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Activated PI3-kinase-δ syndrome 2 (APDS2) is caused by autosomal dominant

mutations in the PIK3R1 gene encoding the p85α, p55α, and p50α regulatory

subunits. Most diagnosed APDS2 patients carry mutations affecting either the splice

donor or splice acceptor sites of exon 11 of the PIK3R1 gene responsible for an

alternative splice product and a shortened protein. The clinical presentation of APDS2

patients is highly variable, ranging from mild to profound combined immunodeficiency

features as massive lymphoproliferation, increased susceptibility to bacterial and viral

infections, bronchiectasis, autoimmune manifestations, and occurrence of cancer.

Non-immunological features such as growth retardation and neurodevelopmental

delay have been reported for APDS2 patients. Here, we describe a patient suffering

from an APDS2 associated with a Smith–Magenis syndrome (SMS), a complex

genetic disorder affecting, among others, neurological manifestations and review the

literature describing neurodevelopmental impacts in APDS2 and other PIDs/monogenetic

disorders associated with dysregulated PI3K signaling.
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INTRODUCTION

Class IA PI3 kinase (PI3K) are heterodimeric enzymes composed
of a p110 catalytic subunit and a regulatory subunit. Their
function is to convert phosphatidylinositol 4,5-bisphosphate
(PIP2) to phosphatidylinositol 4,5-trisphosphate (PIP3), a
reaction reversed by the PTEN phosphatase (1). PIP3 is an
important lipid second messenger promoting activation of
downstream signaling molecules such as AKT/protein kinase
B and mTOR. The class IA PI3K catalytic subunits p110α,
p110β, and p110δ are encoded by the genes PIK3CA, PIK3CB,
and PIK3CD, respectively. The regulatory subunits p85α, p55α,
and p50α are encoded by PIK3R1, whereas p85β and p55γ
are encoded by PIK3R2 and PIK3R3, respectively. P110δ is
predominantly expressed in cells of the hematopoietic linage
in contrast to the ubiquitously expressed p110α and p110β.
Activated PI3Kδ signaling due to either autosomal dominant
gain-of-function mutation in the PIK3CD gene or autosomal
dominant loss-of-function mutation in the PIK3R1 gene causes
activated PI3-kinase-δ syndrome [APDS; referred as type 1 APDS
(APDS1) and type 2 APDS (APDS2), respectively] (2, 3). Clinical
presentation for both types of APDS patients are very similar,
ranging from profound combined immunodeficiency (associated
with lymphoproliferation, severe bacterial and viral infections
from childhood) to isolated humoral defects (4, 5).

The vast majority of disease-causing APDS2 mutations affect
the splice donor or splice acceptor sites of exon 11, leading to an
alternative splice product in which exon 11 is deleted (4, 6–9),
enabling the expression of a shortened mutant p85α (and p50α
and p55α) protein lacking part of the iSH2 domain (1434_475)
(3, 10). The mutant protein p85α1434_475 particularly disturbs
the regulation of p110δ, resulting in increased p110δ signaling
in APDS2 patients lymphocytes (3, 10). Hydrogen–deuterium
exchange mass spectrometry analysis provides a structural
explanation why APDS2 resembles APDS1 (11): the inhibitory
interactions of the nSH2, iSH2, and cSH2 domains are especially
disrupted within the p85α1434_475/p110δ complex in contrast to
only mild disturbance within the p85α1434_475/p110α complex.
A missense PIK3R1 p.N564K variant causing APDS2 has been
reported (12), suggesting that also missense variants can have
different impacts on p85α/p110δ versus p85α/p110α complexes.
Of note, the same PIK3R1 p.N564K variant has been identified
in a patient belonging to a cohort of patients presenting
with macrocephaly and intellectual disability (13). Growth
impairment (−2 standard deviations of height) was especially
noted in APDS2 patients (4). In a cohort study of APDS2 patients,
14 (45%) of 31 patients showed growth impairments affecting
height and weight similarly as body mass indices were within
normal ranges in all but two patients (4). Neurodevelopmental
delay (global developmental or isolated speech delay) was
recognized in both types of APDS (19 and 32% for APDS1 and
APDS2, respectively) (4, 5). Moreover, both autism spectrum
disorders and macrocrania have been reported in APDS cohorts
(14). Three further patients were described as affected by
anxiety disorders, with a diagnosis of autism, and three
children were reviewed by psychological services for behavioral
issues (4, 5).

Overall, a large spectrum of clinical features, including
non-immunological ones, affects both types of APDS. The
great heterogeneity observed on a patient-to-patient comparison
suggests that environmental factors, among them history of
infections with different pathogens, microbiota, and/or genetic
“modifying” factor(s), contribute to the disease presentation.

Smith–Magenis syndrome (SMS) is a complex genetic
disorder characterized by intellectual disability, sleep
disturbances, and distinct craniofacial and skeletal anomalies
(15, 16). SMS is caused by the retinoic acid–induced 1
(RAI1) haploinsufficiency. Approximately 90% of SMS
cases carry a deletion of a 17p11.2 region encompassing
multiple genes and including the RAI1 gene locus.
RAI1 contains six exons, four of which are protein
coding. Approximately 10% of all the SMS patients carry
heterozygous mutations within the RAI1 coding region
(15). Mutations reported to cause SMS include premature
stop codons and frameshift mutations (small deletions or
insertions) (15–18).

CASE REPORT

The patient was born at normal term and good newborn
mensuration to unrelated parents from North African origin.
She was the last child of three siblings. Her two brothers
have been monitored for asthma. No family history of genetic
disorders or young death has been reported. The first year
of life was characterized by repeated urinary tract infections
(three episodes of pyelonephritis), resulting in the discovery
of urinary tract malformation (duplication of left ureter),
resulting in a solitary functional kidney and vesicoureteral
reflux requiring a pyeloureteral nephrectomy before the age of
1 year. She also presented with recurrent ear infections (otitis
media) and three episodes of pneumonia with gastroesophageal
reflux. Tympanocentesis (tympanic membranes incision) was
performed because of recurrent otitis media and otorrhea at
the age of 2 years. An adenoidectomy was also performed at
this age. Intravenous immunoglobulin (Ig) replacement therapy
was started at the age of 3 years as increased IgM associated
with decreased IgG and normal IgA serum levels were detected
(Table 1). Although under Ig replacement therapy the patient
continued to suffer from recurrent (chronic) otitis media
associated with Streptococcus haemolyticus A and Staphylococcus
infections. She also suffered from a Staphylococcus aureus Meti
S infection causing sepsis at the age of 11.5 years. The patient
developed progressive neurodevelopmental disorders with
delayed acquisition of walking at 24 months of life, delayed
language development, and becoming unintelligible after 4 years
old. In parallel, she presented with growth disorders evolving
regularly on +0.5 SD for weight and −1 SD for height until
the age of 1 year. Then, a break in the stature curve appeared
until −3 SD at the age of 3 years, associated with a rapid
onset of obesity, becoming severe from age of 6 years. Clinical
examination revealed morphologic abnormalities including
hypertelorism, strabismic amblyopia, large philtrum, genu
valgum and adipomastia, and symptoms of lymphoproliferation
presenting as hepatosplenomegaly associated with upper
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TABLE 1 | Immunological characteristics of the patient.

Patient Reference values

Age at evaluation (years) 16

Lymphocytes (/µl) 2,573 1,849–2,788

Natural killer cells (CD16+CD56+) (/µl) 387 70–480

T cells (CD3+) (/µl) 2,213 1,000–2,200

CD4T cells (/µl) 515 530–1,300

CD8T cells (/µl) 1,570 330–920

Naive CD4T cells (CD45RA+/CD4+) (%) 35 58–70

Naive CD4 recent thymic emigrants T cells (CD31+CD45RA+/CD4+) 19 43–55

Naive CD8T cells (CCR7+CD45RA+CD8+) (%) 4 52–68

Central memory CD8T cells (CCR7+CD45RA–/CD8+) (%) 2.5 3–4

Effector memory CD8T cells (CCR7–CD45RA–/CD8+) (%) 35 11–20

Terminal differentiating effector memory CD8T cells (CCR7–CD45RA+/CD8+) (%) 58.5 16–28

B cells CD19 (/µl) 48 183–628

Transitional B cells (CD24++CD38++/CD19+) (%) 33 <11

Age at evaluation (years) 2 16

IgG (g/L) <0.33 (3.7–15.8) 10.09* (6–16)

IgA (g/L) 0.81 (0.3–1.3) 2.07 (0.8–2.8)

IgM (g/L) 2.73 (0.5–2.2) 6.14 (0.5–1.9)

*Under Ig replacement; age-matched Ig reference values in brackets.

centimetric lymphadenopathies. Lymphoproliferation symptoms
disappeared at the age of 7 years. Vascular malformation with
carotid stenosis and moyamoya was found using cerebral
magnetic resonance imaging. Over the years, the patient
developed behavior disorders requiring neuroleptic medicines,
pedopsychiatric monitoring and institutionalization, sleep apnea
syndrome requiring an equipment with non-invasive nocturnal
ventilation, and hyperandrogenia with primitive amenorrhea
or polycystic ovary syndrome. The etiologic investigation
including karyotypic, array comparative genomic hybridization,
and genetic analysis was negative. Panel sequencing of genes
implicated in intellectual deficiencies identified a non-described
de novo heterozygous non-sense mutation of RAI1 gene
c.2701A>T p.Lys901∗ not found in the two parents’ blood
tests, responsible for an SMS. However, the whole phenotype
could not be explained by this syndrome, and an inborn error
of immunity was suspected because of the infection history,
the hypogammaglobulinemia and immune phenotyping of
the patient indicating B-cell lymphopenia associated with
an increased frequency of transitional B cells, a decreased
frequency of naive (CD45RA+) and recent thymic emigrants
(CD45RA+CD31+) CD4 and naive (CD45RA+CCR7+) CD8
T-cell subsets, increased frequency of CD8 (CCR7−CD45RA−

and CCR7−CD45RA+) T-cell subsets, and an inverted CD4/CD8
T-cell ratio (Table 1). Whole-exome sequencing of DNA from
the patient and both parents was performed on a research basis.
Filtering of annotated variants after a strict de novo genetic model
confirmed the non-sense mutation of RAI1 and showed another
de novo variant (2 nucleotide deletion) located within the intronic
splice region (splice donor site) of the PIK3R1 gene at position
GRCh37/hg19; chr5: 67589664; c.1425+3delGA, giving evidence

for an APDS2. Analysis of patients’ derived T-cell blast mRNA
indicated exon skipping of coding exon11 (Figures 1A–C).
Increased phosphorylation of AKT/protein kinase B at position
Ser473 was observed in patients’ T-cell blasts vs. healthy control
T-cell blasts (Figure 1D). Treatment with a p110 δ-specific
inhibitor (IC87114) abrogated those differences, indicating that
increased PI3K δ-signaling at basal level was responsible for
the high level of AKT phosphorylation at Ser473 (Figure 1D).
Together, our functional analysis demonstrated that the de novo
c.1425+3delGA mutation causes exon skipping of exon 11 and
subsequent activation of PI3K δ-signaling in lymphocytes. Since
the discovery of APDS2, administration of immunomodulatory
agents such as rapamycin and p110δ-specific inhibitor has been
under consideration.

DISCUSSION

Our patient presents clinically with two separable diseases:
APDS2, caused by a novel de novo PIK3R1 splice donor site
mutation, and SMS, caused by a novel de novo RAI1 non-
sense mutation. Many aspects of disease manifestations can
be affiliated to one or the other disease. Although intellectual
disabilities, behavior problems, and growth retardation in the
patient presented here are likely triggered by SMS, it is important
to note that growth retardation and global developmental
delay has been reported for several APDS2 patients, making it
difficult to untangle these aspects with certainty (Table 2). Studies
of primary immunodeficient patients with either autosomal
dominant, autosomal recessive, or compound heterozygous
variants in PIK3R1 and PIK3CD genes emphasized the
importance of a strict balance of PI3Kδ signaling for optimal
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FIGURE 1 | Molecular APDS2 characteristics. (A) Schematic representation of the PIK3R1 gene and illustrated localization of identified mutation. (B) RT-PCR of

PIK3R1 mRNA from T-cell blast of a control, a patient with APDS2 (3), and the investigated patient. (C) Schematic representation of mutations affecting splicing of

exon 11 annotated in ClinVAR. In red is the mutation of investigated patient. (D) AKT phosphorylation analysis in T-cell blasts (cultured for 13 days) from a healthy

control, an APDS2 patient, and the investigated patient. The analysis was performed as described by Deau et al. (3). Mean fluorescence intensity (MFI) is indicated for

each sample.

immune responses (19–24). However, expression of p110δ in
the murine brain (5) and reported neurodevelopmental delay
in both types of APDS patients suggested that balanced PI3Kδ

signaling is also important for neurodevelopment (Table 3).
This is further supported by a recent study assessing cognitive
functions of two APDS1 patients (one of them diagnosed
with psychomotor developmental delay and autism spectrum
disorder) and a murine APDS1 model (E1020K knock-in),
indicating that APDS1 patients presented with visuomotor
deficits and that p110δE1020K mice exhibited impairments in
motor behavior, learning, and repetitive behavior patterning (25).

Macrocephaly, developmental delay, autism spectrum
disorders in addition to an increased risk of cancers (mainly
breast, thyroid, and endometrium cancer), benign tumors
(hamartomas), and immunodeficiency predisposing patients to
APDS-like clinical manifestations (e.g., increased susceptibility
to bacterial infections, bronchiectasis and lymphadenopathy

including hepatosplenomegaly) are characteristics for a
variety of rare syndromes caused by heterozygous loss-of-
function germline mutations in the phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) gene [Cowden
syndrome, Bannayan–Riley–Ruvalcaba syndrome, proteus
syndrome, and Proteus-like syndrome, PTEN hamartoma
tumor syndrome (PHTS), APDS-L; OMIM: # 158350] (28–
32), further indicating a detrimental effect of increased PI3K
signaling for neurodevelopment. A retrospective cohort study
of pediatric patients diagnosed with autism spectrum disorders
or developmental delay and macrocephaly indicated a PTEN
mutation prevalence of 8 and 12%, respectively, pinpointing
the frequency of this genetic defect in these neurological
diseases (33).

Decreased PI3K signaling might also impair
neurodevelopment. Autosomal dominant loss-of-function
PIK3R1 mutations leading to decreased PI3K signaling activity
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TABLE 2 | Clinical features of APDS2, SMS, and reported patient.

APDS2 SMS Case report patient

Infectious complications

Upper respiratory infections X X

Chronic otitis X X X

Pneumonia X X

Sepsis X* X

Urinary tract infections/pyelonephritis X

Adenopathy

Lymphadenopathy X X

Splenomegaly X X

Hepatomegaly X X X

Neurological/behavioral

Behavioral problems X X X

Neurodevelopmental delay X X X

Variable mental retardation X X

Speech delay X X X

Sleep disturbance X X

Skeletal/craniofacial

Short stature X X X

Ocular abnormalities

Strabismus X X

Other features

Vascular abnormalities (moyamoya) X X

Renal/urinary tract abnormalities X X

*Two reports.

TABLE 3 | Cases of neurodevelopmental delay in inborn errors of immunity/monogenic deficiencies associated with disturbed class 1A PI3K signaling.

Disease OMIM# Gene Inheritance PI3K

signaling

Immunological

defect

Neurodevelopmental

delay

References

APDS1 615513 PIK3CD AD Increased Ig serum level, B

and T

19% of patients in cohort

study;

global development, speech

delay, autism spectrum

disorder

(5, 25)

APDS2 616005 PIK3R1 AD Increased Ig serum level, B

and T

31% of patients in cohort

study; cognitive

impairments, learning

disabilities

(4)

SHORT syndrome 269880 PIK3R1 AD Decreased N.R. Behavioral problems

speech delay

(26, 27)

p85α deficiency 615214 PIK3R1 AR N.R. B absent, Ig

serum level,

N.R. (23)

P110delta deficiency PIK3CD AR Decreased B and

NK decreased, T

impaired Ig

serum level,

N.R. (20, 22, 24)

Roifman–Chitayat syndrome 613328 PIK3CD/

KNSTRN

AR Ig serum level, B

and

NK decreased, T

impaired

Developmental delay;

cognitive, speech, and

motor retardation,

tremor, ataxia

(19)

APDS-L/Cowden

syndrome1/macrocephaly/autism

syndrome

158350/

605309

PTEN AD Increased Ig serum level, B

and T

Autism spectrum disorders;

developmental delay and

macrocephaly

(28–32)

NK, natural killer; N.R., not reported.
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cause a rare genetic condition called SHORT syndrome. The
acronym SHORT stands for typical clinical features of this
disease as: short stature, hyperextensibility of the joints and/or
inguinal hernias, ocular depression (deep-set eyes), Rieger
anomaly, and delayed teething (26). Of note, several patients
diagnosed with SHORT syndrome presented with delay speech
development (26, 27, 34) and behavioral problems (34). No
immunological abnormality has been reported so far. Two
different autosomal recessive PIK3R1 non-sense mutations
causing p85α deficiency have been described to impair B-cell
development and to cause agammaglobulinemia (23, 24).
Although only very rare patients have been described (three up
to now), there is no evidence for associated neurodevelopmental
abnormalities. In two patients of a familial case diagnosed
with Roifman–Chitayat syndrome caused by the combination
of two gene defects: p110 δ deficiencies (homozygous non-
sense mutation in PIK3CD) and small kinetochore-associated
protein (SKAP) deficiency (frameshift homozygous mutation in
KNSTRN) developmental delay presenting as either significant
cognitive, speech, andmotor retardation or global developmental
delay, tremor, and ataxia (diagnosed for both patients early in
life) were reported (19). As neurodevelopmental manifestations
were not reported in several familial cases of p110δ deficiencies
caused by biallelic non-sense, frameshift, or loss-of-function
mutations in PIK3CD (20, 22, 35), it is likely that the SKAP
deficiency, or possibly the combination of the two gene defects,
is responsible for the neurological features observed in these two
Roifman–Chitayat patients.

CONCLUSION

Here, we described a patient with a complex clinical presentation,
carrying a novel (de novo) donor splice site mutation in the
PIK3R1 gene and a novel (de novo) non-sense mutation in
the RAI1 gene. This is the first time that the clinical and
immunological phenotype of an APDS2 patient presenting
with two independent monogenetic disorders, APDS2 and
SMS, has been described. Cohort studies of both types of
APDS indicated a large spectrum of clinical presentation
from very mildly affected (or even an asymptomatic) to
severe combined immunodeficient patients. Neurological

development appears to be variable in both types of APDS
from inconspicuous to autism spectrum disorders. This
variable clinical spectrum of immunological and neurological
manifestations could be explained by individual patient-by-
patient dependent environmental, epigenetic, and genetic
factors. Our study provides a further example of an unusual
clinical presentation of APDS due to another associated
gene defect.
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