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Objective: To determine whether a portable microcurrent therapy device (PMTD) of the

rectus abdominis muscles is effective for treating desaturation during feeding in preterm

infants and to evaluate the association between initial electrical activity of respiratory

muscle and long-term development delay.

Methods: Twenty preterm infants with desaturation during feeding were recruited.

Respiratory muscle activity was quantified by calculating the root mean square (RMS)

of the electromyography. All preterm infants received a 30min PMTD application to

the rectus abdominis and diaphragm daily for 2 weeks. RMS of diaphragm and

rectus abdominis, feeding volume, frequency of desaturation during feeding at baseline

(pre-PMTD) and 1, 2 week post-PMTD were measured. The number of days it took to

treat desaturation after PMTD was measured. A Denver developmental screening test

was performed and infants were divided into 3 groups: (1) normal; (2) caution; and (3)

delayed at 3months after PMTD.

Results: The desaturation during feeding of all the preterm infants subsided after

PMTD and the mean days took to treat desaturation was 25.4 ± 14.2 days. The RMS

of diaphragm, rectus abdominis, and frequency of desaturation during feeding were

significantly decreased and the feeding volume was significantly increased after PMTD

(p < 0.01). The mean treatment duration for desaturation was negatively correlated with

RMS of rectus abdominis at baseline and 1 week post-PMTD, respectively (Pearson’s

correlation coefficient = −0.461,−0.514, p-value = 0.047, 0.029). RMS of rectus

abdominis of Group 3 is lower than that of group 1 and 2 (p < 0.01).

Conclusions: This pilot study showed that themicrocurrent therapy of rectus abdominis

is an efficient therapy for the treatment of preterm infants with desaturation during

feeding, especially preterm infants with higher activity of the rectus abdominis. In preterm

infants with lower rectus abdominis activity, longer time is required to treat desaturation

bymicrocurrent therapy and developmental delay is observed at months post-treatment.
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INTRODUCTION

In premature infants, coordination of sucking, swallowing, and
breathing rhythms is critical for successful suckle feeding (1, 2).
Immature coordination, gastroesophageal reflux, immature oral
structures, and a combination of conditions can increase the
risks of desaturation while feeding (3–9). A clinically significant
oxygen desaturation phenomenon occurs when there is any
reduction in oxygen saturation < 90% for 1 second or longer
(10). Moreover, although preterm infants can also experience
impaired lung function during gavage feeding, desaturation can
occur more frequently during bottle feeding, particularly when
there is an extant gavage tube (3, 11–14). Premature infants are
frequently fed using these methods. Immature incoordination
of suck-swallow-breathing can cause frequent desaturation,
which can affect multiple organs (e.g., heart, lungs, and brain),
impacting the subsequent infant growth and development (15–
18).

Evidence suggests that diaphragmatic fatigue is involved
in the pathogenesis of desaturation in premature infants
(19–21). Paradoxical breathing is common in infants and is
particularly notable in preterm infants as a result of their
highly compliant chest wall (4). Reports suggest that this
defect enhances volume displacement of the diaphragm during
inspiration and requires substantial effort and energy, as well
as promoting diaphragmatic fatigue and desaturation. Gewolb
and Vice (22) demonstrated that hypoxemic episode duration
and severity were related to simultaneous abdominal muscle
contractions following mechanical ventilation in preterm infants.
Moreover, delayed lung inflation following abdominal muscle
contraction eventually results in a reduction in the lung volume
below baseline.

Furthermore, a previous study reported that preterm infants
with desaturation during feeding showed high electrical activity
in the diaphragm and rectus abdominis muscle (23). They
assumed that excessive contraction of diaphragm and rectus
abdominis muscle lead to diaphragm fatigue and feeding
desaturation. Therefore, they suggest that reducing the excessive
activity of abdominal muscle may effectively control feeding
desaturation in preterm infants.

Microcurrent electrical stimulation represents a physical
modality for the delivery of current in the microampere range.
No adverse effects have been associated with microcurrent
stimulation as it works at the microampere level and simulates
the electrical intensity of living tissue (24–28). A previous study
demonstrated that microcurrent therapy markedly reduced the
muscle electrical activity and increased muscle power efficiently
through minimal muscle recruitment (29).

Taking into account the importance of safe and effective
treatment for preterm infant with desaturation during feeding,
and in light of the aforementioned issues: we aimed to
explore the association between initial electrical activity of
respiratory muscle and long-term development delay and the
efficacy of microcurrent treatment in these patients. To our
knowledge, this preliminary report is the first to investigate
this convenient treatment method in preterm infant with
desaturation during feeding.

MATERIALS AND METHODS

Participants
This was a prospective, single arm, pilot study. A total of 79
preterm infants were enrolled with desaturation during feeding
who underwent treatment in neonatal intensive care unit, 59 of
which the desaturation resolved spontaneously before 35 weeks
of gestation. There were 20 preterm infants with respiratory
distress syndrome referred from the pediatrics department
to rehabilitation medicine department regarding desaturation
during feeding. These infants were recruited to the present study,
between May 2015 and March 2016 (Table 1).

Significant feeding desaturation was defined as an arterial
oxygen saturation level using a pulse oximeter < 85% for longer
than 2 s (moderate to severe desaturation) (10, 16, 23). None of
the infants exhibited concurrent sepsis or craniofacial anomalies.
All infants were bottle-fed during their scheduled feeding times
by a skilled nurse with over 2-3 years of experience in a neonatal
intensive care unit. In infants aged < 3 months, a small nipple
size (Aissok, Greenmom, Anyang, Korea) was used for each
feeding. Gavage-fed infants were excluded from the study. The
study was approved by the Institutional Review Board and Ethics
Committee of University Medical Centre (IRB number: MDCR-
15-011). Written informed consent was granted by the parents or
guardians of the infants.

Outcome Measurements
Surface electrodes were used to record the electromyographic
(EMG) activity of the diaphragm and rectus abdominis muscle as
described previously (1) using a four-channel electrophysiology
unit (Medelec, Company of Oxford, Oxford, UK). Surface
electrodes were placed in the eighth intercostal space between
the mid-clavicular and mid-axillary line to measure the electrical
activity of the diaphragm muscles. Surface electrodes were
placed 2 cm laterally to the umbilicus to measure the activity
of the rectus abdominis muscles. The electromyographic (EMG)
activity of the muscles was recorded for 1 h at resting state after
feeding. The level of respiratory muscle activity was quantified by
calculating the root mean square (RMS) envelope of the EMG
signal. The RMS of the diaphragm and rectus abdominis was
measured. The brain imaging study (ultrasound or magnetic
resonance imaging) was reviewed. Feeding volume at each feed
and frequency of desaturation during feeding was measured.

TABLE 1 | Demographic data.

Variable Value

GA at birth (week) 29.1 ± 4.1

GA at study (week) 37.0 ± 1.3

Weight at birth (g) 1366.5 ± 675.7

Weight at study (g) 2483.0 ± 375.7

Sex (M/F) 11/9

Brain lesion (abnormal/normal) 8/12

Values are represented as the mean ± standard deviation or numbers. GA,

Gestational age.
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FIGURE 1 | Placement of electrode for microcurrent therapy on (A) the front

side of the infant or (B) the back of the infant. P, electrode patch, MC,

microcurrent generator.

Treatment duration was defined as the time between the initial
treatment and achieving no desaturation event during feeding.
There was a loss to follow up at 3 months after treatment, for
9 infants. In 11 infants, the Denver developmental screening
test II (DDST) was performed (6). The DDST includes four
developmental elements: social contact, language, fine motor
skills, and gross motor skills. Infants were divided into three
groups: group 1 (n = 4), normal; group 2 (n = 4), caution; and
group 3 (n= 3), delayed, according to guidelines (30, 31).

Treatment
All preterm infants received intensive physical therapy and
microcurrent therapy in the ICU. Physical therapy consisted
of oromotor stimulation, respiratory muscle stretching and
relaxation, and trunk stabilization. Microcurrent therapy was
applied to the front and back of body to treat diaphragm and
rectus abdominus. The front patch placed to 1 cm above the
umbilicus on midline. A back patch was placed at the same
location on the back (Figure 1). All infants received 2 weeks of
daily treatment with a small and portable microcurrent therapy
device (intensity, 25µA; frequency, 8Hz; Granthe, Cosmic Co.,
Seoul, Korea) for 30min. The current intensity was significantly
lower than each infant’s sensation threshold. The microcurrent
generator provided an alternating current using a monophasic
rectangular pulse format with a reversal in polarity every 2 s.

Statistical Analysis
A repeated measured one-way ANOVA was used to evaluate
the change in EMG activity. A Pearson’s correlation analysis
and Spearman’s correlation analysis were used to calculate the
correlation between numeric variables. The association between
DDST and other variables was evaluated using a one-way
ANOVA and Kruskal-Wallis test.

TABLE 2 | Changes in the electrical activity of respiratory muscles and feeding

status.

Baseline 1 weeks 2 weeks p-value

RMS-D (µV) 280.1 ± 104.7 256.6 ± 85.6 231.8 ± 74.0 <0.01*

RMS-R (µV) 58.9 ± 21.4 50.9 ± 18.9 43.9 ± 18.9 <0.01*

F-VOL (ml) 53.8 ± 14.2 75 ± 14.6 89.4 ± 15.3 <0.01*

DES-FREQ (n) 3.9 ± 2.2 1.8 ± 0.9 0.8 ± 0.8 <0.01*

RMS-D, root mean square of diaphragm; RMS-R, root mean square of rectus abdominis;

F-VOL, feeding volume; DES-FREQ, frequency of desaturation during feeding. Values are

represented as the mean ± standard deviation. *: p-value < 0.05 by repeated measure

one-way ANOVA.

TABLE 3 | Correlation analysis among the clinical variables and duration of

treatment (n = 20).

Treatment time

GA (week) −0.266

WT (gram) −0.178

APG 1min −0.181

APG 5min 0.055

RMS-D baseline (µV) −0.027

RMS-D 1wk (µV) −0.005

RMS-D 2wk (µV) 0.009

RMS-R baseline (µV) −0.461*

RMS-R 1wk (µV) −0.514*

RMS-R 2wk (µV) −0.407

GA, gestational age at birth; WT, weight at birth; APG 1m, APGAR score at 1min; APG

5m, APGAR score at 5min; RMS-D, root mean square of diaphragm; RMS-R, root mean

square of rectus abdominis, 1wk; 1 week after PMTD therapy, 2wk; 2 week after PMTD

therapy, Treatment time; The mean days took to treat desaturation. Values are Pearson’s

correlation coefficient or Spearman’s correlation coefficient. *: p-value < 0.05, Pearson’s

correlation analysis.

RESULT

A total of 20 preterm infants (mean age: 37.0 ± 1.3 weeks; mean
weight: 2483.0 ± 375.7 g; 11 males and 9 females) were enrolled.
There were 8 out of 20 infants with brain lesions, including
four with periventricular leukomalacia, two with intraventricular
hemorrhage, and two with grade I germinal matrix hemorrhage.
All preterm infant’s desaturation during feeding had subsided
after treatment. The mean duration of treatment was 25.4 ±

14.2 days.
The RMS of diaphragm and rectus abdominis muscle

decreased continuously during treatment (Table 2) (p < 0.01).
The mean duration of treatment was negatively correlated

with the RMS of rectus abdominis at baseline and 1 week after
treatment (Pearson’s correlation coefficient = −0.461,−0.514 p-
value = 0.047, 0.029) (Table 3). RMS of rectus abdominis of
Group 3was lower than that of group 1 and 2 (p< 0.01) (Table 4).

There was no correlation between gestational age, weight,
brain lesion, APGAR score, RMS of the diaphragm and treatment
duration (Table 3). There was no association between gestational
age, weight, brain lesion, APGAR score, RMS of diaphragm and
developmental delay (Table 4).
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TABLE 4 | Clinical variables according to development evaluation.

Group 1 Group 2 Group 3 p-value

(n = 4) (n = 4) (n = 3)

GA 29.3 ± 3.1 25.3 ± 1.7 28.4 ± 2.3 0.119

WT 1322.5 ± 477.0 782.5 ± 92.2 1063.3 ± 151.8 0.101

APG 1min 4.3 ± 3.4 4.0 ± 1.4 4.0 ± 2.0 0.926

APG 5min 7.8 ± 1.5 6.8 ± 1.3 7.0 ± 1.0 0.764

RMS-D baseline 216.4 ± 84.4 249.8 ± 147.9 287.2 ± 52.8 0.700

RMS-D 1wk 194.0 ± 71.1 219.0 ± 105.2 274.7 ± 28.4 0.440

RMS-D 2wk 170.0 ± 80.6 206.3 ± 89.8 234.2 ± 10.1 0.584

RMS-R baseline 64.8 ± 11.4 82.5 ± 13.6 35.6 ± 11.1 0.003*

RMS-R 1wk 58.9 ± 12.5 74.3 ± 9.0 31.6 ± 9.3 0.002*

RMS-R 2wk 46.0 ± 6.6 67.5 ± 14.0 24.0 ± 6.1 0.003*

Brain lesion (normal/abnormal) 3/1 2/2 0/3 0.139

GA, gestational age at birth; WT, weight at birth; APG 1m, APGAR score at 1min; APG 5m, APGAR score at 5min; RMS-D, root mean square of diaphragm; RMS-R, root mean

square of rectus abdominis, 1wk; 1 week after PMTD therapy, 2wk; 2 weeks after PMTD therapy, group 1; normal, group 2; caution, group 3; delayed. p-value: by one-way ANOVA or

Kruskal-Wallis test or Chi-square test. *: RMS of delayed group was significantly lower than that of caution or delayed group, by post hoc Tukey test.

DISCUSSION

The current study explored the efficacy of microcurrent
stimulation of preterm infants with desaturation during feeding.
Our preliminary results show that patients had decreased RMS of
diaphragm and rectus abdominis muscle and improved oxygen
saturation. To the best of our knowledge, these data are the first to
report the effectiveness of microcurrent in preterm infants with
desaturation during feeding.

Two mechanisms of microcurrent therapy have been
suggested regarding the treatment of desaturation during
feeding: 1) the therapeutic effect may be related to the
maintenance of intracellular Ca2+ homeostasis in muscle
(24, 32). Moreover, abdominal muscle contractions in preterm
infants may result in forced exhalation, which reduces the
lung volume and places a substantial load on the inspiratory
muscles. These muscles must then overcome the increase in
workload before they can perform effective inspiration using
the diaphragm. Additionally, in preterm infants, the diaphragm
contains < 10% type I muscle fibers and a low amount of type
IIb muscle fibers (33, 34). Together, the lack of fatigue-resistant
type I muscle fibers, high proportion of fatigue-susceptible type
IIc muscle fibers, and low oxidative capacity of the neonatal
diaphragm indicate that the diaphragm muscle may be prone to
fatigue (19, 20, 31).

Thus, enhanced diaphragmatic breathing may represent

substantial energy expenditure that contributes to ventilatory

failure and diaphragmatic fatigue. As a consequence, an
imbalance between an imposed load and inspiratory

muscle capacity in preterm infants leads to desaturation
symptoms. Increased RMS indicates that work-of-breath
and thoracoabdominal asynchrony are elevated in preterm
infants. It has previously been shown (29) that microcurrent
therapy lowers the RMS of hand grip muscle and increases of
hand grip strength in the elderly. Thus, the authors suggest
that an elevated concentration of intracellular calcium might

alter membrane integrity, causing functionally prolonged
muscle contraction.

Second, microcurrent therapy may enhance adenosine
triphosphate (ATP) synthesis of amino acid transportation,
and protein synthesis, which can prevent the vicious cycle
of diaphragm and rectus abdominis muscle contraction (35,
36). Prolonged actin-myosin coupling can promote muscle
fiber contraction and increase the flow resistance in the
microvasculature of the contracted muscle. Arteriolar and
capillary constriction impairs blood flow to the tense muscle
fibers and can be aggravated by local vasoconstrictor reflex. This
can lead to reduced levels of oxygen and glucose, decreasing the
regeneration of ATP (37–41). Decreased ATP can interfere with
Ca2+ reuptake into the sarcoplasmic reticulum, a process that
is partially ATP-dependent, which prolongs actin-myosin cross-
bridging and initiates a vicious cycle (42). Previous studies have
described the benefits of electric current on soft tissue repair as a
result of supplying ATP (43).

The findings of the present study demonstrate that infants
with a lower RMS of rectus abdominis take longer time to
treat desaturation and developmental delay at 3 months after
treatment. These findings completely correlate with the findings
of previous studies and we speculate that this consistency may be
attributed to themuscle hypotonia. Previous studies (44–47) have
demonstrated that hypotonia has a negative impact in infants
exhibiting genetic syndromes, reporting difficulties in latching
and sucking during infancy and challenges in managing solid
foods during childhood (45, 46). Hypotonia can interfere with the
development of the motor skills required for the success of oral
feeding (47), representing a challenge to the transition through
the various developmental stages of feeding.

The infants with a low RMS of the rectus abdominis
showed delayed development. Two mechanisms are possible
for this observation. First, the infants with the low RMS of
the rectus abdominis recovered slowly, therefore, they were
exposed to a hypoxic environment for a longer period of time.
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In addition, chronic hypoxia interferes with brain development
and causes developmental delay. Second, rectus abdominis is
a trunk muscle essential for gross movement. Low activity of
the rectus abdominis can represent an independent factor to
affect development.

There are some limitations associated with this study.
First, the sample size is too small. Second, our study lacks
a control group for the direct comparison of microcurrent
therapy to other standard dysphagia rehabilitation therapy since
all parents of preterm infants want to receive microcurrent
therapy. Third, we did not perform other test to evaluate
the cause of desaturation (e.g., chest CT or esophageal pH
monitoring). Therefore, we cannot exclude other factors
influence desaturation. Therefore, future randomized controlled
studies are warranted. Fourth, the duration of follow up is
too short to detect developmental delay. Finally, to achieve
optimal results, the effects of microcurrents of various
frequencies and durations (e.g., <30min or >3 h.) must
be assessed.

CONCLUSION

This pilot study shows that microcurrent therapy of the rectus
abdominis is an efficient treatment for preterm infants with
desaturation during feeding, especially preterm infants with
higher rectus abdominis activity. In preterm infants with lower
rectus abdominis activity, infants take longer to respond to
microcurrent therapy to treat desaturation and they show
developmental delay at 3 months after treatment. We can assess
the electrical activity of the rectus abdominis muscle in a clinical
setting, and it can help determine the cause of desaturation and

establish a therapeutic plan, as well as predict the prognosis
of development.
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