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Background: The limited diagnostic accuracy of biomarkers in children at risk

of a serious bacterial infection (SBI) might be due to the imperfect reference

standard of SBI. We aimed to evaluate the diagnostic performance of a new
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classification algorithm for biomarker discovery in children at risk

of SBI.

Methods: We used data from five previously published, prospective observational

biomarker discovery studies, which included patients aged 0–<16 years: the Alder Hey

emergency department (n = 1,120), Alder Hey pediatric intensive care unit (n = 355),

Erasmus emergency department (n = 1,993), Maasstad emergency department

(n = 714) and St. Mary’s hospital (n = 200) cohorts. Biomarkers including procalcitonin

(PCT) (4 cohorts), neutrophil gelatinase-associated lipocalin-2 (NGAL) (3 cohorts) and

resistin (2 cohorts) were compared for their ability to classify patients according to current

standards (dichotomous classification of SBI vs. non-SBI), vs. a proposed PERFORM

classification algorithm that assign patients to one of eleven categories. These categories

were based on clinical phenotype, test outcomes and C-reactive protein level and

accounted for the uncertainty of final diagnosis in many febrile children. The success of

the biomarkers was measured by the Area under the receiver operating Curves (AUCs)

when they were used individually or in combination.

Results: Using the new PERFORM classification system, patients with clinically

confident bacterial diagnosis (“definite bacterial” category) had significantly higher

levels of PCT, NGAL and resistin compared with those with a clinically confident viral

diagnosis (“definite viral” category). Patients with diagnostic uncertainty had biomarker

concentrations that varied across the spectrum. AUCs were higher for classification of

“definite bacterial” vs. “definite viral” following the PERFORM algorithm than using the

“SBI” vs. “non-SBI” classification; summary AUC for PCT was 0.77 (95% CI 0.72–0.82)

vs. 0.70 (95%CI 0.65–0.75); for NGAL this was 0.80 (95%CI 0.69–0.91) vs. 0.70 (95%CI

0.58–0.81); for resistin this was 0.68 (95% CI 0.61–0.75) vs. 0.64 (0.58–0.69) The three

biomarkers combined had summary AUC of 0.83 (0.77–0.89) for “definite bacterial” vs.

“definite viral” infections and 0.71 (0.67–0.74) for “SBI” vs. “non-SBI.”

Conclusion: Biomarkers of bacterial infection were strongly associated with the

diagnostic categories using the PERFORM classification system in five independent

cohorts. Our proposed algorithm provides a novel framework for phenotyping children

with suspected or confirmed infection for future biomarker studies.

Keywords: serious bacterial infection, children, biomarkers, sepsis, clinical phenotypes

INTRODUCTION

Amongst the many children presenting with febrile illness to
healthcare, a minority have serious bacterial infections (SBI), and
of those, only the rare few are admitted to intensive care units
or have a fatal outcome (Figure 1). Clinical signs and symptoms
alone lack the ability to reliably differentiate between children
with viral and bacterial infection, and accurate biomarkers are
urgently needed (1). SBIs are still one of the leading causes
of childhood mortality and morbidity in both high income as
well as low and middle income countries (2, 3). The increasing
global burden of antimicrobial resistance has amplified the need
for improved diagnostics, and there has been an emphasis on
the need for “rule-out” tests for bacterial infection, so that
antibiotic treatment can be reserved for those needing treatment,
irrespective of the presence of coincident viral infection. In

addition, sepsis campaigns have promoted early identification of
children at risk of sepsis and the early escalation of care, including
prompt administration of broad spectrum antibiotics, making
improved biomarkers to guide management even more urgent
(4–8). In high income countries, an increasing proportion of
children who present to the emergency department (ED) with SBI
have pre-existing co-morbidities, which can make the diagnosis
more challenging (9, 10). The economic impact of diagnostic
uncertainty when managing pediatric febrile illness is significant,
with the precautionary use of antibiotics being associated with
increased costs (11).

With effective antivirals emerging or in the pipeline for
common and important viral illnesses [including coronavirus
and Respiratory Syncytial Virus (RSV)], identification of when
antibiotics are required will be insufficient to guide accurate
treatment. With both viral and bacterial illnesses requiring
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FIGURE 1 | Child with fever: patient journey in order of likely outcome. A small proportion of children presenting to the ED with a febrile illness have a confirmed

Serious Bacterial Infection (SBI), and of these a smaller number require admission to hospital or PICU, as shown in the pyramid as a percentage of the total number of

febrile children in ED. The data were collected in the MOFICHE study (Management and Outcome of Fever in Children in Europe, n = 38,480) as part of the EU

Horizon 2020-funded PERFORM study (Personalized Risk assessment in Febrile illness to Optimize Real-life Management across the European Union,

www.perform2020.org). The MOFICHE study was an observational study in twelve EDs in eight different European countries [Austria, Germany, Greece, Latvia, the

Netherlands (n = 3), Spain, Slovenia and the United Kingdom (n = 3)], which recorded clinical data on consecutive children with febrile illness in 2017–2018 (78).

There were no fatal cases of SBI in the MOFICHE study, but 1 case of fatal viral gastro-enteritis; PICU admission with SBI: 39 (25%) out of total of 158 PICU

admissions; hospital admission with SBI: 1,947 (20%) out of total of 9.893 admissions; *the MOFICHE study reflects death in ED, not overall mortality. ED, emergency

department; SBI, serious bacterial infection; PICU, pediatric intensive care unit.

targeted treatment, and the possibility of one or both being
present, successful infection biomarkers must make a more
nuanced diagnosis. Moreover, in childhood in particular, the
incidence of bacterial infections has decreased considerably
since the introduction of conjugate vaccines; it follows that
the proportion of children presenting with febrile illness who
have alternative diagnoses, including inflammatory conditions,
is increasing. In addition to the decreasing burden of bacterial
infection, the increased recognition of inflammatory illness
in children may reflect changes in ascertainment, as well as
true increases in incidence, as seen in the case of Kawasaki
disease (12).

DEFINING BACTERIAL INFECTIONS

Traditionally, most biomarker discovery studies have ascertained
bacterial etiology based on bacterial detection by culture or
PCR in a sterile site (including urine, CSF, blood; often
referred to as “invasive bacterial infections”) (13–15). A patient
without this evidence will then typically be classed as non-
bacterial. Some studies, in particular those with a focus on
pragmatic clinical translation, include positive cultures from
non-sterile sites (e.g., throat swab, stools, skin) and imaging

results such as radiographical changes on chest X-ray (e.g.,
to define bacterial pneumonia), CT or MRI (e.g., to define
mastoiditis). Furthermore, intra-operative findings and histology
(e.g., appendicitis, septic arthritis) or a clinical diagnosis without
microbiological evidence (e.g., abscess, cellulitis) might be added
to the outcome reference standard. This broader definition of
complicated bacterial infections is often referred to as “serious
bacterial infections” (Appendix A in Supplementary Material).
In many studies, an expert opinion will be included to agree on
the most appropriate final diagnosis. This has proven a fairly
robust, but labor intensive approach to ensuring reproducibility
between study outcomes (16, 17).

One of the major drawbacks of using bacterial cultures
for confirming “definite bacterial” infection is their limited
sensitivity (Table 1) (18). The sensitivity is directly related
to the volume sampled, which is a well-known problem for
blood cultures in neonates and children (19), to the prior use
of antibiotics, which is very common in some settings (20),
to culture techniques and to the types of pathogens. Other
limitations of cultures of sterile sites are the high rates of
contaminants, at times as high as the rate of true bacterial
pathogens (21), and whether or not the site of infection
can be sampled directly. Molecular strategies are now being
employed to optimize the capture rate of pathogens in addition
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to conventional blood cultures. For instance, meningococcal
PCR is already considered the gold standard confirmatory
test (22, 23). In the UK-based multicenter DINOSAUR study
molecular techniques improved the number of pathogens
detected in children with convincing evidence of infective
osteomyelitis or septic arthritis (24, 25). Molecular diagnostic
panels, such as Septifast, Sepsitest, and Biofire Filmarray (26–
30), have been shown to increase the number of positive
findings in blood with relatively short turnaround time (31,
32). However, problems of sensitivity and specificity persist
(33, 34), and studies that combine molecular and culture
approaches still have disappointing diagnostic yield. For example,
in the large observational study of children with life-threatening
infection admitted to hospitals across several European countries
(EUCLIDS), more than half of the children with a serious
infection did not have a definitive causative pathogen identified,
despite extensive diagnostic work-up (35). In addition, with
bacterial identification, usually from non-sterile sites, the
distinction between acute infection and carriage is often unclear,
particularly in patients with co-morbidities.

Defining bacterial pneumonia, the most common SBI with
an overall mortality of 6.4 per 100,000 for children aged 5
years and under in high income countries (2, 3), is particularly
challenging without a gold-standard diagnostic test. As collecting
suitable diagnostic biosamples for the lower respiratory tract
in children is difficult, a diagnosis will often be made based
on chest X-ray changes or on clinical grounds alone, both
of which are unreliable for establishing a definitive diagnosis
of community acquired pneumonia (36, 37). Guidance by
the World Health Organisation, albeit mostly applicable to
lower income countries without referral capacity, recommends
antibiotic treatment for community acquired pneumonia on
fast breathing alone (38). Recent studies have improved our
understanding of the etiology of childhood pneumonia using
more elaborate diagnostic platforms. In the PERCH (“Pneumonia
Etiology Research for Child Health”) study, conducted in several
lower and middle income countries, viruses were the causative
pathogen in the majority children with pneumonia, with RSV
most commonly identified in approximately one third of children
(39). However, in the absence of a sensitive diagnostic test,
bacterial involvement cannot be ruled-out as contributory. A
North American study on childhood pneumonia demonstrated
that multiple viruses or bacteria or both viruses and bacteria
were isolated in many children, in line with current thinking
that respiratory tract infections are the result of complex
mechanisms involving multiple organisms and varying host-
immune responses (40, 41). Some viruses, in particular RSV and
influenza virus, were more likely to be associated with disease
than carriage (42–44).

ROLE OF BIOMARKERS

Many biomarkers have been proposed for differentiating viral
and bacterial infections (45). The most evidence is available for
CRP and PCT, and they appear equally useful in many clinical
areas, even though neither can be used for diagnosing SBI with

TABLE 1 | Challenges with the interpretation of biomarkers and diagnosing

serious bacterial infection.

[Difficulties in establishing diagnosis of serious bacterial infection]

Material used for reference tests

Sensitivity of cultures and other molecular techniques/dependence on

sampling volume

Material for testing not available in children (e.g., sputum)

Reduced culture sensitivity after antimicrobial treatment

Interpretation of test results

Pathogen isolated and the risk of being a contaminant

Pathogen causing infection vs. carriage vs. colonization

Multiple pathogens isolated

Isolated pathogen not in keeping with clinical phenotype

Applying the reference standard of SBI

Missing reference tests for cases suspected of SBI

A positive test result for a viral pathogen does not always exclude a

bacterial infection

[Influencing (the interpretation of) biomarker results]

Age

Co-morbidities

Ethnicity

Use of immune- suppressive or modulatory drugs

Recent surgery, trauma, or other pro-inflammatory condition

Duration of symptoms

Vaccination statusa

Traveling and exposure history

Primary care vs. secondary care and ED vs. PICU:

differences in patient populations and the case-mix of settings

differences in incidence of SBI

differences in epidemiology: seasonality and endemic diseasea

Cell cytopenia and limited protein, metabolite, or RNA yield

aDifferences in vaccination schemes and status, as well as seasonality and endemic

disease can change the pre-test probabilities of the individual patient of having or not

having (a specific type of) SBI, altering the interpretation of a biomarker result and its

effect on the post-test probabilities and making a diagnosis of (a specific type of) SBI

more or less likely; e.g., seasonality of enterovirus and influenzavirus can lead to different

interpretation of biomarker value.

ED, emergency department; PICU, pediatric intensive care unit; SBI, serious

bacterial infection.

confidence in isolation (13, 46). PCT performs slightly better in
young infants and neonates, and children with a short duration
of fever compared with CRP (47), reflecting the differences
in physiological inflammatory responses and time to elevated
levels of CRP and PCT after stimulus (48). Despite the evidence
available on its limited diagnostic utility, white cell count is
still commonly used (13). Many other biomarkers have been
explored, some with very promising initial results. For example,
CD64 was useful in PICU settings, but did not validate well in ED
settings (Table 1). Other markers of bacterial infection, such as
neutrophil gelatinase-associated lipocalin-2 (NGAL) and resistin,
have shown promise across a range of clinical settings but have
not been integrated in clinical practice yet.

The pressure to improve early treatment of true bacterial
infection, whilst avoiding unnecessary treatments, set against the
decreasing incidence of bacterial illness and increasing incidence
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of inflammatory conditions makes the case for novel, accurate
diagnostic strategies more compelling (49). Yet, despite many
promising candidates (1, 50, 51), few biomarkers complete
the journey from discovery to translation (52). An important
obstacle in the development of bacterial biomarkers remains the
lack of a consistent reference standard to classify SBIs, often
aiming to capture a heterogeneous mix of causative pathogens
and clinical phenotypes, not easily captured with a single, or
minimal set of, biomarker(s) (35, 51, 53). Another obstacle to
translation arises when biomarkers are discovered and perform
well in high-incidence settings, for instance in severely unwell
children in PICU with a clear or extreme presentation, but have
poor performance in a low-incidence setting like emergency
departments where they are most needed, where diagnostic
uncertainty is higher, and clinical presentations less clear-cut.
As different types of bacterial infections might need different
diagnostic and management strategies, it seems unrealistic for
biomarkers to be equally predictive for all. Some studies use a
polytomous approach, allowing for different types of bacterial
infections in their modeling (51), whilst other have looked at a
single bacterial infection (54–58).

Future biomarker strategies, drawn from multi-omic
discovery approaches, may enable classification of a wide range
of febrile illnesses spanning bacterial and viral illness, other
infections and inflammatory conditions, and also include
other variables such as disease severity or prognosis. It is
therefore essential that phenotyping approaches are able to
classify the full range of presentations likely to be needed to
be diagnosed in such a multi-class testing approach. With
this paper we propose a novel classification framework to
guide the design and evaluation of biomarker discovery and
validation for childhood febrile illness, one which reflects the
complex interplay between bacterial, viral and inflammatory
illnesses. By means of illustrative validation studies using
five prospective cohorts of children with infections, we
aimed to evaluate the diagnostic performance of a new
classification algorithm for biomarker discovery in children at
risk of SBI.

METHODOLOGY

Using five prospective, previously published, cohorts including
children aged <16 years used for biomarker discovery and
validation studies (Table 2) (59–62), we assessed the performance
of the biomarkers procalcitonin (PCT, 4 cohorts), neutrophil
gelatinase-associated lipocalin-2 (NGAL, 3 cohorts) and resistin
(2 cohorts) to classify patients as having “bacterial” infection.
These biomarkers were measured in each of the local reference
laboratories, as detailed in the original publications.

The Alder Hey ED (n = 1,183), Maasstad ED (n = 714)
and Erasmus ED (n = 1,993) cohorts recruited consecutive
febrile children presenting to the emergency department in
whom additional blood tests were done; the research biosamples
for the ED cohorts were taken as additional samples at the
time of taking the initial blood tests, and ideally before
the administration of systemic antibiotics. The Alder Hey

PICU cohort included children with suspected infection in
the pediatric intensive care unit (n = 352), with research
biosamples taken on admission to PICU or at the time of
developing an infection during PICU stay; the St. Mary’s hospital
cohort recruited acutely ill febrile children admitted to pediatric
wards or intensive care (n = 394), and research biosamples
were taken at the earliest opportunity during the patient’s
inpatient stay.

We then re-categorized the children of these four cohorts,
blinded for our biomarkers of interest, from the original
dichotomous SBI classification into one of the eleven distinct
outcome groups in view of their likelihood of having a
bacterial or viral infection, or both (Figure 2), and using an
extended version of a published algorithm previously used to
derive a 2-transcript bacterial-viral diagnostic classifier (63).
For the fifth cohort, i.e., the St. Mary’s hospital cohort, we
allocated final diagnoses for both the SBI and the PERFORM
classification systems, blinded for the biomarkers of interest.
The PERFORM algorithm broadly groups patients into patients
with a likely bacterial infection, patients with a likely viral
infection, patients with unknown viral and/or bacterial infection
and other febrile syndromes, which includes patients with
suspected or confirmed inflammatory conditions, and infections
with distinct treatments or non-viral/bacterial etiology, such
as tuberculosis and malaria (Figure 2). We then examined
the distribution of the biomarkers according to the patient
classifications. For this study, we combined “trivial,” “other
infection,” “infection or inflammation” and “inflammatory
syndrome” into one “Other” group; with the cohorts having few
or no cases.

Concentrations of biomarkers were visualized using barplots
with median concentration levels and interquartile ranges, and
these were compared for “SBI” vs. “non-SBI” (the SBI algorithm,
Appendix A in Supplementary Material) and “definite bacterial”
vs. “definite viral” (i.e., the groups of the PERFORM algorithm
with most diagnostic certainty, Figure 2) using Wilcoxon non-
parametric rank sum tests, and for all levels of the PERFORM
algorithm using Kruskal-Wallis tests. Spearman correlation
coefficients were calculated for the concentrations of biomarkers
and categories with viral and bacterial infections of the
PERFORM algorithm. Pearson correlation coefficients were
calculated for the correlation between C-Reactive Protein (CRP),
which was used to allocate a final diagnosis in the PERFORM
algorithm and the biomarkers PCR, NGAL and resistin. We
compared the “SBI” and “PERFORM” phenotyping classification
systems by measuring the Area Under the receiver operating
Curves (AUC) of the biomarkers’ ability to discriminate the
predicted bacterial and viral groups, by means of “SBI” vs.
“non-SBI” and “definite bacterial” vs. “definite viral” infection.
Additionally, we calculated the AUC for a model that combined
PCT, NGAL and resistin using the data from the Alder Hey ED
and Alder Hey PICU cohort, applying restricted cubic splines
for optimal model fit. Only cases with available biomarker data
were used. We calculated summary AUCs using random effect
models and presented these in forest plots. All analyses were
performed in R v4.0.0, including the use of packages pROC,
ggpubr, and metafor.
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TABLE 2 | Description of cohorts.

Setting Participants Exclusion Design Biomarkers Incidence Study characteristics

Alder Hey ED cohort

(59)

Pediatric emergency

department, tertiary

hospital, UK

Febrile children aged <

16 years attending the

ED in whom blood test

were being performed,

2010-2012, n = 1,183

Primary

immunodeficiency

Prospective

observational

PCT (n = 1,107)

Resistin (n = 1,119)

NGAL (n = 1,120)

SBI: 338 (29%)a

Definite bacterial: 82

(7%)

Definite viral: 94 (8%)

Median age: 2.5 years

(IQR 0.9–5.7 years);

654 (55%) were boys.

1/3 of children

had comorbidities.

Alder Hey PICU cohort

(60)

PICU, tertiary hospital,

UK

Consecutive children

aged < 16 years

admitted to PICU with

suspected infection or

developed infection

after admission,

2010–2012, n = 352

For this study: Final

diagnosis: no concerns

for infection Only

biomarkers on day

infection suspected

were considered for

this study

Prospective

observational

PCT (n = 346) Resistin

(n = 184) NGAL (n

= 182)

SBI: 83 (24%)a

Definite bacterial: 48

(14%)

Definite viral: 48 (14%)

Median age: 1.3 years

(IQR 0.4–5.4 years);

203 (58%) were boys.

Erasmus ED cohort

(61)

Pediatric emergency

department, tertiary

hospital, NL

Consecutive children

aged 1 month−16

years with fever,

2009–2012, n = 1,993

Chronic underlying

disease; well appearing

children presenting with

fever and a clear focus

of an upper airway

infection; revisit to ED

within 5 days

Prospective

observational

PCT (n = 710) SBI: 230 (12%)a

Definite bacterial: 71

(4%)

Definite viral: 109 (5%)

Median age 1.8 (IQR

0.9–3.9); 1,094 (55%

were boys)

Maasstad ED Cohort

(61)

Pediatric emergency

department, district

general hospital, NL

Consecutive children

aged 1 month−16

years with fever,

2011–2012, n = 714

Chronic underlying

disease; well appearing

children presenting with

fever and a clear focus

of an upper airway

infection; revisit to ED

within 5 days

Prospective

observational

PCT (n = 386) SBI: 103 (14%)a

Definite bacterial: 46

(6%)

Definite viral: 52 (7%)

Median age 1.6 (IQR

0.7–3.6); 399 (56%)

were boys

St. Mary’s hospital

cohort (62)

Pediatric clinical areas,

tertiary hospital, UK

Acutely ill febrile

children, aged < 17

years, with illness of

sufficient severity

warranting blood tests,

2009–2012, n = 394

including 67 controls

Sample of n = 200

selected for this

biomarker study,

including n = 40

controls

Prospective

observational

NGAL (n = 200) SBI: 87 (54%)c

Definite bacterial: 38

(24%)bc

Definite viral: 43 (27%)c

Median age 3.3 (IQR

1.8–7.1); 108 (54%)

were boys

aOutcome of interest in original study: SBI vs. non-SBI.
bOutcome of interest in original study: Definite bacterial vs. probable bacterial vs. unknown vs. definite viral vs. other vs. control.
cOut of 160 patients (excluding controls).

ED, emergency department; IQR, interquartile range; NGAL, neutrophil gelatinase-associated lipocalin; PCT, procalcitonin; PICU, pediatric intensive care unit; SBI, serious bacterial infection.
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TABLE 3 | Concentrations of biomarkers.

SBI classification PERFORM classification

SBI Non-SBI Definite bacterial Probable bacterial Bacterial Syndrome Unknown Viral syndrome Probable viral Definite viral Spearman ρ

Alder Hey ED cohort, n = 1,161

NGAL (ng/mL) 78.1 102.5 70.2 140.0 105.9 83.6 77.2 99.0 63.4 75.4 −0.18*

(52.5–121.1) (66.2–159.5) (49.6–102.2) (82.1 −228.8) (80.7–160.0) (57.9–123.4) (63.1–101.8) (68.1–148.8) (43.8–93.8) (53.3–101.9)

N = 1,120 N = 322 N = 798 N = 78 N = 169 N = 107 N = 33 N = 46 N = 559 N = 88

Resistin (ng/L) 40.3 59.4 35.7 67.8 59.8 45.1 27.0 40.6 33.9 35.6 −0.10*

(21.5–73.7) (29.7–104.4) (19.3–63.8) (34.8–124.1) (33.6–105.0) (28.1–87.7) (16.7–52.9) (18.8–73.7) (18.6–61.9) (17.6–63.0)

N = 1,119 N = 321 N = 798 N = 78 N = 168 N = 107 N = 33 N = 46 N = 559 N = 88

PCT (µg/L) 0.23 0.47 0.18 2.40 1.08 0.16 0.20 0.65 0.15 0.21 −0.18*

(0.10–0.80) (0.13–3.13) (0.09–0.53) (0.26–10.95) (0.28–3.00) (0.09–0.52) (0.10–0.52) (0.33–1.40) (0.08–0.38) (0.13–0.54)

N = 1,107 N = 320 N = 787 N = 79 N = 167 N = 106 N = 31 N = 46 N = 551 N = 86

Alder Hey PICU cohort, n = 352∧

NGAL (ng/mL) 116.0 167.1 110.3 170.1 126.1 102.8 125.3 93.2 – 72.1 −0.27*

(70.5–198.5) (82.4–302.1) (68.5–175·6) (91.7–291.5) (97.2–229.1) (71.8–189.9) (71.2–227.1) (42.7–157.0) (51.3–116.7)

N = 182 N = 42 N = 142 N = 25 N = 34 N = 36 N = 49 N = 4 N = 1 N = 48

Resistin (ng/L) 54.4 58.2 50.3 57.1 73.8 45.6 46.3 80.7 – 37.3 −0.22*

(29.1–97.8) (31.8–158.9) (28.2–87.6) (26.1–169.3) (48.5–155.4) (31.1–87.4) (31.6–73.6) (50.5–110.2) (13.4–67.1)

N = 184 N = 43 N = 141 N = 28 N = 35 N = 38 N = 46 N = 4 N = 0 N = 33

PCT (µg/L) 0.64 4.40 0·41 12.95 1.00 0.28 0.43 8.2 – 0.38 −0.23*

(0.10–5.58) (0.29–49.05) (0.09–2.33) (1.07–98.0) (0.18–8.30) (0.08–2.41) (0.09–2.55) (8.1–23.3) (0.11–0.83)

N = 346 N = 82 N = 264 N = 48 N = 73 N = 79 N = 92 N = 5 N = 1 N = 48

Erasmus ED cohort, n = 710

PCT (µg/L) 0.18 0.64 0.16 0.64 1.49 0.23 0.14 0.52 0.14 0.15 −0.34*

(0.10–0.54) (0.24–3.46) (0.09–0.40) (0.24–3.02) (0.54–6.19) (0.11–0.67) (0.08–0.24) (0.21–1.92) (0.09–0.29) (0.09–0.35)

N = 710 N = 103 N = 607 N = 34 N = 52 N = 61 N = 25 N = 43 N = 442 N = 53

Maasstad ED cohort, n = 386

PCT (µg/L) 0.21 1.03 0.17 1.36 1.76 0.17 0.10 0.43 0.16 0.18 −0.27*

(0.10–0.67) (0.28–2.61) (0.09–0.42) (0.33–2.38) (0.35–4.96) (0.07–0.42) (0.05–0.30) (0.21–1.53) (0.09 0.35) (0.10–0.60)

N = 386 N = 68 N = 318 N = 30 N = 30 N = 35 N = 14 N = 28 N = 215 N = 34

St. Mary’s hospital cohort, n = 200∧

NGAL (ng/mL) 132.1 234.8 93.7 285.2 187.3 – 144.0 – – 97.9 −0.53*

(76.6–248.9) (142.4–391.2) (62.1–144.9) (235.3–639.8) (118.4–308.3) (89.7–209.3) (62.7–161.2)

N = 200 N = 87 N = 113 N = 38 N = 38 n/a N = 32 n/a n/a N = 43

All concentrations in median and interquartile range (IQR); median (IQR) not shown for the “Other” category. ∧The Alder Hey PICU cohort only had minimal cases of “probable viral” or “viral syndrome”; The St. Mary’s hospital cohort had

no cases coded as “bacterial syndrome,” “viral syndrome” or “probable viral.” *Spearman ρ p-value < 0.05 for correlation of the full spectrum of the PERFORM classification.

ED, emergency department; NGAL, neutrophil gelatinase-associated lipocalin; PCT, procalcitonin; PICU, pediatric intensive care unit; SBI, serious bacterial infection.
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FIGURE 2 | Algorithm for classifying children at risk of serious infection. Following discharge, clinical phenotypes were assigned after review of all available clinical and

laboratory data including biochemistry, hematology, radiology and microbiology. Children allocated to the “other infection,” “infection or inflammation,” or “inflammatory

syndrome” boxes at the bottom right would normally be analyzed as its component parts individually, so that studies can recruit and meaningfully analyze data from

these type of patients alongside the infection patients. CRP, C-reactive protein.

RESULTS

The number of children diagnosed with SBI varied between
the 5 cohorts, ranging from 12% in the Erasmus ED cohort to
54% in the St. Mary’s hospital cohort (Table 2). For children
with a definite bacterial (DB) infection this ranged from 4%
in the Erasmus ED, to 24% in the St. Mary’s hospital cohort,
and for children with a definite viral infection (DV) this ranged
between 5% (Erasmus ED cohort) and 27% (St. Mary’s hospital
cohort). Pneumonia was the most commonly diagnosed SBI
in the Erasmus ED cohort (n = 107, 5%), the Alder Hey
ED cohort (n = 107, 9%), and the St. Mary’s hospital cohort
(n = 57, 29%); in the Maastad ED cohort this was urinary tract
infection (n = 42, 6%) and in the Alder Hey PICU cohort it
was sepsis (n = 62, 18%; of which 11 (3%) were culture-negative
sepsis). Biomarker levels were markedly higher in all types of
infection in the Alder Hey PICU cohort and St. Mary’s hospital
cohort compared with the ED cohorts (Table 3). For both the
SBI algorithm and the PERFORM algorithm, children with

presumed bacterial infections had higher concentrations of PCT,
NGAL and resistin than children with presumed viral infections
or “non-SBI” (Table 3). Significant Spearman ρ coefficients
(range −0.10 to −0.53 across biomarkers and cohorts) were
observed for concentrations of PCT, NGAL and resistin and
the full spectrum of diagnostic groups of the PERFORM
algorithm, with higher concentrations for children with bacterial
infection compared to those with viral infections (Table 3).
The biomarkers NGAL (Pearson correlation coefficient: range
0.23–0.40), PCT (range: 0.25–0.41) and resistin (range: 0.14–
0.21) had moderate correlation with CRP (Appendix B in
Supplementary Material).

Increased concentrations of PCT were strongly associated
with bacterial infections in all four cohorts for both the
PERFORM and SBI algorithms, and the PERFORM classification
algorithm showed a clear trend toward higher concentrations
of PCT in children with a higher degree of certainty of
having a bacterial infection (Figure 3). NGAL concentrations
differed between bacterial and viral infections as per PERFORM
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TABLE 4 | Diagnostic performance of biomarkers.

AUC:

SBI vs. non-SBI

(95% CI)

AUC:

DB vs. DV

(95% CI)

Alder Hey ED cohort

NGAL (ng/mL) 0.65

(0.62–0.69)

0.73

(0.65–0.81)

Resistin (ng/mL) 0.65

(0.61–0.69)

0.70

(0.61–0.78)

PCT (µg/L) 0.65

(0.62–0.69)

0.79

(0.69–0.89)

NGAL, resistin, PCT 0.71

(0.67–0.84)

0.81

(0.73–0.88)

Alder Hey PICU cohort

NGAL (ng/mL) 0.62

(0.51–0.73)

0.75

(0.63–0.88)

Resistin (ng/mL) 0.58

(0.47–0.69)

0.65

(0.50–0.79)

PCT (µg/L) 0.67

(0.59–0.75)

0.77

(0.69–0.84)

NGAL, resistin, PCT 0.70

(0.60–0.80)

0.87

(0.77–0.96)

Erasmus ED cohort

PCT (µg/L) 0.75

(0.69–0.80)

0.76

(0.65–0.86)

Maasstad ED cohort

PCT (µg/L) 0.74

(0.67–0.81)

0.76

(0.64–0.88)

St. Mary’s hospital cohort

NGAL (ng/mL) 0.80

(0.74–0.86)

0.90

(0.82–0.97)

DB, definite bacterial; DV, definite viral; NGAL, neutrophil gelatinase-associated lipocalin;

PCT, procalcitonin; SBI, serious bacterial infection; AUC, area under the receiver operating

curve; CI, confidence interval.

algorithm, as well as between “SBI” and “non-SBI,” in the Alder
Hey ED, the Alder Hey PICU and the St Mary’s hospital cohorts
(Figure 4). Resistin levels did not discriminate “SBI” from “non-
SBI” in the Alder Hey PICU cohort (Figure 5). Notably, children
in “viral syndrome” or “unknown” groups of the PERFORM
algorithm had high levels of PCT and NGAL.

Overall, AUCs for “definite bacterial” infections vs. “definite
viral” infections were higher than AUCs for “SBI” vs “non-
SBI” in all cohorts (Table 4). PCT gave a summary AUC of
0.77 (95% CI 0.72–0.82) for discriminating “definite bacterial”
(DB) infections (n = 191) from “definite viral” (DV) infections
(n = 222) according to the PERFORM algorithm vs. 0.70 (95%
CI 0.65–0.75) for discriminating “SBI” (n = 573) from “non-
SBI” (n = 1,976) (Figure 6); for NGAL this was 0.80 (95% CI
0.69–0.91; with DB, n = 141; DV, n = 179) vs. 0.70 (95% CI
0.58–0.81; with SBI, n = 451; non-SBI, n = 1,053) (Figure 7);
for resistin this was 0.68 (95% CI 0.61–0.75; with DB, n = 106;
DV, n= 121) vs. 0.64 (95% CI 0.58–0.69; with SBI, n= 364; non-
SBI, n = 939) (Figure 8). Combining PCT, resistin and NGAL
in the Alder Hey ED and Alder Hey PICU cohorts improved the
summary AUCmore substantially for models predicting “definite
bacterial” infections vs. “definite viral” infections [summary AUC

of 0.83 (95% CI 0.77–0.89)] compared with “SBI” vs. “non-SBI”
[summary AUC of 0.71 (95% CI 0.67–0.74)] (Figure 9).

DISCUSSIONS

Compared to the dichotomous categories from the original
publications (“SBI” vs. “non-SBI”), the new PERFORMalgorithm
showed better discrimination and granularity across the full
spectrum from “definite bacterial” to “definite viral.” It aligned
well with host response biomarker concentrations, which had
highest concentrations in the group with most certainty. Hence,
the PERFORM algorithm helped define those with a bacterial
infection, as well as those without a bacterial illness. This was
seen across a range of clinical settings with varying incidences
of bacterial infections, reflecting different recruitment strategies
and supporting the broad applicability of the PERFORM
algorithm. A combination of PCT, NGAL and resistin improved
discrimination compared with the individual biomarkers in the
Alder Hey ED and PICU cohorts, and more so for differentiating
between “definite bacterial” infections and “definite viral”
infections based on the PERFORM algorithm than for “SBI” and
“non-SBI.” In the PERFORM algorithm, children with a clinical
phenotype resembling a viral infection, but with a high CRP level
not clearly explained by the presence of a bacterial co-infection,
will be classified in either the “viral syndrome” or “unknown”
group. Hence, high concentrations of PCT and NGAL in these
two groups might represent misclassification or co-infection and
are of interest for future biomarker studies. Even though there
was onlymoderate correlation between the biomarkers of interest
and CRP, using CRP to guide the phenotyping in the PERFORM
algorithm might have increased the diagnostic performance of
PCT, NGAL, and resisitin.

When we examined biomarker concentrations in children
with unclear etiology for their illness (children with no positive
microbiology, or in whom the microbiology does not fit the
diagnostic phenotype) and all viral infections (“probable” and
“definite”), there was a trend to a stepwise decrease in the median
biomarker values, moving from most to least likely bacterial
infection. Within each phenotypic category we found a range
of biomarker concentrations spanning from “bacterial” level
to “viral” range, as well as some showing intermediate values.
The PERFORM phenotyping approach enabled categorization
of children with more granularity. The data are consistent
with the emerging evidence for a complex relationship between
bacterial and viral pathogens in the etiology of disease, such
that the overall clinical presentation may be a result of interplay
between pathogens, including between bacteria and viruses
(41). The PERFORM algorithm will also allow for the accurate
classification of children with inflammatory conditions and other
type of infections. Although there were few of these cases in
our cohorts, it will be important to optimize their phenotyping,
as illustrated by the emergence of the SARS-CoV-2 associated
Multisystem Inflammatory Syndrome in children (MIS-C) (64).

The PERFORM classification algorithm aptly captures the
degree of uncertainty of the final diagnosis, increasing the
likelihood of a successful candidate biomarker to perform
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FIGURE 3 | PCT and serious bacterial infections. Each graph shows the concentrations of PCT (microgr/L) for each of the categories of the PERFORM classification

algorithm (top two rows) and of the SBI classification algorithm (bottom two rows) in the Erasmus cohort (left, 1st and 3nd row), Maasstad cohort (right, 1st and 3rd

(Continued)
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FIGURE 3 | row), Alder Hey ED cohort (left, 2nd and 4th row), and the Alder Hey PICU cohort (right, 2nd and 4th row). Each bar represents median concentration

values, with the black lines representing the interquartile range, and the gray dots representing individual values. Overall significance for the PERFORM classification

algorithm is given using the Kruskal Wallis test, and for the SBI classification using the Wilcoxon rank sum test. In addition, significance value for “definite bacterial” vs.

“definite viral” of the PERFORM algorithm was calculated using the Wilcoxon rank sum test.

FIGURE 4 | Concentrations of NGAL. Each graph shows the concentrations of NGAL (ng/L) for each of the categories of the PERFORM classification algorithm (top

row) and of the SBI classification algorithm (bottom row) in the Alder Hey ED cohort (left), the Alder Hey PICU cohort (middle) and the St. Mary’s hospital cohort (right).

Each bar represents median concentration values, with the black lines representing the interquartile range, and the gray dots representing individual values. Overall

significance for the PERFORM classification algorithm is given using the Kruskal Wallis test, and for the SBI classification using the Wilcoxon rank sum test. In addition,

significance value for “definite bacterial” vs. “definite viral” of the PERFORM algorithm was calculated using the Wilcoxon rank sum test.

well in validation cohort studies. Furthermore, the algorithm
gives insights in the distribution of the types of infection
in different clinical settings. We now suggest, as a next step
toward clinical implementation, to select the most promising
candidate biomarkers with the most convincing trend of
biomarker concentrations, and the best discriminative ability
for “definite bacterial” vs. “definite viral” infection. Including

those children with “probable bacterial” or “probable viral”
infections can be considered to cover a wider range of
clinical phenotypes. Then, candidate biomarkers should be
validated in independent validation cohorts. Validation studies
should recruit cohorts with consecutive patients, including
those with an unclear clinical phenotype, and should be
conducted in various clinical settings including low and
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FIGURE 5 | Concentrations of Resistin. Each graph shows the concentrations of Resistin (ng/L) for each of the categories of the PERFORM classification algorithm

(top row) and of the SBI classification algorithm (bottom row) in the Alder Hey ED cohort (left) and the Alder Hey PICU cohort (right). Each bar represents median

concentration values, with the black lines representing the interquartile range, and the gray dots representing individual values. Overall significance for the PERFORM

classification algorithm is given using the Kruskal Wallis test, and for the SBI classification using the Wilcoxon rank sum test. In addition, significance value for “definite

bacterial” vs. “definite viral” of the PERFORM algorithm was calculated using the Wilcoxon rank sum test.

middle income countries, as well as high and low incidence
settings. To illustrate the importance of this, we showed that
biomarker levels were markedly higher in the Alder Hey PICU
cohort than in the ED cohorts for all diagnostic groups.
Specific populations such as neonates and children with co-
morbidity are also important to consider for validation studies.
Following this strategy, it will become apparent in which
groups of patients a potential new biomarker might or might
not perform satisfactorily. This framework could easily be
extended to account for non-viral and non-bacterial causes
of febrile illness as well, as is currently being explored in
the Diagnosis and Management of Febrile Illness using RNA

Personalized Molecular Signature Diagnosis (DIAMONDS)
study (65). The algorithm could be modified for adult studies,
but would need to be validated using case biomarker studies
from adults.

CLINICAL TRANSLATION OF
BIOMARKERS AND FUTURE RESEARCH

Following satisfactory discovery and validation stages, the
performance of a potential biomarker needs to be studied against
clinically meaningful and patient-centered endpoints. Until now,
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FIGURE 6 | Forest plot of summary AUC: PCT. Forest plot of random effects model of the AUCs of PCT predicting SBI vs. non-SBI (left) and Definite Bacterial (DB) vs.

Definite Viral (DV) (right) for our four cohorts with PCT available (y-axis). The black squares show the mean AUC values with the 95% confidence intervals on the x-axis.

Overall summary AUC and confidence interval are shows as black diamond. For SBI vs. non-SBI: model I2 = 67.26%, test for heterogeneity Q (df = 3) = 101,349,

p-value 0.0175; for DB vs. DV: model I2 = 0.00%, test for heterogeneity Q (df = 3) = 0.2694, p-value 0.9657.

FIGURE 7 | Forest plot of summary AUC: NGAL. Forest plot of random effects model of the AUCs of NGAL predicting SBI vs. non-SBI (left) and Definite Bacterial (DB)

vs. Definite Viral (DV) (right) for our three cohorts with NGAL available (y-axis). The black squares show the mean AUC values with the 95% confidence intervals on the

x-axis. Overall summary AUC and confidence interval are shows as black diamond. For SBI vs. non-SBI: model I2 = 89.14%, test for heterogeneity Q

(df = 2) = 18.4711, p-value < 0.001; for DB vs. DV: model I2 = 76.23%, test for heterogeneity Q (df = 2) = 9.5315, p-value 0.0085.

only few high-quality randomized trials have evaluated this
in the pediatric population. As one example, the Neopins
study showed that PCT could successfully be used to shorten
the duration of antibiotics in suspected early onset sepsis in
neonates (66). Similarly, Baer et al. showed that the duration
of antibiotic treatment could be guided by PCT in a pediatric
ED setting (67). The UK BATCH (“Biomarker-guided duration
of Antibiotic Treatment in Children Hospitalized with confirmed

or suspected bacterial infection”) trial is currently recruiting
patients, aiming to use PCT for guiding the duration of
antibiotics in hospitalized children with an acute infection (68).
Other studies showed limited impact of using biomarkers on
the management of children with acute infections (69, 70).
Successful clinical implementation of a biomarker is complex
and multifactorial (71), as was shown in a trial implementing
rapid diagnostics for malaria, in which physicians did not
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FIGURE 8 | Forest plot of summary AUC: Resistin. Forest plot of random effects model of the AUCs of Resistin predicting SBI vs. non-SBI (left) and Definite Bacterial

(DB) vs. Definite Viral (DV) (right) for our two cohorts with Resisting available (y-axis). The black squares show the mean AUC values with the 95% confidence intervals

on the x-axis. Overall summary AUC and confidence interval are shows as black diamond. For SBI vs. non-SBI: model I2 = 23.13%, test for heterogeneity Q

(df = 1) = 1.3009, p-value 0.2540; for DB vs. DV: model I2 = 0.00%, test for heterogeneity Q (df = 1) = 0.3248, p-value 0.5687.

FIGURE 9 | Forest plot of summary AUC: PCT, Resistin and NGAL combined. Forest plot of random effects model of the AUCs of PCT, Resistin and NGAL combined

predicting SBI vs. non-SBI (left) and Definite Bacterial (DB) vs. Definite Viral (DV) (right) for our two cohorts with all three biomarkers available (y-axis). The black

squares show the mean AUC values with the 95% confidence intervals on the x-axis. Overall summary AUC and confidence interval are shows as black diamond. For

SBI vs. non-SBI: model I2 = 0.00%, test for heterogeneity Q (df = 1) = 0.0112, p-value 0.9156; for DB vs. DV: model I2 = 2.02%, test for heterogeneity Q

(df = 1) = 1.0206, p-value 0.3124.

use the result to guide treatment, despite good diagnostic
accuracy (72). Next, given the significant cost associated with
diagnostic uncertainty in childhood febrile illness, diagnostic
advances increasing the confidence to withhold antibiotics may
yield considerable efficiency gains, especially in the sub-groups
where the perceived risks of failing to identify potentially life-
threatening bacterial infections are greatest (11). It is therefore
imperative that future randomized trials of biomarkers include

comprehensive cost-effectiveness analysis. In addition, future
studies will need to focus on combinations of biomarkers that
ideally include markers of both viral and bacterial infections
and of other febrile illnesses including inflammatory disease
(17, 63, 73). Throughout, we discussed biomarkers in blood,
but future studies should additionally consider the optimal type
of biosample for a biomarker, as some have marked improved
diagnostic performance in sterile fluids such as cerebral spinal
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fluid (74). Lastly, establishing the likelihood of viral or bacterial
disease in febrile children, as suggested in this manuscript, does
not always relate to the severity of disease. Emerging evidence
is providing more insight into the role of clinical signs and
symptoms in predicting the severity of childhood illness (75, 76).
Future studies should therefore combine new biomarkers with
existing validated clinical prediction models with an aim to
predict both severity and etiology of childhood febrile illness (77).

CONCLUSION

The absence of a perfect reference standard for biomarker
studies in serious bacterial infections has hindered translation
of biomarker studies into clinical practice. Our proposed new
algorithm provides a framework for phenotyping children with
infections based on the trends in the different biomarkers in
relation to the certainty of the diagnosis of either bacterial or
viral categories. The findings from our independent biomarker
validation studies suggest that the algorithm also aligns well with
the host response and could provide mechanistic insights for
those with uncertain diagnoses. To utilize the full potential of
-omics driven biomarkers discovery studies, it will be essential
to reach agreement on the best outcome reference standard
in future studies, and we propose our diagnostic phenotyping
algorithm as the best possible way to do so at present.
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