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Preterm birth is associated with poor long-term neurodevelopmental and behavioral

outcomes, even in the absence of obvious brain injury at the time of birth. In

particular, behavioral disorders characterized by inattention, social difficulties and anxiety

are common among children and adolescents who were born moderately to late

preterm (32–37 weeks’ gestation). Diffuse deficits in white matter microstructure are

thought to play a role in these poor outcomes with evidence suggesting that a

failure of oligodendrocytes to mature and myelinate axons is responsible. However,

there remains a major knowledge gap over the mechanisms by which preterm birth

interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an

inhibitory-dominant environment due to the action of placentally derived neurosteroids on

the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the

fetal behavioral state. Following preterm birth, and the subsequent premature exposure

to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly

reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal

brain is also exposed to ex utero environmental insults such as periods of hypoxia and

excessive glucocorticoid concentrations. Together, these insults may increase levels of

the excitatory neurotransmitter glutamate in the developing brain and result in a shift in

the balance of inhibitory: excitatory activity toward excitatory. This review will outline the

normal development of oligodendrocytes, how it is disrupted under excitation-dominated

conditions and highlight how shifting the balance back toward an inhibitory-dominated

environment may improve outcomes.
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INTRODUCTION

The incidence of preterm birth has stubbornly remained at ∼8%, with the majority (∼74%)
of these deliveries falling into the moderate to late preterm range (32–36 weeks of gestation)
(1). Although short-term outcomes are good, these neonates have markedly disrupted brain
development that persists into later life (2). In addition to major preterm birth related disorders,
such as cerebral palsy and bronchopulmonary dysplasia, there is a well-established body of evidence
supporting the notion that preterm infants born in the moderate to late range are also much more
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likely to develop neurodevelopmental morbidities and learning
disorders that become apparent at around school age (3–9). These
disorders include internalizing disorders (such as anxiety and
depression), inattentive attention deficit hyperactivity (ADHD)
disorder and poor social skills (10). These disorders can be
observed from pre-school age through to adulthood (10), but
importantly, often occur in the absence of overt brain injury
at the time of birth. Development of these disorders leads to
significant socioeconomic burden for these individuals as well as
for their families and the healthcare system (11). Thus, there is
an urgent need to develop therapeutic strategies to reduce these
negative effects of moderate to late preterm birth and we propose
that this needs to be done in the early neonatal period.

Moderately to late preterm born neonates frequently
already have, or will develop, subtle deficits in white matter
tracts not visible on routine MRI (1, 12, 13) which persist
beyond the time of full term, and despite further post-term
development of myelination, behavioral disorders emerge in
later life (1, 2, 7, 13). This review will examine the processes
surrounding oligodendrocyte development, specifically in
the late gestation fetus, and how premature exposure to
the ex utero environment disrupts this process. We will
also cover studies showing moderate to late gestation is
characterized by an inhibitory tone in the developing brain that
is subsequently lost following preterm birth. This inhibitory
tone is maintained by the placentally derived neurosteroid,
allopregnanolone (5α-pregnane-3α-ol-20-one) and its actions
on the γ-aminobutyric acid a (GABAA) receptor, which plays a
key role in oligodendrocyte development in utero (14). Finally,
we will also discuss some approaches that promote maturation
of the oligodendrocyte lineage and myelination in the newborn
brain resulting in improved neurodevelopmental outcomes.

OLIGODENDROCYTE DEVELOPMENT

Oligodendrocytes progress through a number of morphological
and functional changes, from their origins as neural stem
cells, to mature oligodendrocytes capable of myelin production
(Figure 1). This is a highly regulated process that has already
been described in detail elsewhere (15, 16). Briefly, neural
stem cells commit to the oligodendrocyte lineage and become
oligodendrocyte precursor cells (OPCs) under the influence of
transcription factors including Olig1/2, NKX2.2, and Sox10 (16,
17). From here, OPC expansion is heavily influenced by growth
factors such as platelet derived growth factor (PDGF), which
promote proliferation but inhibit differentiation (16, 18, 19).
This ensures that a large pool of OPCs are created before
they are committed to differentiation, which is an irreversible
process. Thus, oligodendrocyte differentiation is driven by a
loss of this “inhibition to differentiate” environment, likely by
promoting expression of microRNAs that prevent transcription
of differentiation inhibitors (16, 20, 21). Once OPCs have
matured into pre-oligodendrocytes (pre-OLs) they differentiate
under the control of a number of transcription factors, but one
of the most crucial is known as myelin regulatory factor (Myrf )
(16, 22). Expression of Myrf, and its interaction with Sox10, in

differentiating oligodendrocytes induces the activation of genes
encoding lipid structural proteins such as phosphodiesterase
Enpp6, and thus enables the production of myelin (23). Deletion
or inactivation of the Myrf gene prevents the generation
of differentiated oligodendrocytes (23), without affecting pre-
existing oligodendrocytes or myelin, and is associated with
a subsequent impairment of learning ability, highlighting the
integral role that this transcription factor, and oligodendrocyte
development in general, plays in normal neurodevelopment.

Oligodendrocyte development is also driven by extracellular
signals (16), such as endogenous glucocorticoids and
neurotransmitters. A study in adult mice found that
oligodendrocyte progenitors and mature oligodendrocytes
express glucocorticoid receptors, leading the authors to suggest
that glucocorticoids are involved in the differentiation processes
of oligodendrocytes (24). Furthermore, the presence of steroid
hormone cofactors that increase the transcriptional activity
of glucocorticoid receptors is expressed in oligodendrocyte
progenitor cells but not mature oligodendrocytes, thus
strengthening the notion that glucocorticoids play a role in
driving differentiation (24). It is important to note that whilst
normal physiological levels of glucocorticoids, such as cortisol,
are required for oligodendrocyte development, levels above
normal may be detrimental due to the high expression of
these receptors. Meanwhile, the neurotransmitter GABA is also
involved in oligodendrocyte differentiation and myelination
through activation of GABAA and GABAB receptors (25).
In a hypoxic mouse study, addition of GABAergic drugs
tiagabine and vigabatrin increased the number of mature
oligodendrocytes, whilst addition of a GABAA receptor
antagonist prevented this (26). Additionally, it was shown in a
purified rat oligodendrocyte progenitor culture that addition of
GABA accelerates oligodendrocyte differentiation by promoting
branching andmyelin protein expression (27). Importantly, these
effects can be blocked by a GABAB receptor-specific antagonist
(27). Furthermore, GABAergic neurons establish synaptic
connections with oligodendrocytes to control differentiation and
migration and ultimately induce the wrapping of axons (25).

The translation of myelin proteins such as myelin–associated
glycoprotein (MAG), myelin oligodendrocyte glycoprotein
(MOG), myelin basic protein (MBP), and myelin proteolipid
protein (PLP) is reliant on contact with axons for the wrapping
of myelin to occur (16, 28). Despite OPCs appearing in the fetal
brain at ∼10 weeks of gestation, it is not until ∼30 weeks of
gestation when the myelination of axons begins (16). Therefore,
oligodendrocyte development may be markedly impacted by
preterm birth during these final stages of maturation and
myelination. Importantly, preclinical studies show that myelin
proteins, such as MBP and PLP, are reduced in animals exposed
to moderate to late gestation perinatal insults such as growth
restriction and preterm delivery, whilst those expressed at
earlier stages of the lineage are unaffected (29–34). This is to be
expected given the developmental timeline, but critically, these
relative reductions persist throughout life. The key question then
becomes, how does preterm birth prevent this expansive pool of
OPCs and pre-OLs from maturing and producing myelin? We
propose the ex utero environment plays a crucial role in ongoing
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FIGURE 1 | Characterizing oligodendrocytes throughout the lineage. Oligodendrocytes originate from pre-progenitor (OPP) neural cells and are committed to the

oligodendrocyte pathway under the influence of NKx2.2, Olig1/2, and Sox10. Once committed to the pathway, stage specific markers of oligodendrocytes allow for

characterization of the lineage. Progenitor (OPC) and pre-oligodendrocytes (Pre-OL) feature stage-specific growth factor receptors (platelet derived growth factor

receptor alpha; PDGFRα), surface antigens (neural/glial antigen 2; NG2) and cell adhesion molecules (polysialylated-neural cell adhesion molecule; PSA-NCAM), whilst

premyelinating oligodendrocytes possess enzymes for lipid synthesis (galactocerebrosidase; GalC/O1). Finally, myelinating oligodendrocytes are characterized by the

presence of myelin proteins such as myelin-associated glycoprotein (MAG), myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and proteolipid

protein (PLP). Oligodendrocytes at this final stage of the lineage are the only ones capable of producing myelin and must also have contact with neuronal axons to

perform this role. Figure created with BioRender.com.

deficits as the biological immaturity of the brain at the time
of birth predisposes preterm neonates to respond poorly to ex
utero insults such as increased cortisol, and periods of hypoxia,
all in the absence of protective placental neurosteroid support.
Furthermore, while oligodendrocyte development is heavily
influenced by transcription factors and growth factors (16), it is
also regulated by extracellular signals (16), hence a perturbation
in these signals may affect the development of the lineage.

Perturbations to Oligodendrocyte
Development After Preterm Birth
Following preterm birth, the newborn is exposed to the ex utero
environment earlier than if it had remained in utero until term.

Oligodendrocytes are highly sensitive to adverse conditions and
are frequently injured by chemical and mechanical damage,
which can occur following early delivery and the consequent
premature exposure to the ex utero environment (35, 36).
Substantive evidence indicates that ex-premature children
experience impaired learning, and a loss of myelination is
evident suggesting a causal pathway (13, 37–41). In infants born
<27 weeks, diffuse microstructure alterations are observed on
fractional anisotropy at term equivalence age in regions such
as the corpus callosum and frontal cortex white matter when
compared to term controls (38). Similarly, myelination deficits
can be observed at term equivalence age in infants born <30
weeks and diagnosed with periventricular leukomalacia (PVL)
(42). As the gestational age at the time of birth increases, these
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white matter alterations become much harder to detect using
routine imaging techniques whilst poor learning and behavioral
outcomes remain evident (13, 43).

Post-mortem human studies have identified the relatively
subtle effect of moderate to late preterm birth on the
oligodendrocyte population, with the expression of Olig2-labeled
cells significantly increased in areas with increased astrocytes,
indicating injury (44). Additionally, myelination is sparse in
these brains (44). Double-labeling of the Olig2 cells with
stage-specific markers of the lineage revealed that the pre-
oligodendrocyte population was increased in areas of injury,
whilst the immature oligodendrocyte population was unaffected
(44). This distinctive feature of moderate to late preterm birth-
related white matter injury highlights that there is an imbalance
in the oligodendrocyte lineage following preterm birth, with
an increased percentage of pre-oligodendrocytes and a lower
percentage of immature oligodendrocytes (44). In addition,
whilst total neuron number is unaffected in areas indicative
of white matter injury, the number of GABAergic neuronal
cells is significantly decreased (45). It is possible that this
loss of GABAergic neurons may contribute to the “arrest”
in oligodendrocyte maturation due to a lack of the synaptic
coupling with oligodendrocytes that induces myelin production
and wrapping of axons, or due to the loss of GABA production
which may lead to a shift away from an inhibitory dominant
environment, and a shift toward an excitatory (glutamate)
dominant environment. Thus, the primary characteristic of
oligodendrocyte failure in the preterm brain is suggested to be
an expansion of the pre-oligodendrocyte population, which is
then unable to develop further, resulting in a net loss of ongoing
myelination (39, 46, 47). There remains a major knowledge gap
over the mechanisms that lead to this failure and how long it may
persist for, and thus there is a current lack of effective therapies to
combat preterm-birth related deficits in myelination. Below we
present evidence to suggest that ex utero factors in the immediate
postnatal period such as increased cortisol, periods of hypoxia,
increases in excitability and loss of nurturing neurosteroids
impact upon the overall biological immaturity of the preterm
brain to result in a failure of oligodendrocytes to mature.

IMPORTANCE OF IN UTERO

NEUROSTEROID CONCENTRATIONS

Neurosteroids are steroid hormones that not only protect
the fetal brain but also form a key neuromodulatory system
that regulates excitability and development during at least the
second half of gestation in long gestation species including
human, sheep and guinea pigs (14, 33, 48–50). In these species,
progesterone production by the placenta provides precursors for
the production of these neuroactivemetabolites that influence the
fetal brain (14, 50, 51). This placenta-brain interaction is critical
in maintaining fetal brain excitability and development at least in
late gestation. Allopregnanolone is the key neurosteroid during
gestation with levels supported by the high level of placental
progesterone production and metabolism (52, 53). This leads to
allopregnanolone levels in the fetal circulation and brain that are

markedly higher than in the neonate after birth and in the adult
brain (33, 54). There is a marked decline in allopregnanolone
levels following the fetal to neonatal transition in both preterm
and term neonates (33). Therefore, preterm birth leads to
a premature decline in allopregnanolone levels with animal
studies showing this contributes to the reduced myelination
that is associated with adverse patterns of behavior in the
offspring (31, 33, 34). Importantly, although replacement with
allopregnanolone analogs improves outcomes (55), progesterone
treatment of neonates while raising allopregnanolone levels
in the fetal circulation, does not appear to fully reverse the
adverse effects of preterm birth on brain development (31). This
may be because local levels in the brain are not adequately
elevated or that progesterone may be metabolized to other
steroids, in this instance cortisol (31), that are not effective
in improving outcomes. These observations suggest that both
progesterone production by the placenta and its metabolism to
allopregnanolone is required to produce the nurturing steroid
environment of the fetal brain.

Allopregnanolone Promotes
Oligodendrocyte Development
Allopregnanolone is one of the major agonists of the GABAA

receptor and elevated gestational levels in the fetal brain
markedly increase the activity of inhibitory GABAergic pathways.
Stimulation of the GABAA receptor in early gestation invokes an
excitatory action, however this undergoes a switch to inhibitory
(56). In species such as the guinea pig, non-human primate,
and human this switch occurs at around 0.6 of gestation
(57, 58), however in other rodent species, such as the rat
and mouse, the switch occurs postnatally (59, 60). The switch
is controlled by the developmentally regulated change in the
expression of two co-transporters, the potassium chloride co-
transporter (KCC2) and the sodium potassium chloride co-
transporter (NKCC1), which control the influx and efflux of
chloride (61, 62). In guinea pigs, non-human primates, and
humans the marked decline in allopregnanolone after birth
results in a consequent fall in GABAergic inhibition (33,
48). Therefore, it can be hypothesized that preterm birth
leads to reduced GABA-mediated inhibitory tone, which may
lead to reduced trophic drive for ongoing myelination. The
sensitivity of GABAA receptors to allopregnanolone and other
agonists is determined by the subunit composition of the
receptors (63). The presence of α4–6 and δ-subunits in the
GABAA receptor complex increases sensitivity to neurosteroid
binding (50) and therefore receptors containing these subunits
are important in driving trophic processes. Glial cells, and
importantly oligodendrocytes, express GABAA receptors that
are stimulated by extrasynaptic GABA released from nearby
presynaptic terminals, with this stimulation strengthened by
the co-binding of allopregnanolone (64). The GABAA receptor
subtypes expressed in oligodendrocytes remains unclear and
requires investigation, however allopregnanolone has been
shown to stimulate both oligodendrocyte precursor and mature
cells (65), supporting a gliotrophic interaction with GABAA

receptors on these cells. Together these findings suggest that
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the supportive effects attributed to GABAergic pathways in the
fetus are mediated by extrasynaptic allopregnanolone-sensitive
receptors (65–67), supporting the contention that GABAergic
pathways have a major role in oligodendrocyte development that
is prematurely lost following preterm birth. Thus, we suggest that
GABAA receptor action has at least two key stimulatory roles in
late gestation, (i) increasing maturation of oligodendrocytes and
(ii) enhancing myelin production by mature cells.

ROLE OF ENVIRONMENTAL INSULTS IN
FAILURE OF OLIGODENDROCYTES TO
MATURE

Increased Cortisol
Neonatal intensive and special care units are inherently, but
unavoidably, stressful for the preterm neonate. Repeated painful
but necessary medical procedures, such as drug administration,
heel prick blood collection, and respiratory management,
as well as over-stimulation due to noise and light, have the
potential to increase circulating cortisol concentrations in the
preterm neonate (10, 68, 69). This increased cortisol in the
neonatal period may be a key contributor to ongoing deficits
in oligodendrocyte development, with evidence pointing to
excess glucocorticoid-induced damage to oligodendrocytes
that impedes their myelinating capability (70). Recently
published embryonic rat spinal cord and cerebral cortex in
vitro studies utilizing corticosterone, dexamethasone, and the
glucocorticoid-receptor antagonist Mifepristone shows that
prolonged exposure to glucocorticoids induces a dose-dependent
reduction in myelination, which is prevented by Mifepristone
(70). Interestingly, infection and chorioamnionitis associated
utero-placental inflammation, a major cause of preterm birth,
may also increase cortisol exposure. Placental cell culture studies
have shown that infection-induced cytokines suppress placental
11β-hydroxysteroid dehydrogenase type 2 (HSD2) expression
which would increase the passage of cortisol to the fetus (71). This
increase in cortisol exposure may suppress allopregnanolone
synthesis and potentiate the effects of inflammation on
oligodendrocytes by lessening allopregnanolone-induced
protection. Alternatively, some earlier studies have shown
that neonatal treatment with lipopolysaccharide induced
inflammation and raised allopregnanolone concentrations in the
brain (72). The mechanism involved in this response is unclear
and further studies of the potentially protective neurosteroid
responses to infection are warranted.

We have also shown in vivo that increases in cortisol
are associated with numerous other perinatal compromises,
including intrauterine growth restriction, maternal stress
exposure, pharmacological inhibition of allopregnanolone
synthesis, and preterm birth (31, 32, 34, 73–79). In each of
these cases there is a clear relationship between increased
cortisol, decreased allopregnanolone, and mature myelin
loss in vulnerable regions such as the hippocampus and
cerebellum that are developing rapidly during the period of
exposure. Furthermore, these stressful perinatal environments
have long-lasting effects as we have also demonstrated that

childhood-equivalent age behavior is affected by these in utero
and immediate postnatal period exposures to abnormally
high cortisol. Specifically, moderate to late gestation maternal
stress exposure in guinea pigs increases maternal cortisol
concentrations and reducesmyelination in the fetal hippocampus
(73). This deficit in myelination, as evidenced by reduced MBP
immunostaining, persists until at least childhood-equivalent
age, suggesting an ongoing loss of oligodendrocytes or a
maturational arrest in their development (75, 76). Additionally,
guinea pigs that are born preterm have increased salivary
cortisol concentrations in the first 24 h of life, which remains
elevated for males until at least childhood-equivalent age. This is
associated with hyperactive behavior and deficits in hippocampal
myelination (Figure 2) (34, 77).

Low neurosteroid environments, such as following preterm
birth, and increased glucocorticoid action appear to have
complex interactions. For example, in human hepatocyte
cultures treatment with finasteride increased the action of
cortisol on the glucocorticoid receptor, whilst overexpressing
the enzyme responsible for neurosteroid synthesis (5α-Reductase
type 1) dampened the effect of cortisol in these cultured
cells (80). In vivo we have shown that pharmacologically
increased plasma cortisol in preterm delivered male guinea
pig neonates at term equivalence age is associated with
an exacerbated reduction at the early and late stages of
the oligodendrocyte lineage in the cerebellum. This was
demonstrated by decreased Olig2, PDGFRα, and PLP protein
expression (31). Furthermore, in prenatally stressed rats,
exaggerated corticosterone responses to immune challenge with
IL-1β were prevented with allopregnanolone pre-treatment,
suggesting an attenuation of the stress response by neurosteroids
(81). Repeated maternal betamethasone administration in late
gestation guinea pigs also negates the protective effect of
neurosteroids by reducing their synthesis in the placenta (82).
A single course of betamethasone is standard clinical practice
when there is a risk of preterm birth, as the glucocorticoid
exposure is required to accelerate fetal lung development. Despite
this finding in the guinea pig placenta, in humans exposure
to a single course of betamethasone is not associated with an
alteration in the neurosteroid synthesis enzymes 5α-reductase
type 1 and 2 in the placenta (83), presumably due to the
repeated vs. single course administration. Additionally, a study
in rabbits using a single course of betamethasone based on
the recommended human dose revealed no adverse effects of
betamethasone on GABAergic and glutamatergic neurogenesis
(84). However, a recent population-based retrospective cohort
study in Finland has identified a significant increase in behavioral
disorders in children that were exposed to a single course of
betamethasone in utero (85). The significant increase was evident
in both the preterm and term populations that were exposed
to betamethasone, compared to age-equivalent children that
were not exposed. This disconcerting finding highlights the
detrimental effect that inappropriate glucocorticoid exposure in
the perinatal period may have on later neurodevelopment.

These long-lasting impacts of glucocorticoids may be
mediated by epigenetic changes in the immature preterm brain.
Stress in pregnancy for example has been shown to increase
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FIGURE 2 | Increased cortisol in the preterm neonate is associated with poor outcomes. Male guinea pigs born preterm (GA62; blue bars) have (A) higher salivary

cortisol concentrations as a neonate (24 h old) and as a juvenile (corrected postnatal day 25), (B) decreased area coverage of myelin basic protein (MBP) in the CA1

region of the hippocampus, and (C) exhibit hyperactive behavior by spending more time mobile in the open field and inner zone when compared to term born (GA69;

white bars) age-matched controls. Adapted from (34, 77). *p < 0.05, n = 4–10.

methylation of the GAD1 gene, responsible for the conversion
of glutamate to GABA, in hippocampal GABAergic neurons
(86). A hyperactive phenotype was observed in these same
mice at juvenile age but was prevented by Clozapine, an
anti-psychotic but also a DNA-demethylation drug, supporting
the link between stress-induced methylation changes in the
brain and long-term behavior (87). Glucocorticoids have
also been shown to affect histone acetylation, with synthetic
glucocorticoid exposure in male guinea pig fetuses increasing
acetylation in the hippocampus, suggesting that transcriptionally
silenced genes are possibly becoming activated following
inappropriate glucocorticoid exposure (88, 89). Furthermore,
ill-timed glucocorticoid exposure in the fetal guinea pig
induces permanent changes in functioning of the hypothalamic-
pituitary-adrenal (HPA) axis and behavior that are passed
down to the F1 offspring, again suggesting a role of epigenetic
modifications (90, 91). However, whether these effects specifically
target the transcription of regulators of the oligodendrocyte
lineage or play a role in their failure to produce myelin following
preterm birth is not clear and warrants investigation.

Periods of Hypoxia
Perinatal hypoxia, due to adverse events during labor or as a
result of inadequate lung maturation for example, is relatively
common in the preterm delivered population compared to term-
born neonates (92). There is no doubt that hypoxia contributes
to white matter injury in the preterm neonate (92). In particular,
there is an extensive number of studies, in both human and
animal models, supporting the notion that pre-OLs in particular
are highly susceptible to hypoxic-related cell death following
activation of caspase-3 (26, 47, 93, 94). Conversely, OPCs exhibit
a robust response to hypoxia whereby the OPC pool is expanded
as compared to the depletion of pre-OL cells (26, 39). This
response means that a replenished population of pre-OL cells
is created, but these new pre-OLs then fail to mature further,
ultimately resulting in a net loss of myelin (39). Double labeling
NG2 positive oligodendrocytes with the proliferation marker
Ki67 in the neonatal rat cerebellum identifies the OPC pool of
oligodendrocytes as those expanding in response to hypoxia,

whilst the expression of mature oligodendrocyte markers was
reduced for at least 20 days (26). Another neonatal rat model of
hypoxia showed similar findings, with loss of the pre-OL pool
by caspase-3 mediated cell death in the acute period, followed
by a robust regeneration but a subsequent failure of this new
cell population to mature (47). This type of oligodendrocyte
injury is seen clinically in white matter lesions of deceased
preterm neonates, where there is a lower percentage of immature
oligodendrocytes compared to controls (94), andMRI assessment
of myelination in children and adolescents born preterm. These
studies have identified diffuse white matter microstructure
deficits linking this acute loss of preOLs with a long-term
reduction in myelin (41).

Damage due to hypoxic ischemic events is strongly linked with
an increase in glutamate receptor activation, and a subsequent
flow of excess calcium ions into the cell, leading to cell death in
vitro (95–99). Decreased ATP during hypoxia leads to a reversal
of glutamate transporters (100), with the result being an increase
in extracellular glutamate release, primarily from astrocytes
(99). Thus, there is increased glutamate which can then readily
activate a-amino-3-hydroxy-5-methyl-isoxazolepropionic acid
(AMPA) and kainate receptors located on oligodendrocytes
(98, 101, 102), and N-methyl-D-aspartate (NMDA) receptors
on myelin sheaths (102–104). In a sheep model of hypoxia,
repeated umbilical cord occlusion resulted in marked glutamate
efflux in the cerebral white matter where subjects with the
greatest increases in extracellular glutamate following occlusion
also had brain injury representative of PVL, suggesting a
key role of glutamate (105). In utero, the fetus is protected
from hypoxic periods by placentally-derived GABAergic agonist
neurosteroids, such as allopregnanolone, which are much
lower in the ex utero environment (106–108). The protective
action of allopregnanolone has been demonstrated in late
gestation fetal sheep following umbilical cord occlusion where
allopregnanolone was increased in the fetal brain in response
to asphyxia and, importantly, was shown to play a key role in
protecting the fetal brain from asphyxia-induced cell death in
vulnerable regions including the hippocampus and cerebellum
(108). Infusion of finasteride (an inhibitor of allopregnanolone
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synthesis), in addition to umbilical cord occlusion, significantly
increased the amount of caspase-3mediated cell death in neurons
and astrocytes throughout the fetal brain, an effect that was
lessened in the presence of normal gestational allopregnanolone
concentrations (107). Interestingly, when a double infusion of
finasteride and alfaxalone (an allopregnanolone analog) was
performed, the effects of finasteride on behavioral activity and
cell death were not seen, again highlighting the protective role of
neurosteroids (109). Whilst these studies did not investigate the
specific effect on oligodendrocytes, subsequent studies performed
in the guinea pig show that inhibition of neurosteroid synthesis
significantly decreases myelination in the subcortical white
matter and experimentally induced growth restriction reduces
myelination in the hippocampus (32). Altogether, these late
gestation preclinical studies support the protective nature of
allopregnanolone and therefore has implications for the preterm
neonate where exposure to hypoxic periods often occurs in the
relative absence of allopregnanolone.

Disruption to Sleep-Wake-Like Cycling
As oligodendrocytes produce myelin, their cell membrane
expands to eventually support a membrane of 100 times their
original size (15, 110). Understandably, this is a very high-energy
demanding process, which under normal circumstances would
take place whilst the fetus is in utero (1, 111, 112). In the case
of preterm birth, this process takes place in the stimulating ex
utero environment. Interestingly, oligodendrocytes of fetal origin
are highly sensitive to glucose deprivation, exhibiting a failure
to differentiate under these conditions, whilst oligodendrocytes
of adult origin are relatively unaffected (113). Marked effects
of glucose depletion are observed across the lineage in vitro,
with low glucose concentrations inhibiting OPC differentiation
and migration, reducing cell numbers across the lineage, and
preventing myelination (114, 115). Glucose deprivation not only
affects development and survival of oligodendrocytes, but also
the morphology of surviving cells with reductions in branching
and thinning of processes (116). Glucose levels are higher during
sleep than wake (117) supporting the importance of the sleep-
wake cycle during this period, and the contribution of fetal
sleep-like states to promoting myelination.

Microarray results have identified subsets of genes that
are differentially expressed in oligodendrocytes depending
on sleep or wake state (118–120). During sleep, immature
oligodendrocytes have a higher expression of genes associated
with cell proliferation, including Nrg2 (Neuregulin 2) which
is essential for OPC proliferation through its activation of
ErbB (Epidermal growth factor) family receptors (121, 122).
Conversely, mature oligodendrocytes have a higher expression
of genes related to phospholipid synthesis and myelination,
such as Pllp (plasma membrane proteolipid) and Opalin
(Oligodendrocytic myelin paranodal and inner loop protein)
during sleep (121). Thus, the fetal sleep-like state, at least
partially regulated by high levels of neurosteroids andGABAergic
inhibitory activity (14), may be important for proliferation of
OPCs and production of myelin by mature oligodendrocytes.
Conversely, genes increased during periods of wakeful-like
activity have roles in cell differentiation (121), which is consistent

with the increase in glutamate during this state (123). Glutamate
signaling through AMPA receptors promotes differentiation
of oligodendrocytes whilst inhibiting OPC proliferation. This
therefore has implications for the preterm neonate, where a loss
of neurosteroid-GABA activity and exposure to the ex utero
conditions interrupts the normal sleep-wake cycle, potentially
affecting the expression of “sleep” genes, and contributing to the
failure of mature oligodendrocytes to myelinate.

We have demonstrated that the neurosteroid-GABAA

interaction regulates excitability in fetal life and has a major
role in maintaining the fetal “sleep-like” states. In sheep,
treatment with finasteride, an inhibitor of neurosteroid synthesis
(5a-reductase type 1 and 2) at ∼0.88 of gestation (130 days
out of a 147 day pregnancy) triggers an arousal-like and
hyperactive state in fetal behavioral patterns (14, 49, 55).
Similarly, fetal arousal behavior is also increased following
treatment with trilostane, an inhibitor of progesterone synthesis
(3β-hydroxysteroid dehydrogenase) and thus subsequent
allopregnanolone synthesis (124, 125). Importantly, fetal
behavior returns to normal following a subsequent infusion with
progesterone (125). Therefore, when a neonate is born premature
it is separated from this neurosteroid-rich environment, and
the supportive fetal inhibition dominated “sleep-like” state
is lost.

ENVIRONMENTAL INSULTS LEAD TO
GLUTAMATE EXCITOTOXICITY

Glutamate, the main excitatory neurotransmitter of the CNS,
is also involved in oligodendrocyte development, but this is
limited to the proliferative stage of OPCs where glutamate
guides migration through activation of AMPA receptors (65,
126). Conversely, increased glutamate present at the later
stages of oligodendrocyte development promotes a rather
hostile response. The expression of NMDA, AMPA and kainate
receptors on oligodendrocytes makes them especially sensitive
to increased extracellular glutamate and subsequent excitotoxic
damage following excessive activation of the receptors in
vitro (96–98, 103). In cultured oligodendrocytes, overactivation
of ionotropic glutamate receptors results in an influx of
calcium ions into the cell, the generation of reactive oxygen
species (ROS) and activation of cell death pathways (95,
127). Interestingly, accumulation of ROS in oligodendrocytes
following AMPA receptor overactivation is higher than in
neurons (95), highlighting the increased susceptibility of
oligodendrocytes to fluctuations in extracellular glutamate
which is then further compounded by their inability to resist
oxidative stress. Of the three receptor families, AMPA receptors
(particularly those lacking the GluR2 subunit) may pose the
greatest danger as activation of this receptor family results in the
highest influx of calcium ions (95, 96). AMPA receptors undergo
a developmental switch from highly calcium permeable GluR2-
lacking receptors in early development, to GluR2-containing
calcium impermeable receptors postnatally (128). However, it
has been suggested that neurological insults can decrease the
expression of the GluR2-subunit (129), for example global
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ischemia increases the expression of genes that suppress GluR2
gene expression, thus increasing the permeability of AMPA
receptors to calcium and the risk of excitotoxic cell death
(130). Relative protein levels of the AMPA receptor subunits
GluR1-GluR4 are differentially developmentally regulated in the
human brain from mid gestation through to early childhood
(131). Of note, the period where preterm birth may occur
(between 25 and 37 weeks) shows low expression of the
GluR2 subunit and thus highlights a vulnerable window for
excitotoxic damage due to the increased potential for calcium
influx (131). Furthermore, it has also been confirmed that AMPA
receptors are expressed on developing human oligodendrocytes
that populate fetal white matter within this preterm period
of 23–32 weeks (132). These authors further demonstrated
that addition of an AMPA-kainate receptor antagonist prevents
calcium influx and glutamate excitotoxic cell death (132).
Thus, these studies suggest that preOLs in particular are
very susceptible to glutamate-induced oxidative stress due
to the presence of GluR2-lacking AMPA receptors, which is
exacerbated by their low expression of antioxidant enzymes
and reduced capability to scavenge free radicals (133, 134).
These observations are especially noteworthy given that human
and animal studies suggest this stage of the lineage is the
most adversely affected by preterm birth. Conversely, there
is data to suggest mature oligodendrocytes are sensitive to
glutamate excitotoxicity. Administration of glutamate in a rat
model of spinal cord injury activated cell death pathways
in mature oligodendrocytes, as evidenced by increased co-
localized labeling of the mature oligodendrocyte cell marker
CC1 [also known as adenomatous polyposis coli (APC)] with
caspase-3 (135). Damage was most evident 6 h following
administration but persisted for at least 1 week after the
glutamate exposure.

It is interesting to note that each of the environmental
insults discussed above is associated with a downstream
increase in glutamate activity (Figure 3). Briefly, increased
cortisol concentrations are linked with reductions in GABAergic
neurosteroid interactions and a shift toward a glutamate
dominated environment, increased wake and arousal periods are
associated with raised glutamate concentrations, and hypoxia
triggers a release of intracellular glutamate into the extracellular
space. Currently available data regarding glutamate levels in the
preterm infant are minimal and conflicting. In preterm infants
without signs of brain injury, magnetic resonance imaging of
the right frontal lobe at term equivalent age has shown that
preterm birth at <27 weeks is associated with lower GABA and
glutamate concentrations compared to term controls at 42 weeks
post-menstrual age (136). Conversely, a recent prospective study
involving preterm infants born<32 weeks showed that glutamate
concentrations in the frontal lobe rises with increasing postnatal
age, and furthermore that GABA concentrations correlated
negatively with increasing gestational age at birth (137). The
authors of this study speculated that preterm birth may therefore
accelerate neurotransmitter production prematurely after early
exposure to extra-uterine stresses (137). Thus, based on the
most recent study increasing glutamate in the postnatal period

may play a key role in the failure to myelinate following
preterm birth.

Increasing GABAergic Action to Prevent
Glutamate Excitotoxicity
The second half of gestation is a period of dramatic changes
in the GABAergic system, with the density of GABAergic
neurons peaking at full term and the migration of GABAergic
neurons occurring throughout mid-gestation and into the
early postnatal period. Therefore, preterm birth occurs at
a vulnerable developmental window where the GABAergic
system is not yet fully matured and ready for exposure
to the ex utero environment. As discussed above, there is
substantive evidence that overactivation of glutamate receptors
on oligodendrocytes increases calcium ion flow into the cell,
resulting in activation of cell death pathways. In the preterm
neonate, we propose that targeting the immature GABAergic
system by increasing action on GABAA receptors may prevent
this damaging excitatory input and create a normal balance of
inhibition:excitation. Organotypic cerebellar slice studies show
that targeting the GABAA receptor using allopregnanolone or
GABA itself promotes oligodendrocyte maturation and the
production of myelin (26, 64, 65, 138, 139). Furthermore, drugs
that act by increasing the available concentration of GABA
either by preventing it’s metabolism (Vigabatrin) or by inhibiting
its’ reuptake into astrocytes (Tiagabine) are able to increase
the development of mature oligodendrocytes following hypoxia-
mediated depletion (26). Seemingly, this restoration of the
lineage is due to the action of GABA on oligodendrocyte GABAA

receptors, as blocking these receptors using Bicuculline prevents
the improvement in maturation (26). We have also demonstrated
in vivo that increasing stimulation of GABAA receptors with
GABAA receptor agonists following perinatal compromise is
associated with an increase in myelination, and importantly a
return to normal behavioral outcomes. In our model of prenatal
stress, myelination deficits seen in juvenile guinea pigs exposed
to stress in utero were restored by increasing neurosteroidogenic
capacity in the week following spontaneous term birth (140).
Furthermore, and highly pertinent to the search for potential
therapies, we were also able to restore normal behavior and
oligodendrocyte development in guinea pig offspring born
premature. Moderately preterm (GA62; term = GA69) guinea
pigs were administered the allopregnanolone analog Ganaxolone
in the week following birth, resulting in increased myelination
in the hippocampus and overlying subcortical white matter
and a normal behavioral phenotype at childhood-equivalent
age (Figure 4) (55). These data highlight how restoring
inhibitory GABAergic action following insults such as hypoxia,
excessive glucocorticoids, and early exposure to the ex utero
environment can rectify or prevent perturbed oligodendrocyte
maturation and ultimately increase the production of myelin.
Thus, pharmacologically promoting GABAergic activity in
the preterm neonatal brain warrants continued attention
to determine feasibility for preventing myelination deficits
and improving behavioral outcomes. Furthermore, approaches

Frontiers in Pediatrics | www.frontiersin.org 8 February 2021 | Volume 9 | Article 618052

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Shaw et al. Oligodendrocyte Development Following Preterm Birth

FIGURE 3 | (A) The moderate to late gestation in utero neural environment is characterized by a dominance of GABAergic activity, which plays a key role in promoting

oligodendrocyte maturation and myelination. (B) The preterm ex utero environment is characterized by a loss of GABAergic activity following a reduction in placental

neurosteroid supply. Subsequently, this loss disrupts the fetal “sleep” state, and may also coincide with additional adverse insults, including excessive glucocorticoid

concentrations and periods of hypoxia. The resulting increase in glutamate action increases the amount of calcium ions flowing into the oligodendrocyte, thus

preventing its normal development and production of myelin. Figure created with BioRender.com.

FIGURE 4 | Ganaxolone (GNX) 5 mg/kg by subcutaneous injection daily for 1 week following preterm birth restores mature myelin coverage in (A) the CA1 region of

the hippocampus, and (B) the overlying subcortical white matter at childhood-equivalent age (corrected postnatal day 28). Behavior was also restored toward a term

born phenotype for (C) the distance traveled, and (D) the time spent mobile in the open field arena. (*p < 0.05, n = 4–10). Adapted from (55).

targeting GABAA receptor specific subtype compositions may
allow the selective targeting of appropriate stages of the
oligodendrocyte lineage to improve myelination.

CONCLUSIONS

Moderate to late gestation preterm birth is associated with
poor neurodevelopmental and behavioral outcomes. Diffuse
deficits in myelination that persist into later life are relatively

common among those born preterm. Post-mortem and animal
studies identify an arrest in oligodendrocyte maturation in the
neonatal preterm brain, highlighting a key role of the postnatal
environment in oligodendrocyte dysfunction. Environmental
insults in the immediate ex utero period, such as hypoxia
and increased glucocorticoid exposure, have a compounding
effect on biological immaturity of the preterm neonatal
brain. The vulnerability of these neonates at disadvantage
is further increased by the premature loss of neurosteroids
that increase GABAergic action in the developing brain to
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promote oligodendrocyte maturation and protect these cells
from damaging insults. There appears to be a common
downstream effect of these events that involves increases in
extracellular glutamate and an overactivation of glutamate
receptors on oligodendrocytes. This in turn results in a
failure of oligodendrocytes to mature and produce myelin.
Preclinical studies suggest that increasing GABAergic action,
and thereby dampening the effect of glutamate, may enable
oligodendrocytes to mature despite adverse events. Therefore,
increasing GABAergic action in the immediate neonatal period
may be a feasible avenue for targeted therapy following preterm
birth to prevent myelination deficits and subsequent poor
behavioral outcomes.
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