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Objective: Pulseless electrical activity (PEA) occurs in asphyxiated newborn piglets and

infants. We aimed to examine whether different cardiac rhythms (asystole, bradycardia,

PEA) affects the resuscitation outcomes during continuous chest compressions (CC)

during sustained inflations (CC+SI).

Design: This study is a secondary analysis of four previous randomized controlled animal

trials that compared CC+SI with different CC rate (90 or 120/min), SI duration (20 or

60 s), peak inflation pressure (10, 20, or 30 cmH2O), and oxygen concentration (18, 21,

or 100%).

Setting and Subjects: Sixty-six newborn mixed breed piglets (1–3 days of age, weight

1.7–2.4 kg) were obtained on the day of experimentation from the University Swine

Research Technology Center.

Interventions: In all four studies, piglets were randomized into intervention or sham.

Piglets randomized to “intervention” underwent both hypoxia and asphyxia, whereas,

piglets randomized to “sham” received the same surgical protocol, stabilization, and

equivalent experimental periods without hypoxia and asphyxia.

Measurements: To compare differences in asphyxiation time, time to return of

spontaneous circulation (ROSC), hemodynamics, and survival rate in newborn piglets

with asystole, bradycardia or PEA.

Main Results: Piglets with PEA (n = 29) and asystole (n = 13) had a significantly longer

asphyxiation time and time to ROSC vs. bradycardia (n = 24). Survival rates were similar

between all groups. Compared to their baseline, mean arterial pressure and carotid blood

flow were significantly lower 4 h after resuscitation in all groups, while being significantly

higher in the bradycardia group.

Conclusion: This study indicates that cardiac rhythm before resuscitation influences

the time to ROSC and hemodynamic recovery after ROSC.
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INTRODUCTION

At birth, the clinical team assesses the infant’s heart rate (HR)
to guide intervention during neonatal resuscitation (1). If HR
is <60/min, chest compressions (CC) must be started (1)
Bradycardia and asystole were believed to be the most common
cardiac arrest rhythms in newborn infants (2). However, there
is a lack of data what HR cut-off to start CC should be used in
neonatal patients with bradycardia secondary to asphyxia. Most
recently, studies have reported that pulseless electrical activity
(PEA) is commonly observed in asphyxiated newborn piglets
and infants (3–6). PEA displays an organized cardia rhythm on
the electrocardiogram (ECG) without cardiac output or essential
blood flow, and ismostly caused by hypoxia and hypovolemia (4).

If a newborn requires chest compression, the
neonatal resuscitation guideline recommends a 3:1
Compression:Ventilation (C:V) ratio (1, 7, 8). An alternative
approach of neonatal chest compression, which combines CC
during continuous sustained inflation (SI) (providing constant
high airway pressure during CC=CC+SI) has been described by
our group (9–13). The CC+SI approach significantly improved
systemic and regional hemodynamics, tidal volume delivery,
minute ventilation, and time to return of spontaneous circulation
(ROSC) compared to 3:1 C:V in neonatal piglets (14).

During adult cardiac arrest, the presenting cardiac rhythm
is most often (81%) non-shockable (i.e., asystole or PEA) (15).
In pediatric patients, the presenting cardiac arrest rhythms
are asystole (58%), bradycardia (6%), PEA (15%), ventricular
fibrillation or tachycardia (8%), and unknown rhythms (13%)
(16). In comparison, there is a lack of data about the presenting
cardiac arrest rhythm in newborns in the delivery room. Kumar
et al. (17) reported 50 infants with asystole and 160 infants with
bradycardia over a 16-year period (17). Overall, the time to return
of spontaneous circulation (ROSC) was 12.5 min compared to
7 min in infants with asystole vs. bradycardia. There is limited
evidence about outcomes of PEA in newborns. Therefore, we
aimed to examine the outcomes of neonatal resuscitation and
recovery depending on the presenting cardiac rhythm (i.e.,
bradycardia vs. PEA vs. asystole) in asphyxiated newborn piglets.

MATERIALS AND METHODS

This is a secondary analysis of our four previous randomized
controlled animal trials, which examined CC+SI. Only data from
piglets resuscitated with CC+SI were examined.

To optimize the effectiveness of CC+SI in resuscitation,
series of experiments were carried out to examine whether the
outcome can be improved by alternating the CC rate (90 or
120/min) (Study 1)(11), SI duration (20 or 60 s) (Study 2) (18),
inflation pressure (10, 20, or 30 cmH2O) (Study 3) (19) or oxygen
concentration (18, 21, or 100%) (Study 4) (20). As no difference
was observed among groups with various interventions and

Abbreviations: HR, heart rate; CC, chest compressions; PEA, pulseless electrical

activity; ECG, electrocardiogram; C:V, Compression: Ventilation; SI, sustained

inflation; ROSC, return of spontaneous circulation; CABF, carotid arterial

blood flow.

the experimental protocols as well as piglets breed were also
similar within all these studies, all data were combined for
secondary analyses.

Sixty-six newborn mixed breed piglets (1–3 days of
age, weighing 1.7–2.4 kg) were obtained on the day of
experimentation from theUniversity Swine Research Technology
Center. All experiments were conducted in accordance with the
guidelines and approval of the Animal Care and Use Committee
(Health Sciences), University of Alberta (AUP00001764,
AUP00002151, and AUP00002651), presented according to the
ARRIVE guidelines (21) and registered at preclinicaltrials.eu
(PCTE0000138). A graphical display of the study protocol is
presented in Figure 1.

Animal Preparation
Following the induction of anesthesia using isoflurane, piglets
were intubated via a tracheostomy, and pressure-controlled
ventilation (Sechrist infant ventilator model IV-100; Anaheim,
USA for series 1 and Acutronic Fabian HFO; Hirzel, Switzerland
for series 2–4) was commenced at a respiratory rate of 16–20
breaths/min and pressure of 20/5 cmH2O. Oxygen saturation
was kept within 90–100%, glucose level and hydration were
maintained with an intravenous infusion of 5% dextrose at 10
mL/kg/hr. During the experiment, anesthesia was maintained
with intravenous propofol (5–10 mg/kg/h) and morphine (0.1
mg/kg/h). Additional doses of propofol (1–2 mg/kg) and
morphine (0.05–0.1 mg/kg) were given as needed. Only in series
1, pancuronium (0.1–0.2 mg/kg) was used for controlling the
arterial CO2 level. The piglet’s body temperature was maintained
at 38.5–39.5◦C using an overhead warmer and a heating pad
(9, 14, 22).

Hemodynamic Parameters
A 5-French Argyle R© (Klein-Baker Medical Inc., San Antonio,
TX) double-lumen catheter was inserted via the right femoral
vein for administration of fluids and medications. A 5-French
Argyle R© single-lumen catheter was inserted above the right
renal artery via the femoral artery for continuous arterial
blood pressure monitoring in addition to arterial blood gas
measurements. The right common carotid artery was exposed
and encircled with a real-time ultrasonic flow probe (2 mm;
Transonic Systems Inc., Ithica, NY) to measure carotid arterial
blood flow (CABF). Piglets were placed in supine position
and allowed to recover from surgical instrumentation until
baseline hemodynamic measures were stable (minimum of
1 h). Ventilator rate was adjusted to keep the partial arterial
CO2 pressure between 35 and 45 mmHg, as determined by
periodic arterial blood gas analysis. Baseline blood gas values
were obtained after stabilization and just before hypoxia.
Mean systemic arterial pressure, HR, and percutaneous oxygen
saturation were continuouslymeasured and recorded throughout
the experiment with a Hewlett Packard 78833Bmonitor (Hewlett
Packard Co., Palo Alto, CA).

Cerebral Perfusion
Cerebral oxygenation was measured using the Invos
Cerebral/Somatic Oximeter Monitor (Invos 5100, Somanetics
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FIGURE 1 | Study flow diagram.

Corp., Troy, MI). The sensors were placed on the right forehead
of the piglet and secured with wrap and tape. Light shielding was
achieved with a slim cap. The Invos Cerebral/Somatic Oximeter
Monitor calculates cerebral oxygenation, which is expressed
as the percentage of oxygenated hemoglobin (oxygenated
hemoglobin/total hemoglobin). Values of regional oxygen
saturation are stored every second with a sample rate of 0.13
Hz (23).

Experimental Protocol
In all four studies, piglets were randomized into intervention or
sham. To reduce selection bias, a two-step randomization process
was used. Following surgical instrumentation and stabilization,
a subsequently numbered, sealed opaque envelope containing
the assignment “sham” or “intervention” was opened (step one)
(Figure 1). Piglets randomized to “intervention” underwent both
hypoxia and asphyxia, whereas, piglets randomized to “sham”

did not. Sham-operated groups received the same surgical
protocol, stabilization, and equivalent experimental periods
without hypoxia and asphyxia. The piglets that were randomized
to “intervention” were exposed to either 30min (asystole group,
Studies 2–4, (18)) or 50min (bradycardia group, Study 1 (11)) of
normocapnic hypoxia, which was followed by asphyxia. Asphyxia
was achieved by disconnecting the ventilator and clamping the
endotracheal tube to a pre-set end-point. Study 1: Asphyxia
was induced until bradycardia (defined as a decrease in HR
to 25% of baseline) (11). Studies 2–4: Asphyxia was induced
until asystole (defined as no audible HR during continuous
auscultation and zero carotid artery blood flow) (18–20). PEA
was defined as zero HR but with electrical activity on the ECG
(3, 4). After the end-point was reached, a second subsequently
numbered, sealed opaque envelope containing the intervention
assignment was opened (step two) (Figure 1). Fifteen seconds
after bradycardia or asystole, positive pressure ventilation was
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TABLE 1 | Baseline characteristics.

Bradycardia (n = 24) PEA (n = 29) Asystole (n = 13) p-value

Age (days) 2.0 (2.0 to 3.0) 2.0 (1.0 to 3.0) 2.0 (1.0 to 2.0) 0.284

Sex (male/female) 15/9 18/11 7/6 0.894

paCO2 (mmHg) 40 (36 to 42) 34 (30 to 35)* 33 (29 to 35)* <0.001

pH 7.37 (7.34 to 7.42) 7.49 (7.46 to 7.54)* 7.55 (7.47 to 7.58)* <0.001

BE (mmol/L) -2 (-6 to 0) 2 (1 to 4)* 4 (2 to 5)* <0.001

HCO−
3 (mmol/L) 24 (21 to 25) 25 (25 to 27)* 27 (25 to 29)* 0.002

Lactate (mmol/L) 3.6 (2.7 to 4.1) 3.6 (2.9 to 4.9) 3.2 (3.0 to 3.5) 0.280

Heart rate (bpm) 228 (215 to 248) 193 (173 to 211)* 186 (160 to 202)* <0.001

Mean arterial pressure (mmHg) 77 (69 to 87) 60 (56 to 66)* 57 (53 to 63)* <0.001

Carotid flow (mL/min) 77 (65 to 90) 47 (40 to 56)* 45 (33 to 51)* <0.001

Cerebral oxygenation index (%) 41 (39 to 47) 53 (48 to 57)* 49 (42 to 58)* <0.001

Data are presented as median (IQR); *significantly different from bradycardia group. PEA, pulsless electrical activity.

performed for 30 s with a Neopuff T-Piece (Fisher & Paykel,
Auckland, New Zealand). The default settings of the experiment
were a peak inflating pressure of 30 cmH2O (except 16 piglets
in study 3, which were randomized to peak inflating pressure
of either 10 or 20 cm H2O), a positive end expiratory pressure
(PEEP) of 5 cmH2O, and a gas flow of 8 L/min. Using the two-
thumb encircling technique (7), CC was performed at a rate of
90/min (except eight piglets with rate of 120/min in study 1)
using a metronome by a single operator in all the piglets. CC was
started after 30 s of positive pressure ventilation and 100% oxygen
was commenced 30 s after start of CC. Epinephrine (0.02 mg/kg
per dose) was administered intravenously 2min after the start
of positive pressure ventilation, and administered every 3min as
needed if no ROSC was observed. Epinephrine was administered
to a maximum of 4 doses as the maximum resuscitation time
was set at 12min. ROSC was defined as an unassisted HR >

100 bpm for at least 15 s. After ROSC, piglets recovered for 4 h
before euthanasia with an intravenous overdose of phenobarbital
(100 mg/kg).

Data Collection and Analysis
Demographics of study piglets were recorded. Transonic
flow probes, HR, and pressure transducer outputs were
digitized and recorded with LabChart R© programming software
(ADInstruments, Houston, TX). Data are presented as mean
(standard deviation) for normally distributed continuous
variables and median (interquartile range) when the distribution
was skewed. The data was tested for normality and compared
using one-way ANOVA for comparisons of continuous
variables, and χ

2 for categorical variables. Post-hoc analysis
was performed using Tukey test. Time to ROSC was analyzed
with Cox proportional hazards regression by using SAS Proc
SURVEYPHREG with stratification by studies, to account
for data being combined from different trials. The event
was considered as ROSC. Piglets who did not achieve ROSC
were considered censored at a maximum of 12min (720 s)
of cardiopulmonary Resuscitation time. The proportionality
assumption was violated for bradycardia and asystole groups by
assessment of Kaplan–Meier and Log–Log curves. Therefore,

three different Cox proportional hazards regression models
were created for pairwise comparison of PEA, bradycardia and
asystole groups. Both models for PEA and asystole groups,
and PEA and bradycardia groups satisfied proportionality
assumption; however, since this assumption was violated for
bradycardia and asystole groups, the interaction term (cardiac
group)∗(time to ROSC) was added to the Cox regression model
for those 2 groups. Both terms from that model, cardiac group
and interaction (cardiac group)∗(time to ROSC), were used to
estimate the hazard ratio, which was not constant over time.
Statistical analyses were performed with SigmaPlot (Systat
Sofyware Inc., San Jose) and SAS Ver. 9.4 (SAS Institute Inc.,
Cary, NC, USA).

RESULTS

Age and sex were similar among the three experimental
groups (bradycardia, asystole, PEA) (Table 1). However, baseline
hemodynamic and blood gas values were significantly better
in the bradycardia group compared to the PEA and asystole
groups (Table 1). These differences were most likely related
to the different surgical procedures, experimental set-up, and
medication (10). Therefore, we compared changes from baseline
for hemodynamic parameters within the same group.

Resuscitation
The asphyxia time was significantly longer in the PEA and
asystole groups compared to the bradycardia group (Table 2).
This resulted in significantly lower pH, higher paCO2, and lactate
in both groups compared to the bradycardia group (Table 2).

Time to ROSC was significantly shorter in the bradycardia
group compared to the asystole and PEA group (Table 2).
The rate of ROSC was significantly lower in the PEA group
compared to the bradycardia and asystole groups (Table 2).
The total number of epinephrine doses and the number of
piglets receiving epinephrine were significantly higher in the PEA
group compared to the asystole group (Table 2). There was no
significant difference in post-ROSC survival between all three
groups (Table 2). In Cox regression models the hazard ratios
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TABLE 2 | Characteristics of asphyxia, resuscitation, and survival of asphyxiated piglets.

Bradycardia (n = 24) PEA (n = 29) Asystole (n = 13) p-value

PaCO2 67 (58 to 85) 98 (87 to 113)* 116 (104 to 122)* <0.001

pH 6.91 (6.83 to 6.98) 6.59 (6.50 to 6.67)* 6.50 (6.50 to 6.54)* <0.001

BE (mmol/L) -20 (-22 to -16) -27 (-30 to -26)* -30 (-30 to -28)* <0.001

Lactate (mmol/L) 13.0 (11.7 to 14.1) 15.8 (14.3 to 17.1)* 15.7 (14.7 to 16.2)* <0.001

Asphyxiation time (s) 112 (69 to 180) 475 (221 to 589)* 332 (260 to 460)* <0.001

ROSC time (s) 35 (28 to 68) 120 (80 to 175)* 69 (60 to 111) <0.001

Number of piglets with ROSC 20 (83%) 16 (55%)*# 13 (100%) <0.01

Total number of Epi dose 0 (0 to 3) 1 (0 to 4)# 0 (0 to 0.5) 0.004

Number of piglets receiving Epi 10 (42%) 20 (69%)# 3 (23%) <0.01

Overall survival after resuscitation 20 (100%) 16 (100%) 12 (92%) 0.26

Data are presented as median (IQR); Epi, epinephrine; *Significantly different from bradycardia group; #Significantly different from asystole group. PEA, pulsless electrical activity.

between subjects from different cardiac groups are presented
in Table 3. For bradycardia and asystole groups hazard ratio
depended on time. As time increased, the hazard ratio increased
as well.

Changes in Hemodynamic Parameters
Hemodynamic changes throughout the experiment are
summarized in Figure 2. Heart rate significantly decreased
at the end of asphyxia compared to baseline in all three groups,
and returned to baseline after ROSC, with significantly higher
HR in the PEA and asystole groups than that of bradycardia
group (Figure 2).

The mean arterial blood pressure decreased significantly
from baseline values after asphyxia (Figure 2), returned to
baseline after ROSC, and then gradually decreased over the
4 h observation period. Compared to baseline, all groups had a
significantly lower mean arterial pressure at the end of the 4 h
observation period (Figure 2). The mean arterial pressure in the
PEA group was significantly lower compared to the bradycardia
group (Figure 2).

At the end of asphyxia, the CABF significantly decreased in all
three groups compared to baseline (Figure 2). At the end of the
4 h observation period, the CABF remained significantly lower
compared to baseline. Of note, the CABF was significantly lower
in the PEA and asystole groups compared to the bradycardia
group at the end of the 4 h observation period [36(30)%,
36(30)%, and 75(35)% of baseline value for PEA, asystole and
bradycardia group, respectively] (Figure 2). Consequently, the
cerebral oxygenation in the PEA and asystole groups were also
significantly lower compared to the bradycardia group at the end
of the 4 h observation period (Figure 2).

Changes in Blood Gas
The pH in all groups significantly decreased from baseline values
after asphyxia (Table 4). It improved after ROSC and gradually
increased throughout the 4 h observation period. At the end of
the 4 h observation period, the pH in the bradycardia group was
similar compared to baseline, whereas the pH in the PEA and
asystole groups remained significantly lower than their baseline

(Table 4). There were similar patterns of changes in base excess,
bicarbonate, and lactate throughout the experiment (Table 4).

DISCUSSION

There is limited evidence about management of different cardiac
arrest rhythms during neonatal resuscitation and their outcome
(4–6, 24). While healthcare providers routinely recognize
bradycardia and asystole in the delivery room, the detection
of PEA rhythms has only been described recently (4). This
is the first study that investigated the influence of different
cardiac arrest rhythms on resuscitation outcomes and recovery in
asphyxiated piglets resuscitated by different CC+SI approaches.
Compared to both the bradycardia and asystole groups, the PEA
group required a longer resuscitation time and had less animals
achieving ROSC and overall survival. Furthermore, epinephrine
was used more often in the PEA group compared to the two
other experimental groups. Our results also demonstrated that
the hemodynamic recovery of the bradycardia group was better
than the PEA and asystole groups.

Recent animal studies (9, 11, 25, 26) and clinical observations
(12) have indicated that CC+SI significantly improves ROSC,
tidal volume delivery and minute ventilation, as well as global
and regional hemodynamics compared to conventional 3:1
C:V. Currently, a large cluster randomized trial comparing
CC+SI with 3:1 C:V in newborn infants is ongoing (SURV1VE)
(13). Therefore, our study focused on the effect of CC+SI
on resuscitation outcomes and hemodynamic recovery in
asphyxiated piglets with different heart rhythms (bradycardia,
PEA, or asystole). As indicated by lower pH, higher base excess
and lactate levels, the hypoxia/asphyxia stress in both PEA and
asystole groups were more severe than in the bradycardia group.
Consequently, a prolonged time to ROSC, particularly in the
PEA group, was observed compared to the bradycardia group. In
a neonatal lamb asphyxia model lactate levels were also higher
in animals with no ROSC (27). Further, the pH of these two
groups remained lower throughout the experiment whereas the
pH in the bradycardia group returned to baseline by the end
of the 4 h observation period. These observations were similar
to that reported following resuscitation of newborn infants with
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TABLE 3 | Cox Regression estimates of hazard ratios.

Model Estimate SE p-value Univariate hazard ratio (95% CI)

Asystole vs. PEA 1.51 0.34 <0.0001 4.53 (2.29, 8.97)

Bradycardia vs. PEA 1.12 0.33 0.002 3.05 (1.58, 5.91)

Bradycardia vs. Asystole Bradycardia vs. Asystole 1.96 0.71 0.01 7.07 (1.65, 30.34)

Cardiac group*time to ROSC (interaction) 0.03 0.01 0.02 1.03 (1.003, 1.05)

FIGURE 2 | Percentage changes from normoxic baseline in (A) heart rate, (B) mean arterial pressure (MAP), (C) carotid blood flow, and (D) brain saturation in

bradycardia (◦), PEA (•), and asystole (N) groups during hypoxia/asphyxia and after resuscitation. Each point represents mean ± SD. *p < 0.05, significantly different

from bradycardia group; #p < 0.05, significantly different from its own baseline value.

bradycardia or asystole (17). In that study, asystole was associated
with a lower cord blood pH and a lower pH 1 h after birth, and
infants required significantly more intubations and CCs (17).
Although bradycardia has been associated with higher survival
rates compared to asystole/PEA in pediatric patients (28), we
did not observe any difference in survival rate after the 4 h
observation period; however, this is likely due to the relatively
short period of recovery.

Although the PEA and asystole groups had similarities in the
asphyxia duration and blood gas parameters, the ROSC time was
about twice of that of the asystole group. Furthermore, there

were significantly more piglets that required epinephrine in the
PEA group compared to the asystole group, and the number
of doses was also significantly greater. Consequently, only 55%
of piglets with PEA achieved ROSC. Given the observational
nature of this study, our data did not investigate any underlying
mechanisms contributing to PEA. Zheng et al. (29) observed
a better resuscitation outcome in adult cardiac arrest patients
presenting with asystole than those with PEA. They postulated
that the pumping activity of the heart was limited in PEA
patients during resuscitation due to dissociation of the pumping
mechanism, whereas the insufficiency of cardiac output in
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TABLE 4 | Blood gas at baseline, after asphyxiation, and 4 h of reoxygenation.

Bradycardia With PEA Asystole p-value

pH

Baseline 7.37 (0.07) 7.49 (0.06)* 7.53 (0.07)* <0.001

After asphyxiation 6.90 (0.11)# 6.60 (0.09)*# 6.53 (0.05)*# <0.001

4 h after reoxygenation 7.33 (0.07) 7.29 (0.10)# 7.36 (0.13)# 0.082

PaCO2 (mmHg)

Baseline 42 (6) 34 (4)* 32 (2)* <0.001

After asphyxiation 71 (19)# 100 (18)*# 114 (11)*# <0.001

4 h after reoxygenation 41 (6) 37 (6)* 36 (6)* <0.001

Base excess (mmol/L)

Baseline -2 (4) 2 (3)* 4 (4)* <0.001

After asphyxiation -19 (5)# -28 (2)*# -29 (2)*# <0.001

4 h after reoxygenation -4 (2) -8 (5)*# -5 (6)# 0.005

HCO3 (mmol/L)

Baseline 24 (3) 26 (2)* 27 (3)* 0.002

After asphyxiation 12 (2)# 9 (3)*# 9 (4)*# <0.001

4 h after reoxygenation 21 (3) 18 (4)*# 20 (4)# 0.014

Lactate (mmol/L)

Baseline 3.7 (1.0) 4.1 (0.9) 3.6 (0.7) 0.353

After asphyxiation 12.9 (2.1)# 15.6 (2.2)*# 15.4 (2.7)*# <0.001

4 h after reoxygenation 4.1 (2.4) 5.7 (3.3)# 4.5 (2.6) 0.121

Data are presented as mean (SD); *Significantly different from bradycardia group,
#Significantly different from baseline values. PEA, pulsless electrical activity.

asystole patients was only due to lack of electrical pacing. Further
studies are needed to test this hypothesis in our animal studies.
Collectively, our data indicates that heart rhythm influences
resuscitation outcome and recovery following CC+SI.

Sobotka et al. (30) described that HR might be a weak
indicator for assessing circulatory status in asphyxiated newborns
as even with a mean HR of 72 ± 7/min was associated with zero
cerebral blood flow in their animal model. In a clinical case series
of four neonatal patients, PEA was observed with an electrical
HR above 60/min (as displayed on ECG) but either no palpable
pulses or a HR assessed by auscultation below 60/min (6). All
four patients died after extensive resuscitation, supporting the
speculation that PEA is a critical problem in the delivery room.
If the HR is only assessed by ECG, this could be misleading
and may delay initiation of CCs. A new algorithm approach
was described in Luong et al. (6), suggesting using auscultation
or palpation as well as ECG and a pulse oximeter for the
assessment of a newborn. Doppler ultrasound would be a good
alternative to detect PEA, although it is not routinely used (3).
Newborns typically present with bradycardia before descending
into asystole (28). Therefore, it is necessary to combine ECG
monitoring with clinical findings (pulse palpation, auscultation)
or pulse oximetry (no pulsatile waveform) for identification of
PEA (3). Further studies are needed to assess the prevalence and
influence of different heart rhythms in the delivery room.

Limitations
Our asphyxia model uses piglets that have already
undergone the fetal to neonatal transition, and piglets were

sedated/anesthetized. Furthermore, our model requires piglets
to be intubated with a tightly sealed endotracheal tube to
prevent any endotracheal tube leak; this may not occur in the
delivery room as mask ventilation is frequently used, in addition
to the presence of leak in endotracheally intubated infants.
Our experimental protocol differed slightly to the current
resuscitation guidelines: we used 100% oxygen after 30 s of CC
and administered epinephrine 90 s after CC with a frequency
of one dose every 3min. Furthermore, our baseline values
were different between the groups, which are likely due to the
slight variability in surgical procedures and anesthetic drugs
used. Although we conformed to the 3 R’s of animal studies
(Replacement, Reduction, and Refinement), we understand that
using results of previous studies with different piglet models and
different numbers of piglets to perform a secondary analysis
also may pose a limitation to data interpretation which were
studied using the changes from respective baselines. Further, we
acknowledge that as in all animal studies, it may not be possible
to translate the results necessarily to human newborns.

CONCLUSIONS

Our study indicates that heart rhythm before resuscitation
(bradycardia, asystole, and PEA) influences the time to ROSC,
epinephrine administration, and hemodynamic recovery after
resuscitation. Evaluation of heart rhythms in the delivery
room and their correlation with resuscitation outcome warrants
further investigation.
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