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Hyperglycemia is common in newborns requiring intensive care, particularly in preterm

infants, in sepsis and following perinatal hypoxia. The clinical significance, and optimal

intervention strategy varies with context, but hyperglycaemia is associated with increased

mortality andmorbidity. The limited evidence for optimal clinical targets mean controversy

remains regarding thresholds for intervention, and management strategies. The first

consideration in the management of hyperglycaemia must be to ascertain potentially

treatable causes. Calculation of the glucose infusion rate (GIR) to insure this is not

excessive, is critical but the use of insulin is often helpful in the extremely preterm infant,

but is associated with an increased risk of hypoglycaemia. The use of continuous glucose

monitoring (CGM) has recently been demonstrated to be helpful in targeting glucose

control, and reducing the risk from hypoglycaemia in the preterm infant. Its use in other

at risk infants remains to be explored, and further studies are needed to provide a

better understanding of the optimal glucose targets for different clinical conditions. In

the future the combination of CGM and advances in computer algorithms, to provide

intelligent closed loop systems, could allow a safer and more personalized approached

to management.
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INTRODUCTION

Although in utero glucose levels are normally maintained between 4 and 6 mmol/l hyperglycaemia
is common in newborns requiring intensive care, particularly in preterm infants, in sepsis
and following perinatal hypoxia (1, 2). Transient hyperglycaemia may be a physiological
response to stress but when prolonged is associated with significant morbidity and mortality.
Hyperglycaemia has variably been defined based on absolute thresholds, as well as length of
exposure and association with glycosuria. Threshold definitions range from >7 to >13.3 mmol/l
(>126–239 mg/dl) (3–6). The most common definition is blood glucose (BG) >10 mmol/l
(180 mg/dl) (3). However, the European Society for Paediatric Gastroenterology Hepatology
and Nutrition (ESPGHAN) recommends avoiding glucose levels >8 mmol/l (145 mg/dl),
because they are associated with increasing morbidity and mortality (7). Hyperglycaemia is
most commonly seen in the extremely preterm infant in the first week of life, reports varying
between 20 and 86% (1, 8–17). However, glycaemic instability and hyperglycaemia remain in
these infants even at the time of discharge (1, 8–16). Hyperglycaemia is also prevalent in
infants following hypoxic ischaemic (HI) insults (18), associated with sepsis and in neonatal
diabetes which has recently been reviewed (19). The use of systemic steroids, inotropes, and
caffeine (20, 21), as well as stress associated with intubations can also increase glucose levels (1).
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The limited evidence for optimal clinical targets mean
controversy remains regarding thresholds for intervention
and management strategies. The first consideration in the
management of hyperglycaemia must be to ascertain potentially
treatable causes. Hyperglycaemia in the newborn may be
initially considered an acute catabolic response to stress, but
prolonged hyperglycaemia is associated with a poor prognosis.
There are numerous studies reporting its association with
increased morbidity and mortality, and there are biologically
plausible causal pathways. These include the direct effects of
hyperglycaemia per se, as well as the effect of relative insulin
deficiency. As hyperglycaemia is an easily modifiable risk factor
for poor outcomes it is important to understand potential
mechanisms of harm, and intervention strategies that could
improve outcomes.

HYPERGLYCAEMIA IN THE PRETERM

INFANT

The prevalence of hyperglycaemia is inversely related to
gestational age with extremely preterm infants at most risk.
Many preterm morbidities as well as mortality are associated
with increased hyperglycaemic exposure (22). These include
retinopathy of prematurity (23), chronic lung disease (24),
necrotizing enterocolitis (NEC) (25), hypernatraemia, and
reduced white matter in the brain at term (26). Associations are
often reduced or lost after adjusting for gestational age and birth
weight, as there is a close relationship between hyperglycaemia
and immaturity. It is similarly difficult to separate how much
hyperglycaemia is a marker of the metabolic disturbance, that
is the primary etiology for poor outcome, as opposed to
contributing itself to that causal pathway. However, even after
adjustment for gestational age, early hyperglycaemia has been
shown to be associated with an increased risk of death or sepsis,
OR 5.07 (95% CI 1.06–24.3) (27). Furthermore, hyperglycaemia
has been associated with poor growth up to 2 years of age (28, 29).
The implications of hyperglycaemia and prolonged catabolism
on longer term metabolic and neurocognitive outcomes for
preterm infants remains to be determined.

Pathogenesis of Hyperglycaemia in the

Preterm Infant
In preterm infants hyperglycaemia can be considered to
result from a combination of excess glucose delivery, counter
regulatory response to stress and infection, and the impact of
prematurity and growth restriction on insulin secretion and
sensitivity (12, 30, 31).

Central and Peripheral Glucose Insensitivity and

Insulin Resistance
In the healthy adult glucose infusions (6 mg/kg/min) completely
suppress endogenous glucose production. However, in the
preterm neonate glucose production is not suppressed in the
same way by glucose infusions. Studies in the newborn have
shown glucose levels can reach >13.9 mmol/l (250 mg/dl), or
glucose infusion rates (GIRs) >16 mg/kg/min before glucose

production is suppressed (32–34). Similarly large reductions in
the GIRs may not alter glucose production rates, when one might
anticipate it would lead to an increase in gluconeogenesis (35).
Persistent endogenous glucose production, in spite of glucose
infusion, has been shown in preterm infants even at the age 2–
5 weeks (36). This may in part be due to immature expression
of glucose transporters (GLUT), particularly glucose transporter
2 (GLUT2) and glucose transporter 4 (GLUT4). Low GLUT 2
levels in the liver may lead to lack of glucose sensitivity, and
continued hepatic glucose production (37). The less abundant
insulin sensitive tissues (adipose and skeletal muscle), and low
GLUT4 expression in muscle, may also result in reduced insulin
mediated glucose uptake in preterm infants (2, 38). Increased
levels of pro-inflammatory cytokines (tumor necrosis factor-
α, interleukin-1, interleukin-6), secondary to chorioamnionitis,
sepsis or NEC, may also lead to insulin resistance, and altered
insulin receptor signaling. Intensive care interventions, such as
the use of inotropes and corticosteroids, also increase insulin
resistance and suppress insulin secretion.

Relative Insulin Deficiency
In utero studies suggest that insulin levels increase toward
term, and immaturity of the β-cells may result in insufficient
insulin secretion (6). GLUT 2 transporters are involved in
glucose stimulated insulin secretion from the pancreas, but fetal
pancreatic β cells do not express GLUT 2 until 7 months (39, 40),
impacting on the β cell’s response to hyperglycaemia (32). In
the preterm infant the insulin secretory response to glucose is
reduced compared with the term infant, but increases postnatally
over a number of weeks (41). Preterm infants are often also
growth restricted, and this is associated with reduced β cell
mass (42, 43). However, these changes are dependent on the
model and timing of growth restriction (44, 45). The levels of
proinsulin (a less active precursor to insulin), are high in preterm
neonates, suggesting that the processing of proinsulin in β-cells is
partially defective. This relative insulin deficiency may contribute
to reduced insulin like growth factor 1 (IGF-I) generation, with
further impacts on metabolism and growth.

Feeding and Incretins
Incretins play an important role in augmenting insulin secretion
in adults (46, 47), and the delay in enteral feeding of preterm
infants means the normal stimulation of incretins does not occur
(48). In the preterm infant glucose control often improves once
enteral feeds have been established, but even when enteral feeds
are given, preterm infants do not demonstrate an equivalent
incretin response compared to that seen in term infants (49).

Clinical Consequences of Hyperglycaemia
An initial counter regulatory response and transient
hyperglycaemia may be beneficial in acute stress, and may be
considered physiological. However, prolonged hyperglycaemia
in critical illness has been associated with poor prognosis.
Furthermore, for the preterm infant, the period from birth to
term is a critical period of development, and even shorter periods
of hyperglycaemia may be harmful. It remains unclear as to
whether harmful effects of dysglycaemia are mediated by the
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primary effects of hyperglycaemia per se, or the effects of relative
insulin deficiency, with both potentially having short and long
term clinical consequences.

Primary Role of Hyperglycaemia
Hyperglycaemia is harmful to cells and can lead to an over
expression of insulin independent glucose transporters (GLUT-
1, GLUT-2, and GLUT 3), which leads to an increase in
glucose uptake by endothelial, hepatic, immune, and nerve cells
(50). Glucose overload can cause an increased generation of
oxygen free radicals, which can cause mitochondrial dysfunction
and increased apoptosis. Hyperglycaemia also impairs leukocyte
phagocytic function, decreases complement function, increases
pro-inflammatory cytokines, and impairs neutrophil chemotaxis,
all leading to an increased susceptibility to infections (51–54).

Independent manipulation of BG and insulin levels in an
animal model of hyperglycaemia (burn injured parenterally
fed rabbit), demonstrated survival to be better in the
normoglycaemic groups (89% verses those with hyperglycaemia
53–64%) (55). Recent data have also shown a causal pathway
linking hyperglycaemia to an increased risk of microbial gut
translocation in both animal models and adult studies (56).
Persistent hyperglycaemia has been associated with NEC, OR
9.49 (95% CI 1.52–59.3) and infection, OR 3.79 (1.40–10.20)
(1, 25, 27) which are twomajor causes of mortality andmorbidity
for preterm infants (57, 58).

Hyperglycaemia can lead to an osmotic diuresis,
hypernatraemia, and electrolyte imbalance and has been
associated with intraventricular hemorrhage (IVH) (25, 59, 60).
More significant may be the impact of hyperglycaemic on
nervous system development and injury in animal models
(61). Hyperglycaemia increases central nervous system
permeability, oxidative stress, and leads to microglia activation
and astrocytosis, as well as regulation of DNA repairmechanisms,
compromising neuronal and glial cell integrity (62). This can
lead to long-term changes in synaptogenesis and behavior (63).
Clinical correlates include the finding in a cohort of extremely
preterm infants that hyperglycaemia >8.3 mmol/L(150 mg/dl)
on the first day of life was an independent risk factor for
white matter reduction on term MRI (26). Increased BG
concentrations have also been associated with decreased total
absolute band power on EEG, a measure expressing background
brain activity, and associated with long term outcomes (64).
A large retrospective study, (including 443 preterm infants)
showed hyperglycaemia to be associated with lower survival
without neurodevelopmental disability at 2 years of age, but this
did not remain significant after adjusting for gestational age,
birth weight z-score, and socioeconomic status (65). However,
the close relationship between hyperglycaemia and gestational
age make separation of the causal effect of hyperglycaemia from
that of immaturity challenging. Data in press from the Swedish
EXPRESS cohort shows that hyperglycaemia is associated with
worse motor outcomes in early childhood (after multivariate
adjustment). Further long term follow up studies are required
to explore the long term impact of hyperglycemia per se, and
different management strategies.

Impact of Relative Insulin Deficiency
Hyperglycaemia may also be considered a marker of relative
insulin deficiency, and this may have independent effects to those
of hyperglycaemia. In both animal and human models insulin
has been shown to improve innate immunity, and to suppress
pro-inflammatory products, whilst increasing anti-inflammatory
cytokines (66–70). Insulin deficiency may be associated with
reduced expression of nitric oxide synthase (iNOS), and insulin
may be protective by prevention of excess nitric oxide release.
Insulin can also improve cardiac function (55), and in patients
post myocardial infarction and in sepsis, the combination of
glucose and insulin infusion improves cardiac function (71).
Insulin infusions can reduce proteolysis, and in burns have a
positive impact on protein synthesis and wound healing (72–
74). Relative insulin deficiency can also lead to low IGF-I levels,
which can be detrimental, as IGF-I is an important mediator of
growth in the neonatal period. Starvation and critical illness lead
to suppression of IGF-I levels, and IGF-I administration has been
shown to increase nitrogen balance in catabolic states (75, 76).
IGF-I is also an important growth factor influencing perinatal
pancreatic development, with low levels leading to increased
apoptosis, and potentially resulting in reduced β-cell mass.
Therefore, insulin deficiency has implications in the preterm
infants for growth, as well as longer term metabolic health.

Clinical Interventions for the Management

of Hyperglycaemia
Thresholds for intervention remain controversial, but the recent
ESPGHAN andASPEN guidelines clearly advise avoiding glucose
levels >8 mmol/l (145 mg/dl) (7), or >8.3 mmol/l (150
mg/dl) (77, 77). Approaches to management should always
involve reviewing the context of hyperglycaemia, with particular
consideration as to whether there is evidence for acute illness,
such as infection which requires treatment. Limitation of
excess glucose intake should then be considered, and insulin
used in the context of wishing to maintain postnatal growth
when appropriate (4). Simply increasing calorie intake may be
detrimental (14), but optimizing amino acid intakes and the use
of insulin has the theoretical potential to improve lean bodymass,
and pancreatic function (78). The potential benefits of insulin
however need to be balanced with the risks of hypoglycaemia,
and therefore careful monitoring of glucose levels should be
undertaken on any infant on insulin.

The Importance of Parenteral Nutrition
The relationship between glucose infusions and hyperglycaemia
is not consistent. Some studies have shown a direct positive
relationship between GIRs and risk of hyperglycamia, other
studies have not found such a clear relationship (1, 20, 60, 79, 80).
Differences may relate to the rates of glucose being infused,
with excess rates clearly associated with hyperglycaemia, but the
impact of lower rates of glucose infusion more nuanced. At
lower GIRs the influence of differences in other components of
parenteral nutrition (PN) may play an important role. Amino
acids stimulate insulin secretion, and low plasma arginine
levels have been associated with hyperglycaemia (81). Neonates
receiving amino acid infusions in addition to glucose have
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higher insulin levels (82). A Cochrane meta-analysis concluded
that higher amino acid intake in PN was associated with a
reduction in hyperglycaemia. Therefore, reducing PN al intake
may be counterproductive, if it reduces amino acid intake along
with glucose load. One study that reported on the impact of
a change in clinical practice, aimed at limiting dextrose intake
(to minimum of 4 mg/kg/min), demonstrated a reduction in
the prevalence of hyperglycaemia, use of insulin and mortality.
However, total protein and energy intakes were also higher after
the intervention, which cannot therefore be viewed as a simple
intervention on dextrose intake (83). Lipid infusions may have a
beneficial effect, by reducing the glucose load whilst maintaining
energy intakes, they can reduce the prevalence of hyperglycaemia
(84). However, in excess or in acute illness, lipids have been
reported to contribute to hyperglycaemia (85).

A single center study in Norway showed implementation
of an enhanced PN protocol was associated with an increased
prevalence of severe hyperglycaemia, and higher mortality (14).
However, in the multivariate analysis, the enhanced PN regimen
per se was not predictive of mortality, it was the early severe
hyperglycaemia that was the strongest risk factor for death.
After adjusting for potential confounding variables, early severe
hyperglycaemia was an independent risk factor for death (OR,
4.68; 95% CI, 1.82–12.03), greater than that of gestational age
(odds ratio, 0.62; 95% CI, 0.49–0.79). Attempts to reduce the
prevalence of hyperglycaemia, by controlling glucose intake, have
included the use of continuous glucose monitoring (CGM) (86).
In this study, glucose delivery was determined by a computer
guided GIR that was supported by either real time CGM
(intervention), or intermittent BG levels (control). Those in the
intervention arm (using CGM), showed an increased median
time in target (72–144 mg/dL, 4–8 mmol/l), of 84% compared
to 68% in controls.

There are good reasons to ensure that excess glucose delivery
is avoided, as exceeding maximum glucose oxidation rates can
cause increased carbon dioxide production, lipogenesis and fat
deposition including liver steatosis (87). High rates of glucose
infusion and hyperglycaemia can themselves lead to increased
insulin resistance and endogenous glucose production (88). In
appropriately grown preterm newborns the maximum rate of
glucose oxidation has been estimated to be 6–8 mg/kg/min,
compared to term infants, and infants on long term PN where
maximum glucose oxidation rates are 12 mg/kg/min (89). When
determining glucose requirements, and optimal management for
hyperglycaemia it is important to consider the metabolic phase
of illness. During the acute phase of critical illness, such as
sepsis, increasing glucose and nutritional intake will not promote
anabolism and may be detrimental (90). In contrast, in a more
stable preterm infant, where growth and anabolism are the
priority, the approach to hyperglycaemia would normally be to
favor optimizing nutritional delivery. ESPGHAN recommend
parenteral glucose intake of 4–8 mg/kg/min on day 1 (and
during any subsequent acute illness such as infection), rising
to 8–10 mg/kg/min over the subsequent 2–3 days to allow
for growth (7). Both ESPGHAN and the American Society for
Parenteral and Enteral Nutrition recommends maintaining GIRs
(<12 mg/kg/min), but not reducing to <4 mg/kg/min (77). If

hyperglycaemia persists (>10 mmol/l, 180 mg/dL), it is then
recommended that insulin treatment should be started (7).

The Role of Insulin
A number of small single center studies suggest that the use of
insulin can help to maintain nutritional intake. These studies
showed that infants who were hyperglycaemic, and randomized
to treatment with insulin, tolerated higher GIRs, and had greater
weight gain, in comparison to those treated with reduced
glucose intake, who remained catabolic for longer (91–97). These
findings may be related to a decrease in proteolysis, but also
protein synthesis. One small study raised concern that insulin
infusions significantly increased lactic acidosis, and did not
impact on protein synthesis. However, this study infused high
rates of glucose (14–17 mg/kg/min) without the infusion of any
amino acids (98).

There are limited data from larger interventional studies in
the preterm newborn. The NIRTURE Trial, a large multicentre
randomized controlled trial used early insulin treatment prior
to the onset of hyperglycaemia, with the aim of promoting
anabolism. The trial did not demonstrate benefits and was
stopped early on the grounds of futility. The study was important
though in highlighting the high prevalence of clinically “silent”
hypoglycaemia in both study arms. These data were achieved
by uniquely collecting data on glycaemic exposure using CGM
(blinded to the clinical team) and raised concerns about the
challenges of insulin treatment (13).

The use of insulin to achieve “tight” glucose control has been
widely debated since the landmark paper of van den Berghe
which showed dramatic improvements in adult intensive care
outcomes in patients randomized to tight glucose control (99).
Many studies trying to replicate the positive findings of this
study have raised concerns about, or been stopped early, due
to the risk of severe hypoglycamiaemia (100, 101). The largest
adult study showed increased risk of death in the intensive study
arm (OR 1.14; 95% CI 1.02–1.28; P = 0.02), but highlighted
the association of hypoglycaemia with mortality (102). In this
context tight glucose control refers to glucose levels being
maintained within a much narrower “normoglycaemic” range
(typically 4–6 mmol/l), than standard care which aims to prevent
hyperglycaemia (typically >8–10 mmol/l). Further differences
between studies have been highlighted including: underlying
reason for patients requiring intensive care, ability to achieve
target levels of control and the early use of PN (103, 104). The
use of PN having been shown, more recently, to be harmful, in
adult and PICU. Preplanned analyses in these studies showing
harmful effects being related to aminoacids, but not glucose or
lipids (105). There are important differences in the preterm infant
in NICU, compared with the adult in ITU, in relation to the
importance of growth on survival, and differences in prevention
of hyperglycaemia compared to tight glucose control.

The HINT trial is the only trial to explore tight glycaemic
control in preterm infants. In this study the intervention arm
“tight control” targeted glucose levels of 4–6 mmol/L (72–108
mg/dL), compared to the unit standard of care which was 8–
10 mmol/L (144–180 mg/dL). The study showed high rates of
hypoglycaemia in both study arms and variable effects on growth
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parameters (106). The study reported no overall effect on survival
without neurodevelopmental delay, intelligence scores or motor
skills at seven years of age, although there was beneficial effect
in those who actually reached the target of 4–6 mmol/L (72–
108 g/dL), but power was limited for assessing such outcomes.
The effects of hypoglycaemia also had the potential for masking
any effects of prevention of hyperglycaemia. More recently
a large study from the National Swedish EXPRESS Cohort
demonstrated, insulin treatment of hyperglycaemia in the first 28
days of life, was associated with lower 28- and 70-day mortality
(17). However, in this retrospective study there were no clear
criteria either for starting or modifying insulin therapy, or fixed
glucose target within the different study sites.

Challenges in insulin treatment in preterm babies relate to the
combination of rapidly changing insulin sensitivity, the difficulty
of consistent insulin delivery, and the low frequency of glucose
monitoring. Hyperglycaemia itself causes insulin resistance
and following increasing insulin to regain normoglycaemia,
insulin requirements often fall, and this increases the risk of
hypoglycaemia (13). Insulin is easily adsorbed onto intravenous
lines, and the use of large volume syringes for delivery at
small infusion rates makes insulin delivery unpredictable (107,
108). Monitoring of glucose levels in preterm infants is often
infrequent, and studies using CGM have shown that real time
CGM alone, or in combination with computer algorithms, has
the potential to reduce the prevalence of hyperglycaemia without
increasing the risk of hypoglycaemia (91, 109). Furthermore,
a recent international multicentre trial has demonstrated that
the use of CGM in preterm infants can safely support the
targeting of glucose control without causing hypoglycaemia, and
is cost effective (110, 111). However, optimal target glucose levels
remain to be determined.

Hypoxic Ischaemic Encephalopathy
Both hyperglycaemia and hypoglycaemia are common in babies
following perinatal HI insult. The etiology of hyperglycaemia
following HI, in comparison with that of the preterm infant,
is predominantly driven by the effects of stress hormones
and tissue damage from hypoxia. Although hypoglycaemia has
traditionally been considered a more significant risk, there is
increasing evidence that hyperglycaemia is a modifiable mediator
of long-term morbidity (18). Hyperglycaemia is reported in
50% of babies using intermittent BG testing, and CGM has
revealed that exposure to hyperglycaemia is often more frequent
and prolonged (112, 113). Pediatric intensive care studies have
also shown longer duration, higher peak glucose levels, and
increased glucose variability are all associated with mortality and
morbidity (114).

In the analyses of the cool cap study, a multicenter trial
of cooling for HIE, hyperglycaemia was confirmed as an
independent risk factor for poor outcomes at 18 months (18).
Further post-hoc analyses, after adjusting for Sarnat stage and
5min Apgar score, only hyperglycaemic infants randomized
to hypothermia had reduced risk of death and/or severe
neurodevelopmental disability at 18 months (adjusted risk ratio:
0.80, 95% CI 0.66–0.99). This suggests that early glycaemic
profile in infants with moderate-to-severe HIE identifies those

at most risk of multi-organ dysfunction and most likely
to benefit from therapeutic hypothermia (115). In neonates
with encephalopathy, even after adjusting for hypoxia-ischemia
severity, epochs of hyperglycaemia were associated with worse
neural injury, as well as global brain function and seizures
(116, 117). Whether hyperglycaemia causes neuronal injury
or is simply a marker of severe brain injury is yet to be
determined (116, 117).

Many potential causal mechanisms have been implicated
in infants with HIE: dyslipidemia, inflammatory cytokine
production, endothelial dysfunction, hypercoagulation, glucose
toxicity, increased cellular apoptosis, and over-production of
superoxide. However, there are potential differences in impact
related to maturity of the newborn nervous system compared
to similar ischaemic injuries in adults (118). Deleterious
effects on the nervous system may be related to increased
hyperglycaemia-induced blood-brain barrier permeability,
oxidative stress, and microglia activation, which compromise
neuronal and glial cell integrity (62, 119). However, optimal
glucose targets for infants following HI encephalopathy remain
to be determined.

CONCLUSION

Hyperglycaemia is common in newborns requiring intensive
care, particularly in preterm infants, and following perinatal
hypoxia. The pathogenesis and clinical significance varies in
each context, but hyperglycaemia is associated with increased
mortality and morbidity. The limited evidence for optimal
targets that impact on long term outcomes mean controversy
remains regarding thresholds for intervention, and management
strategies. The optimal glucose targets for infants during
the acute phase of critical illness are likely to differ from
those in a more stable state, when trying to achieve growth
and anabolism. The first consideration in the management
of hyperglycaemia must be to ascertain potentially treatable
causes, followed by calculation of the GIR, to ensure it
is not excessive. In term infants who are acutely unwell,
restricting GIRs is likely to be more appropriate, whereas in
stable extremely preterm infants where growth is considered a
primary objective, one might prioritize nutritional intake with
addition of insulin (4). Optimal target glucose levels remain
to be determined but real-time glucose measurements and
innovations in metabolomics will provide a better understanding
of pathological mechanisms. This understanding, combined
with real time CGM and advances in computer algorithms
to provide intelligent closed loop systems, should allow a
safer and more personalized approached to management in
the future.
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