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Children born small for gestational age (SGA) comprise a heterogeneous group due to

the varied nature of the cause. Approximately 85–90% have catch-up growth within the

first 4 postnatal years, while the remainder remain short. In later life, children born SGA

have an increased risk to develop metabolic abnormalities, including visceral adiposity,

insulin resistance, and cardiovascular problems, and may have impaired pubertal onset

and growth. The third “360◦ European Meeting on Growth and Endocrine Disorders” in

Rome, Italy, in February 2018, funded by Merck KGaA, Germany, included a session

that examined aspects of short children born SGA, with three presentations followed by

a discussion period, on which this report is based. Children born SGA who remain short

are eligible for GH treatment, which is an approved indication. GH treatment increases

linear growth and can also improve some metabolic abnormalities. After stopping GH

at near-adult height, metabolic parameters normalize, but pharmacological effects on

lean body mass and fat mass are lost; continued monitoring of body composition and

metabolic changes may be necessary. Guidelines have been published on diagnosis and

management of children with Silver-Russell syndrome, who comprise a specific group of

those born SGA; these children rarely have catch-up growth and GH treatment initiation

as early as possible is recommended. Early and moderate pubertal growth spurt can

occur in children born SGA, including those with Silver-Russell syndrome, and reduce

adult height. Treatments that delay puberty, specifically metformin and gonadotropin

releasing hormone analogs in combination with GH, have been proposed, but are

used off-label, currently lack replication of data, and require further studies of efficacy

and safety.

Keywords: short stature, small for gestational age, Silver-Russell syndrome, GH treatment, puberty, metabolic

abnormalities

INTRODUCTION

Children born small for gestational age (SGA) are defined as having a birth weight and/or
length standard deviation score (SDS) of < −2, based on data from an appropriate reference
population (1). There are multiple underlying causes of the reduced growth and, as a result, the
classification constitutes a heterogeneous group of patients (2). Causes can include nutritional,
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hormonal, vascular, genetic and epigenetic factors, and the
classification includes those who may have experienced
intrauterine growth retardation and who have syndromic
conditions such as Silver-Russell syndrome (SRS) (2, 3).
Approximately 85–90% of children born SGA experience
spontaneous catch-up growth within the first 2 years and
then maintain height comparable with their peers (1, 4–6),
although a small number of very pre-mature (gestational age
<29 weeks) infants born SGA may show catch-up only from 2
to 4 years (7, 8). Lack of catch-up growth and persistent short
stature, and also excessive rapid weight gain in early life, is
associated with subsequent impaired metabolism, including
visceral adiposity, hypercholesterolemia, type 2 diabetes and
cardiovascular disease (8–15), as well as psychosocial problems
(15–17). Children born SGA also tend to have early onset and
faster progression of puberty, with accelerated bone maturation,
and early adrenarche (18–20).

Abnormalities of the GH–IGF-I axis occur in children born
SGA with persistent short stature, with up to 60% reported to
have reduced 24-h GH profile and/or low stimulated GH peak
(2, 21–25). While GH levels range from below normal to above
normal, there often appears to be GH resistance, with IGF-I
concentrations also varying from below to above normal (24–
26). However, short children born SGA who have low IGF-
I concentrations should be tested for GH deficiency, while
those with high IGF-I should be tested for defects of the IGF
receptor gene, IGF1R (27, 28). GH administration is an approved
treatment for children born SGA and who remain short, with
initiation from 4 years of age in Europe, due to the continuing
potential for spontaneous catch-up growth, although from 2
years of age for formulations licensed in the USA (2, 8, 29). GH
therapy increases height velocity, height SDS and adult height
in short children born SGA, and also influences other metabolic
factors in these children (2, 9, 30–34). The pubertal timing and
the quality of the growth spurt affect adult height achieved and,
therefore, influencing pubertal maturation may help to optimize
height outcome (3, 30, 35).

The present report is based on one of the sessions from
a meeting on Growth and Endocrine Disorders in Pediatrics,
held in Rome, Italy, sponsored by Merck KGaA, Germany.
The meeting session was planned to examine the treatment
of children born SGA, particularly in terms of metabolic and
pubertal effects.

EFFECT OF BEING BORN SGA ON
GROWTH AND METABOLISM IN
ADOLESCENCE AND YOUNG ADULTHOOD

It has been established for many years that children born SGA,
particularly with low birth weight, are prone to develop type
2 diabetes mellitus and cardiovascular disease (36, 37). The
exact mechanism of the association of SGA with diabetes and
cardiovascular disease is unknown, although various hypotheses
have been proposed, such as a mis-match between the prenatal
and postnatal environments. Fetal nutritionmay be poor whereas
neonatal nutrition may be better, resulting in low birth weight

and subsequent rapid weight gain, which may affect pancreatic
function (38), possibly through epigenetic changes in DNA
methylation (39). Children born SGA are at risk for rapid
development of decreased insulin sensitivity compared with
those born appropriate for gestational age (AGA), particularly
in those who have catch-up growth (40–43). Initially, mean
fasting insulin concentration is lower in children born SGA than
AGA, but by 3–4 years the mean is greater in the children born
SGA, with increasing insulin resistance. Children born SGA also
develop altered body composition, and by 4 years of age they
may have significantly greater abdominal fat mass and percentage
body fat, and lower lean body mass (2, 10, 43, 44). They also tend
to have less subcutaneous fat, but the same amount of visceral
fat as children born AGA, with an increased ratio of visceral to
subcutaneous fat (2, 44).

In a study of young adults born SGA, fat mass in those
who remained short was not significantly different from that of
peers born AGA, while those born SGA with catch-up growth
had slightly, though not significantly, higher fat mass (45). No
differences in trunk fat or limb fat mass were found. However,
lean body mass was lower in the young adults born SGA, whether
remaining short or with catch-up growth, compared with those
born AGA, suggesting that fetal reprogramming had long-lasting
consequences that remained into adulthood. Insulin sensitivity,
from glucose tolerance tests, was similar in the young adults born
SGA who remained short, compared with those born AGA, but
was significantly lower in the young adults born SGA with catch-
up growth. Thus, body composition and insulin sensitivity may
indicate that in children born SGA, metabolic abnormalities at
young adulthood are more obvious in those who have catch-up
growth rather than those who remain short (40, 43).

Multiple clinical trials in short children born SGA have shown
that GH treatment can increase adult height, although long-
term surveillance data into adulthood continue to be required
(2, 8, 33, 46). Short children born SGA who were treated with
GH until near-adult height were followed longitudinally for
5 years after stopping GH treatment (45). During this period
without exogenous GH, fat mass increased continually, and
lean body mass decreased within the first 6 months and then
remained constant; reassuringly, the GH-induced decrease in
insulin sensitivity was fully reversed within 6 months after
stopping GH treatment, despite the increase in fat mass. Thus,
the loss of pharmacological effects of GH when adolescents born
SGA stopped GH treatment resulted in adverse effects on body
composition, but insulin sensitivity improved. Somatic growth
is not complete at near-adult height and it is possible, therefore,
that further GH treatment could potentially have benefits in the
transition period into adulthood, similar to the transition period
of adolescents with GH deficiency (47–49).

At 5 years after stopping GH, fat mass was similar in the
previously GH-treated young adults born SGA without catch-up
growth to that of young adults born AGA, young adults born
SGA with catch-up growth, and young adults who remained
short and were not treated with GH. Lean body mass was
significantly lower in the GH-treated adults than each of the
other three groups; these patients were the ones with the shortest
length at birth, again suggesting that fetal reprogramming at
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early life resulted in the lower lean body mass. Insulin sensitivity
at 5 years after stopping GH was significantly lower in the
adults born SGA and with catch-up growth, compared with
those born AGA; the young adults born SGA without catch-up,
irrespective of GH treatment, had similar insulin sensitivity to the
young adults born AGA (45). This again suggests that metabolic
alterations are particularly prevalent in children born SGA who
have spontaneous catch-up with rapid weight gain after birth.

Patients born SGA and with persistent short stature generally
go to a pediatrician for evaluation for GH treatment, where
they should be carefully examined for dysmorphic features, skin
abnormalities and head circumference because there may be
other factors involved, including possible genetic and organic
causes. Children who receive GH treatment should be continually
assessed to ensure the original diagnosis is correct, because
some genetic causes may only become apparent later in life.
The cause of the short stature in children born SGA is a major
factor in determining adult outcome of GH treatment (50).
Effectiveness of GH treatment should be monitored from height
growth, but it is also important to evaluate other factors to
ensure safety of treatment. It is recommended to determine IGF-
I level at 3–6 months after starting GH treatment and adjust
GH dose accordingly unless IGF-I insensitivity is suspected
(51), with IGF-I determined annually thereafter. Because GH
effects on metabolic parameters of children born SGA are
limited and with no long-term adverse effects after stopping
treatment, it is debatable whether metabolic and cardiovascular
parameters should be evaluated on a regular basis during GH
treatment. However, individuals born SGA are at increased
risk for metabolic and cardiovascular conditions, and annual
assessments of body weight gain, body mass index, blood
pressure, and fasting glucose and lipid concentrations seem
reasonable, with additional testing when indicated. When GH
treatment is stopped at near-adult height, it is most important
that patients avoid excess weight gain, but further follow-up
depends on potential risk factors, both from the individual
medical history and from the family history.

DIAGNOSIS AND TREATMENT OF
SILVER-RUSSELL SYNDROME

Among children born SGA and with persistent short stature,
multiple potential causes for the condition have been identified.
One specific cause is SRS (OMIM 180860), which is associated
with both prenatal and postnatal retardation of growth. SRS was
first described in the 1950s; however, guidelines for diagnosis
and management were only fully characterized at a consensus
conference in 2015, and the guidelines were endorsed by the
major endocrine societies around the world (52). It was accepted
that, at present, SRS remains based on a clinical diagnosis,
and a scoring system for this was developed, known as the
Netchine-Harbison system (NH-CSS). It comprises six items,
which are being born SGA, postnatal growth retardation, relative
macrocephaly at birth, a protruding forehead, feeding difficulties
and/or low body mass index in early life, and body asymmetry
(53). The scoring system was shown to be highly sensitive (98%)

when compared with known molecular identification and it was
concluded that a diagnosis of SRS may be made if a child presents
with at least four of the six items.

The molecular mechanisms of SRS have been investigated in
recent years, and an underlying molecular cause is identified in
∼60% of cases (52, 54). The molecular causes involve genetic
regions that contain imprinted genes, which are genes that are
only expressed on one allele, either maternal or paternal. The
most frequently occurring causes of SRS are loss of methylation
on chromosome 11p15 (∼50% of patients) and maternal
uniparental disomy for chromosome 7 (mUPD7; 5–10% of
patients). No molecular anomaly was identified in about 40%
of patients with a clinical diagnosis of SRS (52–54); however,
anomalies in a number of other genes have been identified in
recent analyses (55, 56).

The 11p15 region contains two domains that are imprinted:
the first is controlled by the H19/IGF2 intergenic differentially
methylated region (IG-DMR, previously known as imprinting
control region 1, ICR1), which is methylated on the paternal
allele and is responsible for expression of IGF2 during fetal
life; the second is controlled by the KCNQ1OT1 TSS-DMR
(previously ICR2), which controls expression of the cyclin
dependent kinase inhibitor 1C gene (CDKN1C) and the maternal
allele is methylated. Hypomethylation of the paternal allele at IG-
DMR is the most frequently occurring defect in SRS, resulting
in diminished fetal IGF-II concentration and an increase in
maternal expression of theH19 long non-coding RNA, leading to
fetal growth retardation (52, 54, 57). Duplication of the maternal
allele results in overexpression of CDKN1C, which causes a
break in the cell cycle and acts as a growth repressor, again
causing fetal growth retardation (52, 58, 59); CDKN1C gain-
of-function mutations have also been found to result in SRS
(56, 60). Mutations in the oncogenes HMGA2 and PLAG1 have
also been found in familial cases of SRS, due to disruption of IGF2
expression (56, 61, 62).

The consensus conference provided guidelines (52) for
investigation of patients with suspected SRS (Figure 1). The
first assessment should be whether the scoring system indicates
a positive result. If the clinical score is at least 4, then
anomalies in methylation of 11p15 or mUDP7 alleles should
be examined and the presence of anomalies confirms a
diagnosis of SRS. If no anomalies in these alleles are seen, the
possibility of a differential diagnosis should be discussed with
a clinical geneticist; an indicator of a differential diagnosis is
the presence of relative microcephaly, with head circumference
SDS less than height SDS and/or weight SDS, which would
indicate a number of different syndromes to be considered
(52). If the geneticist does not believe there is an evident
differential diagnosis, more complex molecular analysis should
be carried out, including examination of epimutational disomy
at chromosome 14q32, other disomies at mUPD16 and
mUPD20 or mutations of CDKN1C, IGF2, HMGA2, and
PLAG1 (52, 55, 56, 60–63); a positive result for any of these
would provide an alternative close diagnosis. If this further
molecular analysis is negative, then a diagnosis of SRS can
be retained only if the patient has a score of at least 4,
including relative macrocephaly and protruding forehead; the
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FIGURE 1 | Flow chart for investigation and diagnosis of patients with suspected Silver-Russell syndrome. Blue boxes show diagnostic questions, mauve boxes

recommended molecular testing, pink boxes diagnosis not confirmed, and green boxes diagnosis confirmed. Reproduced from: Wakeling et al. (52). aArrange copy

number variant analysis before other investigations if patient has notable unexplained global developmental delay and/or intellectual disability and/or relative

microcephaly; b Insufficient evidence at present to determine relationship to Silver-Russell syndrome, with the exception of tissue mosaicism for 11p15 loss of

methylation; cPreviously known as idiopathic Silver-Russell syndrome.

diagnosis is then clinical SRS with no molecular anomaly at
present identified.

Once a diagnosis of SRS is confirmed, the nutrition of the
patients should be carefully controlled to avoid both under and
over nourishment and limit the amount of adipose tissue. In
the first years of life, nutritional repletion is recommended, with
awareness of possible hazards of rapid postnatal catch-up leading
to later metabolic risk. The nutritional control can be determined
in children aged <4 years from the Water low classification of
weight for height/length (64), with the aim of 75–85% of the
expected value, or from a body mass index for children aged 2–4
years, with a target of −2 to −1 SDS. In children older than 4
years, the target depends on the muscle mass, because a reduced
muscle mass makes body mass index targets excessive; however,
it is important to also try to improve the muscle mass. Long-
term studies of adult patients with SRS are limited at present;
however, a study in 7 adults with SRS showed fat mass index
and trunk fat mass were significantly increased compared with
healthy controls (65).

Cognitive function of patient with SRS may be compromised,
but with heterogeneity in the effects (66). In children aged 6–
16 years, those with SRS due to 11p15 loss of methylation had
cognitive scores similar to control children, whereas those with

SRS due to mUPD7 had significantly lower cognitive scores.
Intellectual functioning in 10 adult patients with SRS due to
11p15 loss of methylation was assessed by Full Scale Intelligence
Quotient and was in the average range, but learning disabilities
and low self-esteem were perceived by 60% of these adults (67).

Children with SRS are at high risk of hypoglycemia and
home monitoring of urinary ketone levels is considered
useful to determine which children need intervention (52).
A plan should be developed for rapid clinic admission and
treatment with intravenous dextrose when the child is ill.
Surgery should be carefully planned due to the increased
risks of fasting hypoglycemia, hypothermia, and possible
difficulties of intubation, and it should be borne in mind that
malnourished children with SRS may not heal well following
surgery (52, 68, 69).

Most children with SRS do not have catch-up growth and
remain short (2, 52), so can benefit from treatment with
GH under the SGA indication. GH treatment can not only
optimize linear growth, but can also improve body composition,
particularly lean body mass, aid psychomotor development and
appetite, and reduce the risk of hypoglycemia. However, some
patients with SRS have sleep apnea and this should be taken into
consideration before and during GH therapy (70). Treatment
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with GH should start as early as possible. Children with SGAmay
show catch-up growth and the European approved treatment
start is at age >4 years, in contrast to the USA where treatment
may start at age >2 years (2, 8). Children with SRS rarely have
catch-up growth and the consensus guidelines suggested that GH
initiation at 2–4 years of age is preferable (52); similar to any
other medication however, the benefit-risk assessment of GH
treatment for children with SRS should be evaluated constantly.
GH deficiency is not commonly found in children with SRS,
but presence or absence does not appear to affect response to
exogenous GH treatment (71). Prior to GH treatment, IGF-
I levels in children with SRS are normal or elevated, are
higher than for patients with other forms of SGA and are
higher in patients with 11p15 anomalies than mUPD7 defects,
suggesting that there may be an element of IGF-I resistance
(72–74). During GH treatment, IGF-I levels increase and may
be higher than the normal range, particularly in children with
11p15 IG-DMR hypomethylation; therefore, IGF-I results may be
difficult to interpret, although should still be monitored at least
yearly (52, 72–74).

Children with SRS can have pre-mature adrenarche, with
early accelerated puberty and a rapid acceleration of bone
age, irrespective of GH treatment (52, 75, 76). Children
should, therefore, be monitored for pre-mature adrenarche and
accelerated bone age should be anticipated, especially from
mid-childhood onwards. In male children with SRS, however,
it may be more difficult to determine puberty start due to
reduced testicular size as a symptom of SRS (77, 78). Pre-
mature adrenarche, with rapid bone maturation, may reduce
the time during which GH can be effective for children with
SRS. Therefore, patients may benefit from personalized treatment
with a gonadotropin releasing hormone (GnRH) analog to delay
puberty and enable continued effects of exogenous GH treatment
(52, 74, 77). However, combined GnRH analogs with GH is not
currently an approved indication; the consensus report suggested
that such treatment should be on an individual basis and further
studies are required to examine effects in patients with SRS (52).

PUBERTAL MATURATION IN PATIENTS
BORN SGA

There remains, at present, a lack of data to determine the
concerns of pubertal development in children born SGA. Studies
have established that pubertal onset occurs earlier in children
born SGA than in children born AGA, although timing appears
appropriate for chronological age and height (18, 19, 79, 80).
Bone maturation during puberty is accelerated, peak height
velocity occurs earlier and for a shorter period of time, fusion of
the growth plates occurs earlier and menarche is earlier, which all
result in a reduced adult height (19, 79, 80). It is believed that this
accelerated pubertal development is related to the rapid weight
gain in early childhood, which causes increased visceral adiposity,
decreased insulin sensitivity and elevated IGF-I concentrations
(81); thus, children born SGA who have catch-up growth have
a higher risk of early and accelerated puberty (19). Pubertal
alterations have been documented to occur in both sexes, but to

be more pronounced in girls than boys (18, 79). GH treatment in
short children born SGA has no apparent effect on age of pubertal
onset or progression of puberty, irrespective of GH dose (82).
There was also no effect of GH on age at menarche or the interval
between breast development and menarche in girls.

Management of metabolic and pubertal abnormalities
requires careful observation and weight control. Intervention
options that have been suggested include treatment with
metformin or with a GnRH analog combined with GH, which
are currently not approved treatments. In children born SGA
who have catch-up growth and a normal height prognosis, a
rapid gain in body weight and accompanying visceral adiposity
are associated with early and rapidly progressing puberty
(43, 83). Therefore, it is important to limit the weight gain in
all children born SGA to try to reduce the adverse metabolic
and pubertal effects. Metformin is associated with reduced
weight gain and has been examined in several off-label studies
in children born SGA, particularly in children with low birth
weight (84–87). Treatment with metformin caused decreases in
central adiposity, insulin resistance and IGF-I levels, which are
pathologically associated with early puberty. In children with
low birth weight and precocious pubarche, metformin treatment
for at least 3–4 years resulted in a delay of menarche by ∼1 year,
prolonged pubertal growth, and augmentation of adult height by
∼4 cm (43, 84, 88).

Similar to the specific group of patients with SRS, off-label use
of GnRH analogs to delay puberty during GH treatment has been
suggested more generally in various studies in patients born SGA
(52, 89), and has been suggested to have no unfavorable effects
on metabolic or psychological health at adult height (17, 35).
In a study of short children born SGA who were treated with
GH but remained short at puberty onset, with a predicted adult
height<−2.5 SDS, additional treatment with a GnRH analog was
given for 2 years (90). Adult height in these patients was similar
to those who were taller at puberty onset and treated with GH
alone, suggesting that children born SGA who remained short
at puberty onset could benefit from combined GH plus GnRH
analog treatment. The study also suggested that, in combination
with the GnRH analog, a higher than approved daily GH dose
of 2 mg/m2 could improve adult height of short children born
SGA to a greater extent than the standard dose of 1 mg/m2/day.
However, IGF-I SDS increased above 2 for 33% of the higher
GH dose group vs. 6% of the lower dose group, although IGF-
I concentrations were significantly lower in the patients treated
with combined GnRH analog plus GH than in those treated
with GH alone (90, 91). Percentage trunk fat increased in both
groups treated with GnRH analog, fat mass increased in patients
receiving GnRH analog plus the lower GH dose and lean body
mass increased only in the group treated with the high GH
dose (91). However, blood pressure, lipid profile and insulin
sensitivity were similar for children born SGA treated with GnRH
analog plus GH and those treated with GH alone, indicating no
negative effects of the combined treatment on metabolic and
cardiovascular parameters. In the children treated with GnRH
analog, puberty started within the normal age range, although
pubertal duration after stopping GnRH analog was shorter than
duration in children treated with GH only (89).
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CONCLUSIONS

The majority of children born SGA have catch-up growth
within the first few postnatal years and there is currently no
evidence to recommend routine investigation of all children born
SGA. However, rapid catch-up growth can increase the risk of
metabolic syndrome and early puberty; therefore, it is advised
that these patients should be followed up by the pediatrician
in routine clinical visits to monitor body composition and
metabolic parameters. For those children who remain short,
GH treatment improves adult height outcome. Regular follow-
up during GH treatment is required to ensure effectiveness
of the treatment and to re-evaluate the original diagnosis to
ensure it is correct. After stopping GH treatment at near-
adult height, metabolic parameters return to normal and long-
term GH treatment appears to have no unfavorable effects on
metabolic and cardiovascular health in adulthood. However, the
pharmacological effects on body composition are lost when GH
treatment is stopped, and fat mass increases while lean bodymass
decreases. Continued follow-up after stopping GH treatment
depends on potential risk factors, although patients should always
be cautioned against excess weight gain.

Children born SGA who show specific defined characteristics,
according to recent guidelines, may be assessed for a diagnosis of
SRS, particularly on the basis of molecular evaluations. Children
diagnosed with SRS almost always remain short and benefit
from GH treatment starting as early as possible. However,
there is currently limited information regarding adult patients
with SRS, although body composition may be impaired, with
increased fat mass index and trunk fat, and it is important to
maintain contact with such patients. Case studies of adults with
SRS due to 11p15 hypomethylation have reported problems of
hypertension, dilated cardiomyopathy, type 2 diabetes mellitus
and hypercholesterolemia, but there is little information to
indicate generalization of such conditions. Further studies are
required to establish a cohort of adults with SRS to examine the
consequences with regard to the long-term metabolic risks.

Children who are born SGA and remain short, including those
with SRS, tend to have earlier and rapidly progressing puberty,

with faster bonematuration and a shorter period of pubertal peak
height velocity, associated with metabolic abnormalities such as
visceral adiposity. As a consequence, these children remain short
at adult height. However, evidence for treatment is limited, with
few longitudinal clinical trials. There is a lack of replication
studies of off-label use ofmetformin to reduce adiposity and delay
puberty in short children born SGA, and metformin is associated
with gastrointestinal adverse events. There are also limited
studies of off-label use to delay puberty with a GnRH analog, for
at least 2 years, in combination with GH, in children born SGA
who remain short at onset of puberty. The studies that combined
a GnRH analog with GH treatment indicated a possible increase
in adiposity with GnRH analog treatment, although this was
reduced after GnRH analog was stopped. In children born SGA
with a low predicted adult height, combined GnRH analog and
GH treatment may improve adult height outcome, without long-
term negative metabolic or cardiovascular effects. Thus, evidence
for current therapies to modulate pubertal growth in children
born SGA is limited and further studies are required.
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