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X-linked inhibitor of apoptosis (XIAP) deficiency is a rare inborn error of immunity first

described in 2006. XIAP deficiency is characterised by immune dysregulation and a broad

spectrum of clinical manifestations, including haemophagocytic lymphohistiocytosis

(HLH), inflammatory bowel disease (IBD), hypogammaglobulinemia, susceptibility to

infections, splenomegaly, cytopaenias, and other less common autoinflammatory

phenomena. Since the first description of the disease, many XIAP deficient patients

have been identified and our understanding of the disease has grown. Over 90

disease causing mutations have been described and more inflammatory disease

manifestations, such as hepatitis, arthritis, and uveitis, are nowwell-recognised. Recently,

following the introduction of reduced intensity conditioning (RIC), outcomes of allogeneic

haematopoietic stem cell transplantation (HSCT), the only curative treatment option for

XIAP deficiency, have improved. The pathophysiology of XIAP deficiency is not fully

understood, however it is known that XIAP plays a role in both the innate and adaptive

immune response and in immune regulation, most notably through modulation of tumour

necrosis factor (TNF)-receptor signalling and regulation of NLRP3 inflammasome activity.

In this review we will provide an up to date overview of both the clinical aspects and

pathophysiology of XIAP deficiency.

Keywords: XIAP deficiency, X-linked lymphoproliferative disease, haemophagocytic lymphohistiocytosis,

inflammatory bowel disease, inflammasome, haematopoietic stem cell transplantation, NOD2, BIRC4

INTRODUCTION

X-linked inhibitor of apoptosis (XIAP) deficiency is a rare inborn error of immunity caused by
mutations in the XIAP/BIRC4 gene. The disease is estimated to occur in 1–2 per million live male
births (1). XIAP deficiency was first described in 2006 and is associated with a variety of disease
manifestations, including recurrent haemophagocytic lymphohistiocytosis (HLH), inflammatory
bowel disease (IBD), hypogammaglobulinemia, severe and/or recurrent infections, splenomegaly,
and cytopaenias (2–4). However, as more patients have been identified over the years, other disease
manifestations are now well-described. Treatment generally consists of immunosuppression and,
in severe cases, allogeneic haematopoietic stem cell transplantation (HSCT). The XIAP protein is
believed to be involved in both the innate and adaptive immune response. Furthermore, XIAP
has a role in regulation of inflammasome activity (3, 5, 6). However, the pathophysiology of XIAP
deficiency remains to be fully comprehended. This review will provide an up to date summary of
our understanding of XIAP deficiency.
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HISTORY

The XIAP/BIRC4 gene was first characterised in 1996
(7–9). However, XIAP deficiency underlying a primary
immunodeficiency disorder was not described until 2006, when
Rigaud et al. (2) found pathogenic variants in XIAP in male
patients from 3 families with X-linked lymphoproliferative
syndrome (XLP) phenotypes who lacked SH2D1A mutations.
Following this initial report, XIAP deficiency was classified
as XLP-2, while signalling lymphocytic activation molecule
(SLAM)-associated protein (SAP) deficiency was referred to as
XLP-1. XIAP deficient patients were initially observed to suffer
from similar symptoms to SAP deficient patients, including HLH
that was frequently triggered by an EBV infection, splenomegaly,
cytopaenias, and hypogammaglobulinemia (2, 10). However,
over time it became clear that the clinical features of XIAP
deficiency differ significantly from those observed in SAP
deficiency. Most striking is the fact that XIAP deficient patients
do not develop lymphomas (2, 3, 11). Additionally in XIAP
deficiency, HLH generally has a milder disease course with a
lower mortality rate, but occurs more frequently and is often
recurrent (1, 3, 12–14). A significant number of XIAP patients
suffer from colitis, a disease manifestation that is observed
less frequently in SAP deficient patients (4, 11, 12, 15, 16).
Underlying these distinct disease manifestations is a difference
in disease pathophysiology. Contrary to SAP deficiency, T and
NK cell-cytotoxicity responses are normal, including those
specific for EBV, as are numbers of switched memory B cells
(2, 3, 17). On a genetic level no relation between the SH2D1A
and XIAP/BIRC4 genes has been identified, despite the fact that
the two genes are localised in close proximity of each other in
Xq25 (12, 18). Subsequent clinical observations led to a proposal
that XIAP deficiency more readily fit the classical phenotype
of familial HLH (FHL) (12), however a significant number of
XIAP deficient patients do not develop HLH (4, 11, 14). Today,
XIAP deficiency is regarded primarily as a disorder of immune
dysregulation and hyperinflammation.

GENETICS

XIAP is encoded by the XIAP/BIRC4 gene, which consists of 6
coding exons. To date over 90 disease causing mutations have
been described (Figure 1). Mutations are distributed along the
length of the gene and include nonsense and missense mutations,
large whole exon deletions, small insertions and deletions,
often leading to a frameshift mutation, and intronic mutations.
Nonsense mutations and deletions generally lead to absence of
XIAP protein, whereas missense and splice site mutations may
lead to residual expression of full-length or truncated, but non-
or dysfunctional protein. Our updated overview of all known
mutations corroborates the observation that missense mutations
cluster in two hotspots that target either the BIR2 domain or the
RING domain, highlighting the importance of these two domains
in XIAP function (1, 5, 19). There is no clear correlation between
genotype and phenotype, as shown by the large variability in
clinical manifestations observed in affected siblings (4, 11, 20–
22). Speckmann et al. (4) even found that neither the nature

of the mutation, nor residual protein expression was correlated
to clinical presentation. In contrast, Pachlopnik Schmid et al.
found that XIAP deficient patients with null mutations more
frequently developed HLH (14). It is likely that other genetic and
environmental factors influence the clinical phenotype.

Female carriers of a XIAP/BIRC4 mutation are generally
asymptomatic. However, symptomatic female carriers have been
described, expressing a variety of symptoms, including HLH-like
disease, colitis and skin manifestations (21, 23, 24). Studies show
that in the peripheral blood leukocytes of symptomatic female
carriers, X-chromosome inactivation is either random or skewed
to the mutant allele. In contrast, X-chromosome inactivation
is skewed towards the wild type allele in asymptomatic female
carriers, suggesting that cells expressing wild type XIAP have a
selective survival advantage, possibly due to the anti-apoptotic
activity of XIAP (2). Why certain female carriers have an
abnormal inactivation pattern and whether the severity of the
clinical presentation depends on the degree of X-inactivation and
the corresponding residual expression of wild type XIAP protein
and function in female carriers, remains to be discovered.

XIAP PROTEIN STRUCTURE AND
FUNCTION

XIAP is a highly conserved, ubiquitously expressed protein
belonging to the inhibitor of apoptosis (IAP) family of proteins.
It has important structural and functional characteristics in
common with cIAP-1 and cIAP-2. The protein is 497 amino acids
long and consists of three zinc-binding baculovirus IAP repeat
(BIR) domains (hallmarks of IAPs), a ubiquitin-associated (UBA)
domain and a really interesting new gene (RING) finger domain
(Figure 2) (9, 37). The BIR domains directly inhibit caspase-
3, −7 and −9, giving XIAP its anti-apoptotic activity (18, 25–
27, 37–39). Besides XIAP’s well-known anti-apoptotic properties,
more recent studies have shown that XIAP has key functions
in immunity (Figure 2). XIAP’s BIR domains are involved in
non-caspase protein interactions by binding to a specific peptide
sequence, the IAP-binding motif (IBM) (35). These interactions
mediate XIAP’s role in various signalling pathways. The UBA
domain can bind directly to polyubiquitin (polyUb) chains,
thereby enabling XIAP to participate in Ub-dependent signalling
pathways (34). Finally, the RING domain has E3 ubiquitin
ligase activity, enabling XIAP to target proteins for proteasomal
degradation or alter the activity of modified proteins (35).

DISEASE PATHOPHYSIOLOGY

Our understanding of the key functions XIAP plays in the
immune response (Figures 3, 4) is expanding. Through its anti-
apoptotic functions, XIAP is involved in the adaptive immune
response. T cells from XIAP deficient patients, particularly
invariant natural killer T cells (iNKT) and mucosal-associated
invariant T (MAIT) cells which express elevated levels of caspases
that are inhibited by XIAP, have an increased sensitivity to
activation-induced cell death (AICD) (2–4, 51, 52). Thus, it is
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FIGURE 1 | Overview of all disease causing mutations in the XIAP/BIRC4 gene that have thus far been reported. The position of each of the reported mutations

associated with XIAP deficiency is depicted along the XIAP protein and gene structure. Shown are the 6 coding exons that are present in the XIAP/BIRC4 gene and

the 5 functional domains of the XIAP protein. Mutations are grouped by mutation type. Missense mutations cluster in the BIR2 and RING domain of the XIAP protein.

thought that upon infection, expansion of virus-specific T-cells
is suboptimal in XIAP deficient patients.

Besides its anti-apoptotic role however, XIAP is also involved
in other signalling pathways that are essential for the innate
immune response. Firstly, XIAP is required for NOD1 and
NOD2 signalling via the ubiquitination of RIPK2, which results
in activation of NF-κB and MAPK pathways and secretion of
pro-inflammatory cytokines and chemokines (Figure 3A) (5,
32, 33, 36, 40). NOD-like receptors (NLRs) are intracellular
pattern recognition receptors (PRRs) involved in the recognition
of degraded products of peptidoglycans from the bacterial
cell wall, thereby playing an important role in the innate
immune response (5, 36, 40). NOD2, the most studied NLR
in relation to XIAP deficiency, is expressed mainly by cells
of haematopoietic origin and by Paneth cells in the gut, and
is activated by muramyl dipeptide (MDP), a constituent of
Gram-negative and Gram-positive bacteria (41, 42). Upon ligand
binding, XIAPmediates the ubiquitination of RIPK2 and recruits

the linear ubiquitin chain assembly complex (LUBAC) to the
NOD receptor, which is essential for NOD2 mediated NF-κB

activation (5, 36, 40, 43–45).

Secondly, XIAP is necessary for Dectin-1 signalling
(Figure 3A) (28). Dectin-1 is a transmembrane PRR that is
involved in antifungal immunity through recognition of β-
glucan, a major carbohydrate structure found in fungal cell walls
(53). Upon Dectin-1 activation XIAP binds and ubiquitinates
BCL10, an essential step for NF-κB and MAPK activation,
cytokine production and phagocytosis (28).

Furthermore, XIAP is important in regulating the activation
of the NLRP3 inflammasome (Figure 3B). XIAP loss results
in dysregulation of classical caspase-1/NLRP3 inflammasome
activation, overproduction of pro-inflammatory cytokines and
cell death (6, 40, 48, 50, 54–57). First described was the inhibitory
effect XIAP has on the ripoptosome, a death-inducing complex
comprised of RIKP1, FADD and caspase-8, following both
TNFR1 and TLR signalling. This inhibitory effect appears to be
mediated by the regulation of RIPK1 ubiquitination by XIAP
in a RIPK3-dependent manner (6, 46–48). More recently, XIAP
also has been shown to play a role in TNFR2 signalling. In this
context, XIAP inhibits the proteasomal degradation of cIAP1
that follows TLR-MyD88 induced TNFR2 signalling. In case of
XIAP loss, the degradation of cIAP1 leads to inflammasome
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FIGURE 2 | XIAP’s protein domains and their individual specific protein interactions and functions. Well-known is that XIAP’s BIR2 and 3 domains directly inhibit

caspase-3, −7 and −9 (18, 25–27). BIR1 has been isolated as the BCL10-binding region within XIAP. This interaction plays a role in the Dectin-1 signalling pathway

(28). Furthermore, BIR1 recruits the TAB1/TAK1 complex, which is essential for activation of the NF-κB and MAPK pathways (29–31). BIR2 interacts with RIPK2,

which forms a necessary step in the NOD1/2 signalling pathways leading to NF-κB and MAPK activation (5, 32, 33). The UBA domain is able to directly bind

polyubiquitin chains and is required for activation of NF-κB, likely via its binding to polyubiquitinated NEMO (34). The C-terminal RING finger domain of XIAP has E3

ubiquitin ligase function, enabling XIAP to target proteins for proteasomal degradation or alter protein function (35). For example, the ubiquitin ligase activity of XIAP is

critical for NOD2 mediated activation of NF-κB, via the polyubiquitination of RIKP2 (36). Created with BioRender.com.

activation (49). XIAP also mediates RIPK1 kinase activity and
ROS production that occur upon TNFR2 activation, thereby
inhibiting the activation and upregulation of the canonical
inflammasome (50). It has become clear that the role of XIAP
in inflammasome regulation is important, but complex and
not yet fully understood. Surprisingly, patients with Cryopyrin-
associated periodic syndrome (CAPS), which is caused by a gain-
of-function mutations in the NLRP3 gene, do develop recurrent
fever, uveitis and arthritis, similar to XIAP deficient patients, but
do not develop HLH, splenomegaly or IBD (1, 58, 59).

Finally, recent studies have shown that XIAP is involved in the
autophagic elimination of intracellular bacteria and is required
for the efficient fusion of lysosomes with autophagosomes
(60, 61). Overall, it is clear that XIAP is important for
both the clearance of pathogens and the regulation of the
inflammatory response.

It is theorised that in XIAP deficiency there is abnormal
persistence of pathogens due to the ineffective immune response,
characterised by a decreased cytokine production by myeloid
cells and subsequent impaired attraction of neutrophils and
phagocytes. Additionally there is uncontrolled inflammasome
activation, with overproduction of pro-inflammatory cytokines,
and death of lymphocytes and myeloid cells (Figure 4). Overall
these processes result in a chronic state of hyperinflammation,
which can lead to HLH, IBD, HLH-like disease, arthritis and
other inflammatory phenomena.

Most likely, the dysregulation of inflammasome activation
plays an important role in the occurrence of HLH in XIAP
deficiency (6, 56, 57). Immunisation of mice with alum, an

agent that induces an inflammatory response primarily driven
by NLRP3 inflammasome activation, caused splenomegaly and
elevated splenic infiltration of inflammatory cells, which is
reminiscent of the splenomegaly observed in XIAP deficient
patients (6). In addition, dysregulation of inflammasome
activation causes recurrent HLH, autoinflammation and elevated
IL-18 levels in humans that have an activation mutation in the
NLRC4 inflammasome (62).

In contrast, it seems that impaired NOD2 signalling is
important for the development of IBD in XIAP deficiency.NOD2
is the most important susceptibility gene for the development
of Crohn’s disease, indicating the importance of NOD signalling
in maintaining intestinal homeostasis (63–65). NOD2 signalling
in Paneth cells normally results in secretion of chemokines
such as IL-8 and MCP-1. Following impaired signalling,
reduced chemoattraction of granulocytes to the gut leads to
reduced clearance of pathogens and the chronic granulomatous
inflammation that is seen in Crohn’s disease (42, 66–72). On the
other hand, diminished IL-10 production, which has important
anti-inflammatory functions, upon defective NOD2 signalling
contributes to the loss of immune regulation (42, 68, 73).
This is supported by the fact that IL-10 and IL-10 receptor
mutations lead to severe very-early-onset IBD (74). It is likely
that other processes also play a role in the aetiology of IBD,
such as the impaired NOD1 signalling, diminished xenophagy of
intracellular bacteria and the increased susceptibility to apoptosis
of MAIT and iNKT cells, which are important cells for the gut
immune homeostasis (32, 75, 76). Complete remission of IBD has
been described post-HSCT, confirming that the cause most likely
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FIGURE 3 | XIAP plays a key function in various immune pathways. (A) XIAP is required for pattern recognition receptors (PPR) mediated innate immune responses. (i)

XIAP is essential for the NOD1/2 induced activation of the NF-κB and MAPK pathways and secretion of pro-inflammatory cytokines and chemokines (40). NOD1 and

(Continued)
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FIGURE 3 | NOD2 are intracellular PRRs that bind DAP and MDP, respectively (41, 42). Upon ligand binding, XIAP, together with cIAP1/2, ubiquitinates RIPK2, which

subsequently acts as a scaffold for the TAK/TAB1 and IKK complexes, leading to activation of the MAPK and NF-κB pathways, respectively (5, 36, 40). The TAK/TAB1

also links to the IKK complex, thereby inducing activation of the NF-κB pathway (5, 36, 43, 44). Upon NOD activation, XIAP also recruits LUBAC, which in turn

conjugates linear Ub chains to RIPK2. The concurrent ubiquitination of RIPK2 by XIAP and LUBAC is necessary for efficient activation of the canonical IKK for NF-κB

activation (36, 44, 45). (ii) XIAP is necessary in Dectin-1 signalling. Dectin-1 is a transmembrane PRR that detects β-glucan. Upon Dectin-1 stimulation, XIAP binds

and ubiquitinates BCL-10, which is essential for the activation of the NF-κB and MAPK pathways and cytokine production. BCL-10 is also involved in

Rac1-dependent phagocytosis, which again relies on ubiquitination of BCL-10 by XIAP (28). (B) XIAP regulates the activation of inflammasomes via TLR/TNFR

signalling. (i) Following TNFR1 and TLR signalling, RIPK3 can recruit RIKP1 to activate caspase-8 (46, 47). In this process, XIAP has an inhibitory effect on the

ripopotosome by controlling the ubiquitination of RIKP1 in a RIPK3-dependent manner (6, 48). (ii) XIAP inhibits MLKL necroptotic signalling, which is promoted by

RIPK3 in the absence of caspase-8 (48). (iii) TLR-MyD88 signalling causes the proteasomal degradation of cIAP1 and its adaptor TRAF2 by inducing TNF and TNFR2

signalling. This proteasomal degradation is inhibited by TLR-TRIF induced IFN-β. Loss of XIAP promotes LPS-induced cIAP1 degradation. Subsequently, cIAP1 loss in

the absence of XIAP promotes TLR-induced RIPK3 caspase-8 and IL-1β activity, eventually leading to IL-1β maturation, caspase-8 cleavage and enhanced cell death

(49). (iiii) TNFR2 activation acts as a signal 1 for priming the canonical inflammasome and induces expression of pro-inflammatory cytokines. XIAP loss and TNFR1

signalling play a role as signal 2 for activation of the inflammasome. This is mediated by RIPK1 and ROS production. In the absence of XIAP, TNFR2 stimulation leads

to TNF production, followed by TNFR1 mediated cell death (50). Created with BioRender.com.

FIGURE 4 | Simplified model of the disease pathophysiology underlying the inflammatory phenomena that are observed in XIAP deficiency. In XIAP deficiency, both

the adaptive immune response and the innate immune response are compromised. Additionally, intracellular pathogens are less effectively cleared through xenophagy

in the absence of XIAP. Taken together, this results in the persistence of pathogens, which, in turn leads to uncontrolled activation of inflammasomes when regulation

by XIAP is lacking. Overall, the result is overproduction of pro-inflammatory cytokines and cell death, leading to a chronic state of hyperinflammation, which can

manifest as HLH, IBD, HLH-like disease, arthritis and other inflammatory phenomena. Created with BioRender.com.

involves haematological lineages. Furthermore, XIAP expression
was found to be strongly reduced in monocytes from female
carriers suffering from IBD, whilst expression in lymphocytes was
normal, suggesting a predominant role for myeloid cells (21).

CLINICAL MANIFESTATIONS

Immune dysregulation leads to a range of clinical manifestations
in XIAP deficiency including recurrent HLH which is
often triggered by EBV infection, IBD, splenomegaly,
hypogammaglobulinemia, cytopaenias, and autoinflammatory
phenomena (1–3, 21). Table 1 summarises the occurrence of
common disease manifestations and their observed frequencies.

There may be an intrinsic selection bias in many of the reported
case series as a result of the study design. For example, in
the paper from Rigaud et al. all patients were first diagnosed
with XLP based on their clinical phenotype (2), Aguilar et
al. focused their study on patients with colitis (21), while
others have focussed on identifying monogenetic causes of
early-onset IBD (83, 109), or on patients who have been
treated with allogeneic HSCT (77). The clinical phenotype
of XIAP deficient patients is highly variable; many different
symptoms, that all can occur independently from each other,
have been described to date (Tables 1, 2). Patients may suffer
from one or multiple symptoms during their disease course.
In addition, age of onset of disease is highly variable, with
some patients presenting as early as the neonatal period, while
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TABLE 1 | Occurrence of common clinical characteristics of XIAP deficiency reported to date.

(2) (3) (14) (22) (11) (77) (4) (78) (79) (21) (24) (80) (81) (82) Case reports

and small case

series (10, 12, 23,

51, 83–108)

Total*

No. of patients 12 10 30 7 9 19 27 10 12 17 6 17 29 7 47 226

No. of families 3 8 11 1 6 NA 17 9 11 11 1 12 19 6 38

Family History NA 5 (50) NA 7 (100) 6 (67) NA NA 4 (40) NA NA 6 (100) NA 19 (66) 2 (29) 4

HLH 11 (92) 9 (90) 22 (73) 0 (0) 6 (67) 16 (84) 10 (37) 10

(100)

7 (58) 7 (41) 1 (17) 11 (65) 23 (79) 3 (43) 30 137 (61%)

EBV-HLH 8 (67) 3 (30) 15 (50) 0 (0) 4 (44) 6 (32) 6 (22) 4 (40) NA NA 0 NA 8 (28) 2 (29) 9 56 (25%)

Recurrent HLH or

HLH-like illness

6 (50) 6 (60) 20 (67) 1 (14) 5 (56) NA NA 8 (80) 5 (42) NA 1 (17) 10 (59) NA 2 (29) 19 73 (32%)

Splenomegaly 9 (75) 9 (90) 20 (67) 5 (71) 4 (44) NA 17 (63) 7 (70) 7 (58) 7 (41) 1 (17) 6 (35) 11 (38) 4 (57) 25 108 (48%)

Cytopenia NA 9 (90) NA 3 (43) 6 (67) NA NA 8 (80) 1 (8) NA 1 (17) 1 (6) 13 (45) 2 (29) 21 48 (21%)

Hypogammaglobulinemia 4 (33) 2 (20) 8 (27) 3 (43) 2 (22) NA 4 (15) 1 (10) 2 (17) NA NA 4 (24) 3 (10) 1 (14) 5 32 (14%)

IBD 2 (17) 0 5 (17) 2 (29) 2 (22) 2 (11) 7 (26) 1 (10) 1 (8) 17 (100) 4 (67) 6 (35) 13 (45) 0 14 51 (23%)

Hepatitis 0 0 0 1 (14) 0 0 1 (4) 0 0 0 0 0 NA 0 4 6 (3%)

Uveitis 0 0 0 0 0 0 1 (4) 0 0 0 0 0 NA 0 1 2 (1%)

Arthritis 0 0 0 0 0 0 1 (4) 0 0 1 (6) 1 (17) 0 NA 0 0 2 (1%)

Skin abscesses 0 0 0 0 0 0 1 (4) 0 0 5 (29) 3 (50) 0 NA 0 2 11 (5%)

Recurrent/complicated

infections

0 2 (20) 2 (7) 5 (71) 1 (11) 3 (16) 0 0 0 0 3 (50) 0 NA 1 (14) 6 22 (10%)

Age at onset in years

(median, range)

3.5 - 4 6 0.5 1 6 1.25 4 7 NED 1.3 3 3.5 -

(0.6–22) (Infancy-

8)

(0.1–22) (1–21) (0.2–1.7) (0.2–17) (0.1–20) (0.1–3) (0.25–17) (0–20) (0.1–14) (0.1–17) (0–5.3) 0–16

No. of patients with

other manifestations

0 0 4 (13) 0 0 2 (11) 5 (19) 0 1 (8) 5 (29) 3 (50) 3 (18) NA 0 11

Asymptomatic patients 0 1 (10) 1 (3) 1 (14) 1 (11) 1 (5) 2 (7) 0 1 (8) 0 0 1 (6) 0 1 (14) 5

Survival 8 (67) 7 (70) 17 (57) 4 (57) 7 (78) 7 (37) 26 (96) 8 (80) 12 (100) 14 (82) 4 (67) 15 (88) 26 (90) 6 (86) 36

Numbers indicate the number of patients and, in brackets, the relative frequency in percentage, unless otherwise specified. Data from case reports and small case series with ≤5 patients are summarised in one column. NA, not

assessed; NED, not enough data. *Some patients may have been reported in more than one publication.
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others remain symptom free until adulthood. Asymptomatic
XIAP deficient males have also been identified by family testing
(4, 11).

More than half of the reported XIAP deficient patients develop
HLH. HLH is a life-threatening syndrome characterised by
hyperinflammation caused by an uncontrolled and ineffective
immune response, in which activated T lymphocytes and
macrophages accumulate in organs, and produce high levels
of pro-inflammatory cytokines, such as IFN-γ, TNF-α and IL-
6, resulting in tissue damage and organ failure (110, 111).
The observed high risk for HLH is at least partly related
to dysregulation of the NLRP3 inflammasome. Accordingly,
patients are known to have chronically elevated IL-18 levels
(78, 112). In many cases HLH is triggered by an EBV infection,
however patients have also been described to develop HLH in
the course of a CMV or HHV6 infection, or in the absence of
any clear trigger (1, 4). Given the strong association between
HLH and XIAP deficiency, measurement of XIAP expression
should be considered at an early stage of evaluation of patients
presenting with HLH. Patients presenting with macrophage
activation syndrome (MAS) should also be considered for XIAP
deficiency testing. There is clinical overlap between HLH and
MAS, though the driving pathophysiologic process is thought
to differ, but the discussion of the distinctions and the best
classification to use for patients with XIAP deficiency is beyond
the scope of this review.

In XIAP deficiency, it is not uncommon for patients to
suffer from recurrent episodes of HLH, or HLH-like disease.
During the latter, patients often have fevers, cytopaenias,
splenomegaly or combinations of these, but do not fulfil ≥

5 of the HLH-2004 diagnostic criteria, or may technically
fulfil them but have mild or transient symptoms. This most
likely represents attenuated forms of HLH, and in the authors’
experience, may be responsive to brief courses of corticosteroids.
In support, following splenectomy histopathology revealed
haemophagocytosis in the spleen of a XIAP deficient patient
(1, 14). Splenomegaly is a classical manifestation of XIAP
deficiency, with approximately half of the patients having
persistent splenomegaly or experiencing one or more episodes of
splenomegaly (4).

Already in the first description of XIAP deficiency Rigaud
et al. identified two patients who suffered from colitis (2).
Subsequently, Worthey et al. described XIAP deficiency as
the underlying disorder in a patient who presented with
IBD (51). Today, IBD is a well-recognised manifestation of
XIAP deficiency. It strongly resembles Crohn’s disease clinically
and histologically and is generally severe and refractory to
immunosuppressive therapy. Notably, XIAP deficiency can be
observed in up to 4% of paediatric-onset IBD and is now
considered a Mendelian cause of IBD. Genomic screening
for XIAP deficiency and other monogenetic disorders should
be considered in paediatric onset or severe and therapy
refractory IBD (21, 83, 84, 109, 113, 114). Female carriers of
pathologic XIAP mutations can also develop IBD (21, 24).
Endoscopy reveals patchy disease, alternating inflammatory
lesions with healthy mucosa. All segments of the gastrointestinal
tract can be affected, including the stomach, ileum, anus

TABLE 2 | Overview of infrequent disease manifestations that have been

described in XIAP deficient male patients.

Non-classical manifestation in XIAP deficiency No. of

patients

References

Gastro-intestinal Celiac-like disease 2 (4)

Eosinophilic colitis 1 (97)

Hepatic Cholangitis 4 (14, 21)

Granulomatous hepatitis 1 (87)

Other liver disease 3 (14, 77, 105)

Renal Acute kidney disease 1 (101)

Renal failure 1 (21)

Dermatologic Erythema Nodosum 2 (4, 24)

Folliculitis 2 (24, 98)

Epidermolysis bullosa

dystrophica

1 (24)

Cutaneous Crohn’s Disease 1 (83)

Cardiovascular IgA vasculitis with nephritis 1 (98)

Takayasu arteritis 1 (98)

Coronary artery dilatation 1 (101)

Ventricular septal defect 1 (77)

Haematological Coagulopathy 1 (85)

Pulmonary Granulomatous and

lymphocytic interstitial lung

disease

1 (87)

Nodular lung disease 1 (77)

Respiratory failure 1 (91)

Infectious Giardiasis 2 (4)

Cryptococcosis 1 (14)

EBV-related pancreatitis 1 (90)

Persistent urethritis 1 (89)

Malignancy Malignancy 2 (21, 80)

Neurological Facial palsy 1 (4)

Encephalitis 1 (80)

Musculoskeletal Arthralgia 3 (21, 79, 85)

JIA 1 (80)

Other Multisystem LCH 1 (103)

and, in the majority of the cases, the colon (14, 21).
Patients may suffer from severe (perianal) fistulae, ulcerations,
recurrent strictures and abscesses (4, 14, 21, 51). Infants
and young children often present with severe diarrhoea and
failure to thrive. Histopathology reveals acute inflammatory
lesions, including crypt abscesses, polymorphic infiltrations
and epithelioid granulomas in combination with chronic
inflammation. Generally, colitis presents at an early age, however,
age of onset has been shown to vary widely, ranging from the
postnatal period well into adulthood (21, 81). Disease course can
be very severe and IBD related mortality in XIAP deficiency has
been reported to be relatively high, estimated to be around 10–
40%, usually due to gastrointestinal haemorrhage (1, 14). Besides
colitis, other gastrointestinal manifestations have also been
described in context of XIAP deficiency, including coeliac-like
disease characterised by blunted villi and lymphocytic infiltrates,
chronic diarrhoea and severe or chronic parasitic infections (4).
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Hypogammaglobulinemia, which may be mild and transient,
occurs in up to one third of the patients (14, 16). The aetiology
of hypogammaglobulinemia in XIAP deficiency seems to differ
from that in SAP deficiency. In the latter, a decrease in Ig-
isotype switched B-cells is observed, due to a block in germinal
centre formation. In contrast, in XIAP deficiency memory B-
cell levels are generally normal and the underlying cause of
hypogammaglobulinemia is unknown. Various theories on the
aetiology have been proposed, including increased AICD of B-
cells and the effect of immunosuppressive treatment (14).

Previous reports have shown that ∼7% of XIAP deficient
patients suffer from other, more rare, inflammatory
manifestations (Table 2) (1). With numbers of identified
cases increasing, it has become clear that some of these
disease manifestations are not uncommon. The importance
of recognising these symptoms as possible manifestations
of XIAP deficiency should be emphasised. Firstly, hepatitis
has been described in various patient cohorts. It is unclear
if the liver disease should be considered as an incomplete
form of HLH (1, 14). In addition, uveitis and arthritis are
now well-recognised manifestations of XIAP deficiency.
Both have been described to be recurrent, occurring
at a young age and, in the case of uveitis, difficult to
treat (4, 21, 24, 85). Some patients with XIAP deficiency
also suffer from repeated skin boils and abscesses, or
severe acne (4, 24, 86). Besides inflammatory symptoms,
XIAP deficient patients regularly suffer from recurrent,
prolonged or complicated viral and bacterial infections.
These may, but do not necessarily, occur during a period of
hypogammaglobulinemia (14).

Finally, asymptomatic XIAP deficient males have been
identified in various families, carrying the same XIAP
mutation as their symptomatic siblings. Often, absence of
XIAP protein and/or XIAP function has been demonstrated in
these asymptomatic individuals, once again highlighting the
possible importance of other genetic and environmental factors
on disease phenotype (4).

ADDITIONAL IMMUNOLOGICAL FINDINGS

No gross abnormalities in the classical immunological
parameters and lymphocyte subsets have been reported in
asymptomatic or clinically stable XIAP deficient patients.
Contrary to what is observed in SAP efficiency, iNKT cell
numbers are normal in XIAP patients during wellness
(52, 115, 116). T and NK cell cytotoxic responses are
normal in XIAP deficiency, which is again in contrast to
what is observed in SAP deficiency (11, 12). Serum levels
of pro-inflammatory cytokines, including IL-6, IL-2, IFN-
γ, TNF-α and neopterin are elevated in XIAP deficient
patients with HLH, similar to observations in XLP and
FHL patients (78). However, IL-18 levels are found to
be greatly elevated during HLH in XIAP deficiency, with
significantly higher levels compared to patients with XLP,
FHL and EBV-HLH, and levels remain high even during
remission (78).

DIAGNOSIS

The gold standard for diagnosing XIAP deficiency remains the
identification of a disease-causing mutation in the XIAP/BIRC4
gene by genetic sequencing. Ideally, this is complemented by
analysis of XIAP expression and functional assays (4). Flow
cytometry provides a rapid screening technique in suspected
individuals, as the majority of the XIAP deficient patients have
decreased or absent XIAP expression (12, 117). Although it must
be noted that monoclonal antibodies available for flow cytometry
do not recognise XIAP protein truncated before residue 397,
while truncated proteins may still retain some cellular functions.
Also, patients with a full-length dysfunctional protein may not
be identified as XIAP deficient by flow cytometry if missense
mutations do not alter the antibody-antigen interaction or
protein stability (4). In addition, a functional assay, based on
the understanding that XIAP is necessary for NOD2 signalling,
can be used for the screening diagnosis of XIAP deficiency; flow
cytometric measurement of TNF-α production by monocytes in
response to a NOD ligand, such as L18-MDP, can distinguish
XIAP deficient cells that have reduced TNF-α production, from
wild type cells (21, 51, 79, 83). Flow cytometric studies of
XIAP expression or TNF-α production and X-chromosome
inactivation profile analysis can also be useful in the evaluation
of symptomatic female carriers. Detection of elevated levels
of IL-18 in peripheral blood samples can be useful during
the evaluation or monitoring of XIAP deficient patients and
symptomatic carriers.

TREATMENT

Given the large variability in presentation and disease course,
there is no general therapeutic recommendation for XIAP
deficiency and treatment depends on disease manifestations (3).
HLH can be treated according to established protocols (HLH-94
and 2004), which includes corticosteroids and etoposide, though
in the authors’ experience HLH may be readily controlled with
steroid treatment alone (10, 14, 78, 111). Rituximab should be
considered in cases of EBV-associated HLH (118). Splenomegaly
generally does not require intervention. Only in rare cases of
hypersplenism has splenectomy been reported, but recurrent
pneumococcal infections may then complicate the clinical course
(4). Hypogammaglobulinemia is often transient, but may require
treatment with immunoglobulin replacement therapy (11).
IBD is initially treated with conventional immunosuppressive
agents, including corticosteroids, azathioprine, anti-TNF-α and
mesalazine (14, 21, 83, 87). However, as stated previously,
IBD is often refractory to immunosuppressive treatment and
surgical intervention, including colectomy, abscess drainage and
resection of fistulae, is not uncommon (21).

Currently, the only curative treatment option for XIAP
deficiency is allogeneic HSCT. In patients with severe disease,
including HLH and severe refractory IBD, HSCT may be the
treatment of choice. Early reports of HSCT in XIAP deficiency
revealed poor outcomes, with long-term survival rates below
50%. Factors associated with an unfavourable outcome were
a myeloablative conditioning regimen, with reported survival
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post-HSCT dropping to 14% in this group, and ongoing HLH
at time of transplantation (77). Conditioning regimen related
toxicities, such as pulmonary haemorrhage and hepatic veno-
occlusive disease, were a common cause of complications early
post-HSCT, implying that chemotherapeutics cause increased
cytotoxicity in the absence of XIAP (77, 88). Recent reports have
shown a more favourable outcome of HSCT following reduced-
intensity conditioning (RIC) approaches (1, 88–90, 119). In a
larger study Arnold et al. observed a 2-year overall survival of
74% in XIAP deficient HSCT recipients who had been treated
with RIC or reduced toxicity conditioning (RTC) regimens,
which is similar to reported mortality rates post-HSCT for
other forms of HLH [manuscript submitted]. In a Japanese
series of patients transplanted with reduced toxicity approaches,
90% survival was observed (81). HLH may complicate the
early post-transplantation course, but response to treatment is
generally good (78, 81). GvHDwas associated with a significantly
increased risk of mortality in patients with XIAP deficiency
in the study by Arnold et al. [manuscript submitted]. It is
hypothesised that the XIAP-deficient tissue environment and the
chronic inflammasome activation play a role in the increased risk
of GvHD (120, 121). Notably, XIAP-deficient recipient tissues
have been shown to predispose to increased GvHD severity
and mortality in murine models. Nonetheless, when HSCT is
indicated, the combination of a RIC/RTC regimen with a more
aggressive approach to GvHD prevention will likely result in
lowest mortality and morbidity risks in XIAP deficiency.

CONCLUDING REMARKS

Due to the seriousness of XIAP deficiency and the high-risk
nature of curative allogeneic HSCT, it remains important to study
novel long-term treatment approaches. New therapeutics may be
used to avoid the need for HSCT or as bridging therapy to help
improve the patient’s clinical condition prior to treatment with
curative intent, thereby increasing the chances of a favourable
and uncomplicated outcome. Greater understanding of the

pathophysiology of XIAP deficiency and the pleiotropic effects
that XIAP has on the immune system might create insight into
pathways that can be targeted by novel therapeutic agents, such
as small molecules. In addition, following the rapid development
of gene therapy and editing technologies, lentiviral mediated gene
addition or targeted gene correction of the defectiveXIAP gene in
autologous haematopoietic stem cells may offer future alternative
management options.
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