and backed
by increasing evidence that the “game-changer” lies in the
treatment with cell-free products via EVs which appear to
yield similar benefits as stem cells. EVs are considered a
novel discovery in stem cell biology. Although there are
still many uncertainties and questions with regards to this
product and that safety of this product has yet to be tested
in any phase 1 clinical trial, EVs being cell-free do not
have the inherent concerns of uncontrolled transformation.
Future studies should investigate the properties of EVs isolated
from different regions of placenta and umbilical cord. Lastly,

standardized extraction methods and harvesting techniques
are necessary to ensure quality and reproducibility of this
stem cell product before it is released for use in human
translational applications.
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