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Background: The initial FiO2 that should be used for the stabilization of preterm infants in

the delivery room (DR) is still a matter of debate as both hypoxia and hyperoxia should be

prevented. A recent randomized controlled trial showed that preterm infants [gestational

age (GA) < 30 weeks] stabilized with an initial high FiO2 (1.0) had a significantly higher

breathing effort than infants stabilized with a low FiO2 (0.3). As the diaphragm is the main

respiratory muscle in these infants, we aimed to describe the effects of the initial FiO2 on

diaphragm activity.

Methods: In a subgroup of infants from the original bi-center randomized controlled

trial diaphragm activity was measured with transcutaneous electromyography of the

diaphragm (dEMG), using three skin electrodes that were placed directly after birth.

Diaphragm activity was compared in the first 5min after birth. From the dEMG respiratory

waveform several outcome measures were determined for comparison of the groups:

average peak- and tonic inspiratory activity (dEMGpeak and dEMGton, respectively),

inspiratory amplitude (dEMGamp), area under the curve (dEMGAUC) and the respiratory

rate (RR).

Results: Thirty-one infants were included in this subgroup, of which 29 could be

analyzed [n = 15 (median GA 28.4 weeks) and n = 14 (median GA 27.9 weeks) for

the 100 and 30% oxygen group, respectively]. Tonic diaphragm activity was significantly

higher in the high FiO2-group (4.3 ± 2.1 µV vs. 2.9 ± 1.1 µV; p = 0.047). The other

dEMG-parameters (dEMGpeak, dEMGamp, dEMGAUC) showed consistently higher values

in the high FiO2 group, but did not reach statistical significance. Average RR showed

similar values in both groups (34 ± 9 vs. 32 ± 10 breaths/min for the high and low

oxygen group, respectively).

Conclusion: Preterm infants stabilized with an initial high FiO2 showed significantly more

tonic diaphragm activity and an overall trend toward a higher level of diaphragm activity

than those stabilized with an initial low FiO2. These results confirm that a high initial FiO2

after birth stimulates breathing effort, which can be objectified with dEMG.
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INTRODUCTION

At birth, lung liquid clearance and aeration are required to ensure
adequate gas exchange after the cord is clamped. Spontaneous
breathing is one of the key factors in this process (1). In contrast
to term infants, up to 70% of preterm infants experience difficulty

in making this pulmonary transition, with absent or insufficient

respiratory drive as an important cause (2, 3). For this reason,

preterm infants often require continuous positive airway pressure
(CPAP) or intermittent positive pressure ventilation (IPPV) in
combination with supplemental oxygen in the delivery room
(DR) to successfully make the transition from intra- to extra-
uterine life.

In recent years, various studies have investigated individual
interventions to stimulate spontaneous breathing in preterm
infants at birth. It has been shown that optimization of the
CPAP pressure-level, use of repetitive tactile stimulation, or
administering caffein shortly after birth stimulates spontaneous
breathing, thereby contributing to a successful transition (4–6).
While oxygenation is a major determinant of respiratory drive,
the optimal initial fraction of oxygen (FiO2) that should be used
in the DR is still a matter of debate. Restricted use of oxygen
has been advocated in recent guidelines, in an attempt to reduce
the risk of injurious hyperoxemia (7). However, using a lower
initial FiO2 at birth may also lead to hypoxemia which can inhibit
breathing effort and thus pulmonary transition (8). This was
recently confirmed by a randomized trial (the IMPROvE trial)
assessing the effect of an initial high vs. a low FiO2 on breathing
effort in preterm infants (9). The results showed that infants in
the high FiO2 (1.0) group had larger tidal volumes, resulting in a
significantly higher average minute volume (MV) during the first
5min after birth, compared to a low FiO2 (0.3). The differences
between the two FiO2 groups confirm that oxygen might be an
important mediator of breathing effort after birth.

It is known that respiratory control consists of the respiratory
rhythm regulator in the brain stem, the sensory input of central
and peripheral oxygen chemoreceptors providing feedback to
central regulation, and the muscular effector. Extensive evidence
exists of the influence of oxygen and neurotransmitters (e.g.,
adenosine) on the signaling pathways between sensory input
of the chemoreceptors and the respiratory rhythm regulator
in the brainstem (8, 10). On the other hand, the effects of
initial oxygen exposure on the muscular effector of the system,
the diaphragm, are less clear. As the main effector of the
system, the improved breathing effort when administering higher
concentrations of oxygen is likely to be mediated through an
increased diaphragmatic activity. To investigate this mechanism,
we measured the electrical activity of the diaphragm via
transcutaneous electromyography (dEMG) in a subgroup of the
infants included in the IMPROvE trial. A recent study showed
that transcutaneous dEMG monitoring is feasible in preterm
infants stabilized in the DR (11).

The aim of this study was to determine the effects of an
initial high vs. low oxygen level on the activity of the diaphragm
in preterm infants and we hypothesized that a higher oxygen
level would increase the electrical activity compared to a lower
oxygen concentration.

METHODS

This study was part of the IMPROvE trial, a randomized
controlled trial conducted in the Leiden University Medical
Center (LUMC) and Amsterdam University Medical Center
(Amsterdam UMC), both located in the Netherlands (9).

Study Population and Data Acquisition
Preterm infants born after a gestational age between 240/7 and
296/7 weeks were included in the IMPROvE trial. Exclusion
criteria were congenital abnormalities or conditions that could
directly affect breathing effort. All infants were randomly
allocated to an initial high (1.0) or low (0.3) FiO2. During the
stabilization in the DR (first 15min after birth), the oxygen
level was titrated according to the Dawson oxygen saturation
ranges (12). Respiratory support was provided with a facemask
connected to a T-piece resuscitator, following the protocol of the
individual departments [based on international guidelines and
the Dawson saturation curves (9, 13)]. A respiratory function
monitor (RFM) (NewLifeBox, Advanced Life Diagnostics,
Weener, Germany) was used to record respiratory data and
vital signs in real time within a Polybench software application
(Applied Biosignals, Weener Germany).

In 31 of the 50 included infants, diaphragm activity was
measured with dEMG. Three skin electrodes (H59P, Covidien,
Ireland) were placed on the infant’s chest, two bilateral in the
midclavicular line at the costal margin and a reference electrode
on the sternum. The electrodes were connected to the Dipha-16
signal amplifier (Demcon, Macawi Medical Systems, Enschede,
The Netherlands) which measured the raw dEMG-signal at
500Hz and sent it wirelessly to the RFM. Electrodes were placed
as soon as possible after birth and measured diaphragm activity
for the first 15min after birth or until transfer to the ward. A
camera placed at the far end of the bed recorded the procedures,
in order to explain signal artifacts afterwards.

Data Analysis
The amplified dEMG signal was post-processed to remove
background noise by high-pass and low-pass filtering and
cardiac interference was removed with the gating technique
(14). The moving average of the resulting signal was calculated
and the acquired respiratory waveform was used to describe
diaphragmatic activity in the two groups. The entire recording
was analyzed, as it offered the opportunity to assess diaphragm
activity over time (11). Offline analysis was done in MATLAB
(version 2018a, Mathworks, Natick, USA) in a custom-made
graphical user interface to facilitate visual inspection of the data.

First, review of the video footage, visual inspection of the
signals and a threshold value to identify signal spikes were used
to remove major signal artifacts due to e.g., disconnection of
the electrode or clinical handling. Subsequently, the cleaned
signal was used to derive the following parameters breath-
by-breath from the dEMG respiratory waveform: peak (end-
inspiratory, dEMGpeak) and tonic (end-expiratory, dEMGton)
activity, inspiratory amplitude (dEMGamp) defined as dEMGpeak

minus previous dEMGton, inspiratory area under the curve
(dEMGAUC), inspiratory time (Ti), expiratory time (Te) and
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respiratory rate (RR). Each parameter was averaged per minute,
for each infant. If data of a specific minute was not available, due
to artifact removal, this minute was discarded.

Statistical Analysis
All parametric data were presented as mean± standard deviation
and non-parametric data as median (interquartile range). In
agreement with the original IMPROvE trial differences in average
dEMG-parameters in the first 5min after birth between the study
groups were tested with a Student’s t-test or with Mann-Whitney
U-test, according to the distribution of the data. The choice of
this time frame was also supported by the finding in the original
trial that after 5min of FiO2 titration the contrast in averaged
received FiO2 between the groups was reduced (9). In all cases
a p < 0.05 was considered significant. SPSS (version 26, IBM,
Chicago, USA) was used for statistical analysis.

RESULTS

In 31 infants dEMG was measured, of which measurements of
two infants were excluded from the analysis due to an error
in data storage. This resulted in 29 infants, who were equally
distributed between the high (n = 15) and low (n = 14) oxygen
group (Table 1). There were no significant differences between
the two groups with respect to gestational age, weight, gender,
mode of delivery, use of antenatal steroids, maternal medication
or pregnancy complications. IPPV was used more often in the
first 5min in the 30% oxygen group, but this difference did
not reach statistical significance. However, infants in the 100%
oxygen group showed a significantly higher Apgar score at 1 and
5 min.

Oxygen and Diaphragm Activity
As shown in Figure 1 peak and tonic activity were consistently
higher in the 100% group than in the 30% oxygen group. The
average value of dEMGton in the first 5min after birth was
significantly higher in the 100% group compared to the 30%
group (4.3± 2.1 µV vs. 2.9± 1.0 µV; p= 0.047). The dEMGpeak

value was also higher in the 100% group compared to the 30%
group but this difference did not reach statistical significance
(10.2 ± 5.1 µV vs. 7.2 ± 2.7 µV for the 100 and 30% oxygen
group, respectively, p = 0.08). Average dEMGamp (6.5 ± 4.1 µV
vs. 4.2 ± 2.5 µV; p = 0.11) and dEMGAUC (1.8 ± 1.0 µV · s vs.
1.3 ± 0.7 µV · s; p = 0.19) did not show statistically significant
differences in the first 5min after birth, between the high and the
low oxygen group.

With respect to the dEMG derived breathing pattern, the two
groups did not show differences in inspiratory and expiratory
time. Overall respiratory rate was also similar in both groups
(average mean RR in the first 5min 34 ± 9 vs. 32 ± 10
breaths/min for the 100 and 30% oxygen group, respectively,
p= 0.47).

DISCUSSION

In this study we demonstrated that a high level of oxygen
administered to preterm infants directly after birth resulted in a

TABLE 1 | Subject characteristics of the dEMG-subgroup.

100% O2 n = 15 30% O2 n = 14

Gestational age (weeks) 28.4 (26.1–29.0) 27.9 (26.3−28.6)

Birth weight (g) 1,060 ± 314 991 ± 253

Male gender, n (%) 7 (53.3) 6 (42.9)

Cesarean section, n (%) 11 (73.3) 7 (50.0)

Full course antenatal

corticosteroids, n (%)

7 (46.7) 8 (57.1)

Maternal medication

influencing infant respiration,

n (%)

1 (6.7) 0 (0)

Complications during

pregnancy, n (%)

6 (40.0) 5 (35.7)

PPROM 1 (6.7) 1 (7.1)

PIH 3 (20.0) 1 (7.1)

Intra-uterine infection 0 (0) 1 (7.1)

IUGR 0 (0) 2 (14.3)

Multiple 2 (13.3) 0 (0)

Apgar 1min 6 (6–8) 5 (2–6)*

Apgar 5min 8 (8–9) 8 (6–9)*

IPPV (% of first 5min) 10.9 (0–30.4) 26.8 (3.6–49.8)

All continuous values are expressed as mean± standard deviation or median (interquartile

range). Categorical variables expressed as n (%). PPROM, preterm pre-labor rupture

of membranes; PIH, pregnancy-induced hypertension; IUGR, intra-uterine growth

restriction; IPPV, intermittent positive pressure ventilation. *p < 0.05.

consistently higher level of diaphragm activity compared to a low
FiO2. No differences were found in inspiration time, expiration
time, and respiratory rate.

We hypothesize that the higher diaphragmatic activity in the
100% group may, in part, explain the previously reported higher
tidal volumes when administering 100% of oxygen compared
to 30% of oxygen (9). First, both the higher peak and tonic
diaphragmatic activity in the 100% oxygen group may assist in
lung aeration after birth. A higher peak diaphragmatic activity
could facilitate air entry in the fluid-filled lung during the first
minutes of life. On top of that, an increased tonic diaphragmatic
activity has been associated with an improved functional residual
capacity (FRC) and thus retainment of inhaled air during
pulmonary transition (15, 16). As shown by pre-clinical studies,
more effective lung aeration can result in higher tidal volumes
(17). Second, the higher diaphragmatic activity itself affects
tidal volume. A recent study exploring the effect of caffeine
on diaphragmatic activity and tidal volume showed a positive
association between these two parameters (18).

Other non-diaphragm related factors may also contribute to
a higher tidal volume when exposing infants to a higher FiO2. It
has been shown that oxygen supports the development of a more
stable breathing pattern and improves coordination of opening
and closure of the glottis (19). These factors result in more
efficient non-invasive respiratory support, which can impact both
tidal volume and FRC.

The effect of oxygen on diaphragm activity was fast as the
100% oxygen group already had a higher level of diaphragm
activity compared to the 30% group, in the first minutes of
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FIGURE 1 | dEMG signal strength parameters (mean ± standard deviation) for

the 30% (white circles) and 100% group (black squares) showing a higher level

of diaphragm activity in the 100% group. (A) tonic diaphragm activity and (B)

peak diaphragm activity. The first line piece is dashed, due to the low sample

size directly after birth. Data after 5min is semi-transparent as this data was

not taken into account in the statistical analysis. The numbers above the graph

represent the number of infants of which dEMG data was available (after

artifact removal) for that particular minute and group.

life. Furthermore, mean peak and tonic diaphragmatic activity
remained higher on average in the 100% oxygen group at every
time point up to 15min after birth, even though dEMGpeak did
not reach statistical significance.

The diaphragm activity in the 100% group remained higher
until 15min after birth, while the difference in the administered
FiO2 and SpO2 between the groups decreased over time (9).
This might indicate that the effect of the initial oxygen exposure
persists after weaning of the FiO2 in the 100% group. This effect
could be a direct result of the FiO2, or indirect (through improved
overall oxygenation) as the 100% group became normoxic
earlier in time (9). The administered FiO2 could be sensed by
oxygen sensitive neuroendocrine cells present in the pulmonary
epithelium, but current evidence on the role of these receptors
during the transition from intra- to extra-uterine life is limited
(20). It is also known that hypoxia inhibits both the neural output

from the brainstem [through e.g., ATP and adenosine pathways
(21)] and influences muscle performance itself (22). However, as
FiO2 directly affects SpO2 and these parameters go hand in hand
with each other it is impossible to determine whether the effect of
the initial FiO2 on diaphragm activity is direct or indirect.

In general, the variability in diaphragm activity between
infants was high. This finding might explain the lack of
significance in dEMGamp and dEMGAUC. There be may several
reasons to explain this finding. First, the signal strength may
be influenced by the varying electrode-diaphragm distance
and skin-electrode interface between infants. The latter is
also affected by differences in the wetness of skin between
infants, which influences electrode adhesiveness and thereby
signal strength (11). Second, similar to the in-utero situation,
there is a physiological variation in breathing pattern in
preterm infants shortly after birth (23). All these factors
contribute to the variability in diaphragm activity between
infants and thus make it difficult to obtain reference values
for diaphragm activity. Larger studies are needed to determine
these normative values. Meanwhile, dEMG can be used to
monitor the trend in diaphragm activity over time and to
determine the effect of changing the level of respiratory support
in the DR.

Studies assessing diaphragmatic activity in the DR are limited.
A recent study on the feasibility of dEMG to monitor heart
rate and respiratory rate in the delivery room also assessed
diaphragmatic activity (11). This study showed a trend to
decreasing peak and tonic activity over time. The relatively
stable diaphragm activity in the current study does not seem
entirely consistent with this feasibility study. However, there
were important differences between these studies which may
explain this inconsistency. First, infants in the current study
were less mature than those included in the feasibility study
(mean gestational age 28 vs. 32 weeks). Less mature infants have
a more compliant chest wall and therefore need to maintain
a high level of muscle activity to open the lungs and keep
them open (11, 24, 25). Second, the trend in diaphragmatic
activity in the feasibility study was measured over a longer
time (30min) and larger intervals (5min), which hampers
direct comparison.

Study Limitations
This study has several limitations that need to be addressed.
First, there was an inevitable delay in placing the electrodes after
birth, which was not part of the normal neonatal resuscitation
program. As a result, diaphragmatic activity during the first
minute of transition was missed in most of the included infants.
However, as this was the case in both oxygen groups, it is unlikely
to have biased the results. In addition, it should be mentioned
that dEMG was only recorded in case research personnel
and equipment were available, which could have introduced a
selection bias. Third, although statistically not significant, the
30%-group received more IPPV than the 100% group, which
may have affected the diaphragmatic activity (11). Finally, the
unanticipated large variability in diaphragm activity and the
relatively small sample size may have compromised the power of
our study. Future studies should take this into account.
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Clinical Implication
The results of this study emphasize the importance of the
diaphragm in pulmonary transition. Stimulating diaphragmatic
activity with higher concentrations of inspired oxygen seems
to facilitate lung aeration and improve tidal ventilation.
The concomitant improvement in oxygenation might prove
important as hypoxemia <80% at 5min after birth is associated
with a higher risk for mortality and intraventricular hemorrhage
(26). Our study results show that diaphragm activity is influenced
by the initial level of oxygen exposure.Whether a similar effect on
diaphragm activity could be found with an intermediate level of
oxygen (e.g., FiO2 0.5–0.6) might be interesting to investigate, as
it could reduce potential oxidative effects. Therefore, evaluation
of diaphragm activity could contribute to the discussion on
which initial level of oxygen to use in the first minutes
of life.

CONCLUSION

Electrical activity of the diaphragm, measured with
transcutaneous electromyography, showed significantly higher
tonic activity and a trend to higher peak activity in preterm
infants resuscitated with 100% compared to 30% oxygen at
birth. This finding suggests that the observed improvement
in tidal breathing when using 100% instead of 30% oxygen is,
at least partly, mediated by an oxygen dependent increase in
diaphragmatic activity.
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