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Cardiovascular diseases (CVD) are a hallmark in pediatric patients with chronic kidney

disease (CKD) contributing to an enhanced risk of all-cause and CV morbidity and

mortality in these patients. The bone-derived phosphaturic hormone fibroblast growth

factor (FGF) 23 progressively rises with declining kidney function to maintain phosphate

homeostasis, with up to 1,000-fold increase in patients with kidney failure requiring

dialysis. FGF23 is associated with the development of left ventricular hypertrophy (LVH)

and thereby accounts to be a CVD risk factor in CKD. Experimentally, FGF23 directly

induces hypertrophic growth of cardiac myocytes in vitro and LVH in vivo. Further, clinical

studies in adult CKD have observed cardiotoxicity associated with FGF23. Data regarding

prevalence and determinants of FGF23 excess in children with CKD are limited. This

review summarizes current data and discusses whether FGF23 may be a key driver of

LVH in pediatric CKD.

Keywords: fibroblast growth factor 23, left ventricular hypertrophy, children, chronic kidney disease - mineral and

bone disease, chronic kidney disease

INTRODUCTION

Chronic kidney disease (CKD) is a significant global health issue and defined as gradual loss of
kidney function ultimately leading to irreversible kidney damage (1). CKD patients present a high
risk for cardiovascular events. Fifty percent which remain the predominant cause of patients with
CKD stage 4 and 5 develop cardiovascular diseases (CVD), which cause of death with 40%mortality
rate (2). The cardiorenal syndrome (CRS) type 4 reflects the complex relationship between primary
CKD and resultant CVD (3, 4). Left ventricular hypertrophy (LVH), cardiac fibrosis and vascular
diseases remain the most common cardiac abnormalities in CRS 4, with 90% of adult patients with
kidney failure developing LVH (5, 6). The primary causes of cardiac-associated death in these
adults on haemodialysis are stroke, congestive heart failure, myocardial infarction and cardiac
arrest (7, 8). Childhood CKD is also associated with amplified cardiovascular (CV) morbidity and
mortality both during childhood with progressive worsening in those with childhood-onset CKD
become young adults (7–9). The severity of CVDs in CKD patients is aggravated by the mineral
bone disorder of CKD, called Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD).
Thus, CKD-MBD is a CKD-specific cardiovascular risk factor and displays changes in mineral
metabolism parameters including phosphate, calcium, parathyroid hormone (PTH), calcitriol
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(1,25-dihydroxyvitamin D3, or 1,25D), and fibroblast growth
factor 23 (FGF23) (10). In children with CKD impaired bone
architecture may result in bone pain and deformities, short
stature, fractures and ectopic calcifications. In children, LVH
is the commonest CV abnormality with reported prevalence
between 17 and 55%, increasing prevalence with worsening GFR
(11–14). As LVH and its progression are associated with adverse
CV outcomes in patients with CKD (15), it remains important to
understand additional risk factors. The present narrative review
focusses on FGF23, a bone-derived phosphaturic hormone
regulating renal phosphate homeostasis, in the development of
LVH in pediatric CKD and summarizes recent clinical literature
in this field.

GENERAL MECHANISMS OF CVD IN CKD

Mainly, there are two different processes involved in the
development of CVD. As a response to mechanical or
hemodynamic overload, a remodeling process leads to
hypertrophy of the left ventricle (LV) (16). There is evidence,
that LV dysfunction in children with CKD predisposes them
to LVH (17). Pressure overload resulting from prolonged
hypertension leads to concentric hypertrophy, whereas eccentric
hypertrophy is a cause of volume overload due to e.g., aortic and
mitral valve insufficiency (18). These two different mechanisms
induce distinct patterns of cardiac myocyte contractile protein
(sarcomere) formation. New sarcomeres are added in parallel
with relative increase in the width of the myocytes during
pressure-induced concentric LVH. The pronounced increase in
wall thickness with only little expansion of the LV cavity is a direct
effect of the myocyte growth. During eccentric hypertrophy
the LV cavity together with wall thickness is increased. Here,
sarcomeres are added in series producing longitudinal growth
of cardiac myocytes. Importantly, when myocytes elongated
only in length without an increase in diameter, the LV dilates.
Both, pressure and volume overload trigger the activation of
multiple signaling pathways leading to myocardial remodeling
(18). In CKD patients, these mechanisms can be activated
independently, since here numerous humoral factors are altered
a priori. To make matters worse, different hemodynamic
stimuli e.g., hypertension, arterial stiffness, volume expansion,
and anemia can occur simultaneously in CKD, resulting in
distinct alterations of LV geometry (19). Hypertrophy of the
LV becomes maladaptive with decreased capillary density,
arrhythmia, and myocardial fibrosis leading to myocyte death
causing diastolic and systolic dysfunction. The activation of the
renin–angiotensin–aldosterone system (RAAS) is also known
to induce LVH (20, 21). FGF23 can stimulate RAAS directly by
inhibiting renal Angiotensin Converting Enzyme 2 (ACE2), thus
inhibiting its vasodilatory and hypotensive properties resulting
in promotion of vasoconstrictive and inflammatory effects of
angiotensin II (22–24). Vice versa, FGF23 expression may also be
stimulated by RAAS activation (25). Interestingly, FGF23 blunts
the protective effects of angiotensin receptor blocker (ARBs) on
the kidney and mitigates the expression of anti-inflammatory
genes in experimental renal failure (26). Since, hypertension

is one of the most common comorbidities in CKD patients,
FGF23-mediated activation of RAAS may play an important role
in hypertension in CKD.

Vascular injury is promoting CVD as well. Changes in
vascular tissue, leading to atherosclerotic and arteriosclerotic
alterations and/or vascular calcification, are very common in
CKD. Plaque and atheroma formation during atherosclerosis
start with accumulation of macrophages in the vascular intima
followed by aggregation of lipids, different fibers of collagen
and smooth muscle cells. At the same time, calcification with
the development of atherosclerotic lesions at the intima occurs
causing stenosis and local closures of the artery. Circulating
endothelial progenitor cells (EPCs) contribute to angiogenetic
processes where they are recruited to the heart vessels after
injury or damage. Studies show a reduced number of EPCs with
impaired function in CVD (27).

In arteriosclerosis, the process of arterial stiffening and
arterial calcification results in arteries with thicker intima
and media, which affects their elasticity. The increased wall
thickness together with a lumen enlargement, resulting in higher
systolic blood pressure and arterial stiffening, characterize the
vascular remodeling processes during arteriosclerosis. The main
consequences of arterial stiffening are LVH and an altered
coronary perfusion (28).

Over the past decade, vascular calcification in combination
with chronic inflammation have come into focus as another risk
factor for CVD in CKD, driving disease progression particularly
in children on chronic dialysis (29). In combination with
oxidative stress, inflammation is implicated in the progression
of CKD due to increased production of pro-inflammatory
cytokines such as C-reactive protein (CRP), interleukin-6 (IL-6),
interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) with
IL6 and TNF-α being strong inducers of vascular calcification
(30). In the Modification of Diet in Renal Disease (MDRD) study
and in the Trial to Reduce Cardiovascular Events With Aranesp
Therapy (TREAT) higher CRP levels have been independently
linked to CVD prevalence in diabetic and non-diabetic kidney
disease (31, 32). Mechanistically, CRP has been shown to enhance
transdifferentiation of vascular smooth muscle cells (VSMC)
via an Fc fragment of IgG receptor IIa (FCGR2A)-dependent
activation of oxidative stress (33). Loss of VSMCs quiescent
phenotype and their transdifferentiation into osteoblastic-like
cells with increased mineralized matrix secretion lead to the
progression of vascular calcification (34).

The pro-inflammatory marker IL-6 is involved in
the development of atherosclerotic lesions by recruiting
inflammatory cells. Circulating plasma level of IL-6 were
elevated in a cohort of stable haemodialysis patients enrolled
in the HEMO study suggesting IL-6 to be a strong predictor
of CV and all-cause mortality (35, 36). Furthermore, in a
recent clinical study measuring IL-6 in patients with coronary
artery calcification in CKD, IL-6 was found to be a strong and
independent predictor of CV and all-cause death (37).

TNF-α is induced by inflammatory stimuli and stimulates
the immune response. It was shown to be upregulated in
kidney disease and LVH in patients receiving dialysis (38).
Increased level of circulating TNF-α are observed in myocardial
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dysfunction and fibrosis and it is thought to be involved in
the development of atherosclerosis by impairing endothelial
function (39). Despite these data, currently there is no therapy
available for the treatment of inflammation to decrease CV
calcification in those with CKD. Recently, using an experimental
CKD model, Singh et al. reported that activation of FGFR4
and PLCg/calcineurin/NFAT signaling by FGF23 in the liver
stimulated an inflammatory response (40). Blockade of FGF
receptor 4 (FGFR4) resulted in reduced circulating CRP levels.
Since FGFR4 is expressed in a wide range of tissue, this FGFR
isoform might be a promising target for clinical intervention.

CVD IN PEDIATRIC CKD

In children, LVH develops early in mild and moderate chronic
renal insufficiency and exacerbates with kidney failure requiring
dialysis (9, 11, 41). Children with CKD show the same risk
factors that predict the development of cardiac hypertrophy as
adults, although the duration of the “abnormality” is shorter.
Importantly however, in contradistinction to adults, children
do not have long-standing hypertension and other major
co-morbidities including diabetes and smoking. Amongst
modifiable risk associations for LVH in children, anemia,
increasing ponderosity, hypertension and treatment with
antihypertensive medications that do not target RAAS e.g.,
vasodilators, have been reported previously (42–44). Numerous
studies have observed a correlation of increased PTH levels and
the progression of LVH in children with CKD stages 2–4 with
PTH having a direct effect on cardiac myocytes (45, 46). Thus,
Bakkaloglu et al. show in the IPPN cohort for children with CKD
an increased risk for developing LVH of over 70% (47).

Endothelial dysfunction (ED) measured by impaired
endothelium-dependent flow-mediated dilation (FMD) is
observed in children with advanced kidney failure, on chronic
dialysis and after renal transplantation (48, 49). Nitric oxide
deficiency and oxidative stress are discussed as cause and
consequence of ED (50, 51). In addition, vascular abnormalities
display a high prevalence in pediatric CKD. Medial vascular
calcification due to its association with increased vascular
stiffening and cardiac workload, poor coronary perfusion, and
sudden cardiac death, is responsible for the high risk for CV
mortality even in young adults with CKD and this risk may
be comparable to the older people in the general population
(52, 53). The association between CKD and accelerated vascular
aging is evident and discussed intensively, but so far little is
known about the underlying molecular mechanisms (54–56).
A dysregulated calcium (Ca) and phosphate (P) metabolism
accelerate vascular calcification in CKD that is promoted by
the death of vascular smooth muscle cells and osteogenic
differentiation (57, 58). Major physiological regulators of Ca
and P metabolism are FGF23 and its co-receptor α-Klotho as
well as PTH, 25-hydroxyvitamin D (25OHD) and calcitriol (59).
Recently, a focus on uremic toxins has been evaluated to account
for vascular calcification and fibrosis. Indoxyl sulfate (IS), a
metabolite of the tryptophan metabolism that accumulates in
the plasma during kidney failure, for example correlates with

congestive heart failure in patients with CKD (60). IS induces
the expression of runt-related transcription factor 2 (Runx2) and
osteopontin (OPN) and activates the PI3K/Akt/NF-κB pathway,
all of them participating in the differentiation of vascular
smooth muscle cells (VSMCs) from a contractile to osteogenic
phenotype thereby promoting vascular calcification in CKD
(61–63). Furthermore, IS has pro-hypertrophic, pro-fibrotic,
and pro-inflammatory properties and stimulates hypertrophy in
neonatal rat cardiomyocytes and collagen synthesis in neonatal
rat cardiac fibroblasts via activation of MAP kinases and NF-κB
pathways (64).

FGF23 IN CKD

FGF23 physiologically binds to the FGF receptors (FGFR)
1/α-Klotho complex in the kidney to mediate downregulation
of sodium-dependent phosphate co-transporters (NaPi2a and
NaPi2c) that results in decreased tubular phosphate reabsorption
and finally lower serum phosphate levels (Figure 1). In early
stages of CKD, the increased level of FGF23 go along
with unchanged level of phosphate and PTH (65, 66). The
advanced progression of CKD results in phosphate retention
that increases FGF23 levels further on (67, 68). At the
same time, PTH levels rise and 1,25D serum concentrations
decrease to diminish phosphate absorption further on (68).
The decline of 1,25D due to elevated FGF23 is prolonged
via suppression of renal 1α-hydroxylase, the enzyme that
catalyzes the synthesis of 1,25D from the major circulating
metabolite 25OHD, as well as induction of 24-hydroxylase, the
enzyme responsible for production of 24,25(OH)2D3 (69). Thus,
reduction of intestinal calcium absorption due to decreased
1,25D levels in conjunction with low ionized calcium leading
to pronounced increase of PTH level and ultimately in
secondary hyperparathyroidism.

Thus, alterations to levels of FGF23, which progressively
increase together with changes in the metabolism of phosphate,
calcium, PTH and/or 1,25D in worsening renal dysfunction with
CKD result in CKD-MBD. This complex clinical syndrome is
characterized by abnormalities in bone and mineral metabolism
as well as extra-skeletal calcification resulting in fractures and
bone deformities and, most prominently, in poor growth (10, 70),
which all of them contribute to enhanced risk of CVD, fractures
and mortality across all stages of CKD. The pathogenesis of
CKD-MBD is complex, involving regulatory mechanism in bone,
kidney, heart and parathyroid glands.

FGF23 AND LVH IN CKD

In early CKD, circulating FGF23 levels rise exponentially and are
up-to 1,000-fold enhanced in kidney failure (65, 66). Elevated
FGF23 levels are associated with all-cause and CV mortality in
the general population (71, 72) as well as in CKDpatients (73), LV
dysfunction and atrial fibrillation (AF) in patients without CV co-
morbidities (74, 75), and the development of cardiac hypertrophy
(76) and fibrosis (77). Thereby, cardiac remodeling was shown
to be stimulated by activation of myocardial FGFR4 although
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FIGURE 1 | Pathological effects of FGF23 in CKD on the kidney and heart. Chronically high phosphate load and hypersecretion of parathyroid hormone (PTH)

stimulate the synthesis of fibroblast growth factor (FGF) 23 in the bone. Increased level of circulating FGF23 activates FGF receptor (FGFR) 1/Klotho complex in the

kidney leading to decreased expression of sodium phosphate transporters NaPi2a and NaPi2c enhancing phosphate (P) excretion. FGF23 further supresses

1a-hydroxylase and increases 24-hydroxylase resulting in reduced serum 1,25D level. Acting on the heart, FGF23 activates FGFR4 independent of Klotho that

induces pro-hypertrophic signaling pathways promoting the development of left ventricular hypertrophy (This figure is created with BioRender.com).

independent of α-Klotho (Figure 1) (78, 79). Higher FGF23
levels were further observed in stable ischaemic cardiomyopathy
(72) and heart failure (HF) with reduced ejection fraction
(HFrEF) (80–82).

The role of FGF23 in the development of LVH in children
with CKD was investigated intensively since the last decade.
Thereby it was shown that FGF23 level are markedly increased in
haemodialysis patients with prevalent concentric LVH (66, 83),
while in a study cohort of 83 children with non-dialysis stages 3–
5 CKD no significant relationship between circulating FGF23 and
LVHwas observed (84). However, the Chronic Kidney Disease in
Children (CKiD) study enrolled children with mild-to-moderate
pre-dialysis CKD, respectively, concluded that a high plasma
FGF23 concentration above 170 RU/ml together with estimated
GFR ≥ 45 ml/min per 1.73 m2 is associated with a higher
prevalence of LVH (85, 86). Importantly, these studies differ in
methods and number of enrolled children. Sinha et al. measured
serum intact FGF23 in 83 children, whereas Portale et al. and
Mitsnefes et al. measured C-terminal FGF23 plasma level in 419
and 587 children, respectively. This is controversial, since on the
one hand intact FGF23 level are varying with a diurnal rhythm
and have a high intraindividual variation (87). Furthermore,
carefully handling is needed when processing K2-EDTA plasma,
otherwise intact FGF23 will be unstable (88). On the other hand,
intact FGF23 may reflect the biological relevance more than C-
terminal FGF23 does (89). There is evidence, that the active full-
length form is counter-regulated by the C-terminal fragments
(90). Also, it was shown that the effect of dietary phosphate
restriction on FGF23 has a greater impact on intact FGF23
than on the C-terminal form (91). The situation is complicated

further by the fact that the four commercially available
FGF23 assays are not validated for clinical use and are not
standardized (92, 93).

Mechanistically, it was shown that FGF23 directly induces
hypertrophic growth of cardiac myocytes in vitro and cardiac
hypertrophy in vivo that was abolished by inhibition of
phospholipase Cγ (PLCγ) or calcineurin, but not by the use
of MAP kinase, PI3 kinase or Akt inhibitors. Also, the use
of PD173074 to block all FGFRs reduced LV mass and the
cardiac expression of genes associated with LVH (94). A few
years later, FGFR4 was identified to be the main effector of
FGF23 signaling in the heart (78) leading to the conclusion
that cardiac hypertrophy induced by FGF23 is mediated by the
FGFR4/PLCγ/calcineurin pathway that activate nuclear factor
of activated T-cells (NFAT) and consequently pro-hypertrophic
NFAT target genes (Figure 2). A second mode of action
for FGF23’s pro-hypertrophic properties could be the direct
regulation of the sodium-chloride channel NCC in distal renal
tubules by FGF23 rendering it to be a sodium-conserving
hormone (95). A connection of FGF23, cardiac hypertrophy
and the local RAAS in the heart is also discussed. In 5/6
nephrectomised rats as experimental model of uraemia, an
increase in size of myocyte as well as enhanced cardiac fibrosis
together with induction of cardiac Fgf23 and RAAS-associated
gene expression was overserved (23). Paricalcitol mediated
downregulation of RAAS and NFAT, respectively, together
with diminished FGF23 level could thus attenuate cardiac
hypertrophy (96, 97). In a retrospective case–control study in
24 pediatric CKD patients with kidney failure the relevance
of FGF23 on cardiac fibrosis was evaluated (98). Increased
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FIGURE 2 | FGF23 signaling in cardiac myocytes. Fibroblast growth factor (FGF) 23 binds to FGF receptor (FGFR) 4 in cardiac myocytes that results in

phosphorylation of phospholipase Cγ (PLCγ). The PLCγ-mediated activation of calcineurin dephosphorylates nuclear factor of activated T-cells (NFAT) that

translocates into the nucleus and induces pro-hypertrophic target genes involved in cardiac remodeling (This figure is created with BioRender.com).

collagen type I and III together with enhanced expression of pro-
fibrotic growth factors and components of RAAS were observed,
leading to the conclusion that FGF23 is induced by activated
RAAS thereby promoting cardiac fibrosis. In vitro, FGF23-
induced hypertrophic growth of isolated neonatal rat ventricular
myocytes (NRVM) could be reversed by incubation with
cyclosporine A, losartan and spironolactone (25). Furthermore,
FGF23-mediated induction of TGF-β and CTGF in neonatal
cardiac fibroblasts (NRCF) could be suppressed by losartan
and spironolactone. Thus, leading to the conclusion that beside
FGFR4/PLCγ/calcineurin signaling pathway, FGF23 promotes
cardiac hypertrophy and fibrosis via activation of intra-
cardiac RAAS.

During LVH, cardiac Fgf23 expression is higher in
cardiomyocyte-specific calcineurin A transgenic mice with
normal Fgf23 mRNA levels in bone (99). This phenomenon was
also observed in an animal model as well as in humans with
myocardial infarction (100, 101), indicating that an intra-cardiac
synthesis of FGF23 may trigger a pathological cardiac phenotype
in a paracrine manner. The latter is in line with a study in
myocardial autopsy samples of pediatric patients with kidney
failure showing in association of high cardiac FGF23 expression
with LVH (79). Moreover, Leifheit-Nestler and Grabner et al.
postulate in addition to FGF23 that the upregulation of FGFR4
in the myocardium of uremic rats further contributes to the
development of LVH (102). Paradoxically, different mouse
models of X-linked hypophosphatemia (XLH) as well as patients
with XLH develop no cardiac hypertrophy although presenting
high FGF23 level (103–105). The different clinical phenotype
of XLH with its low serum phosphate and calcium level,
normal renal function and no signs of atherosclerosis could

be an explanation for those findings. Interestingly, a recent
study in mice showed that a conditional deletion of Fgf23
in late osteoblast/osteocyte (Fgf23fl/fl/Dmp1-Cre+) followed
by inducing CKD using an adenine-containing diet did not
prevent hyperparathyroidism. Rather increased phosphate
level as well as more pronounced cardiac hypertrophy were
observed compared to uremic controls leading the authors to
the conclusion that elevated FGF23 level in CKD may have a
protective role to maintain cardiac homeostasis (106). Taken
together, both the latter study and the studies in XLH conclude
that phosphate may be a key mineral for FGF23 to exert its
cardiotoxicity. However, further studies need to investigate
the relationship between high FGF23 levels and altered
phosphate homeostasis.

Cardiac hypertrophy is often accompanied by myocardial
fibrosis, an excessive proliferation of fibroblast resulting in
stiffening of cardiac tissue thereby giving resistance to pressure
overload, but also stimulating diastolic dysfunction. FGF23
was recently discovered to be involved in the development
of cardiac fibrosis. In a rat model of cardiac hypertrophy
by pulmonary artery banding, FGF23 expression was highly
upregulated in cardiac myocytes. Myocytes then secreted FGF23
to promote the activation of fibroblasts together with TGF-
β1 and to transform fibroblasts into myofibroblasts via FGFR1
(107). Finally, FGF23 levels correlated with fibrosis in heart
failure patients with preserved ejection fraction (HFpEF) (108).
However, the expression of cardiac FGF23 did not correlate with
the amount of cardiac fibrosis in pediatric patients with kidney
failure (95). Thus, the impact of FGF23 on the development
of cardiac fibrosis has to be investigated in future studies in
more detail.
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FIGURE 3 | Investigated strategies targeting the FGF23-αKlotho-axis to ameliorate uremic cardiomyopathy. Dietary phosphate restriction causes a reduction in

circulating levels of fibroblast growth factor (FGF) 23, while the use of phosphate binders or nicotinamide do not. Patients with chronic kidney disease (CKD) receiving

calcimimetics show lower circulating FGF23 levels associated with reduced cardiovascular death and heart failure. Calcitriol therapy in 5/6 nephrectomized rats

causes less activation of the FGF23/FGF receptor (FGFR) 4/calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathway and improved left ventricular

hypertrophy (LVH). However, treatment with active vitamin D shows no improvement of cardiac phenotype. The use of FGF23 neutralizing antibodies in uremic rats

leads to decreased parathyroid hormone (PTH) levels and increased vitamin D, but causes aortic calcification and enhanced mortality. In contrast, targeting FGFR4

using anti-FGFR4 neutralizing antibodies attenuated LVH in vivo and inhibits FGF23-induced cardiac myocyte hypertrophy in vitro. Treatment with recombinant

αKlotho reduces uremic cardiac remodeling without affecting high FGF23 levels (This figure is created with BioRender.com).

THERAPEUTIC APPROACHES TO REDUCE
FGF23’S CV COMORBIDITIES

The aim of any therapeutic approach in pediatric CKD is to
delay the progression of kidney failure and to improve CVD
outcomes. FGF23 is associated with adverse CV outcome in
CKD-MBD and it is thought to be a promising biomarker
and a target for future therapeutic approaches. One of the
most important studies that directly targeted FGF23 by using
anti-FGF23 antibodies failed to improve the CV outcome
in uremic rats and even increased mortality due to high
phosphate-mediated vascular calcifications (Figure 3) (109).
Whether therapeutic use of anti-FGF23 antibodies in dialysis
patients, relieved of chronic phosphate load by dialysis, is
more effective in reducing cardiac remodeling remains an
open question.

Several studies target dietary phosphate restriction to lower
FGF23 levels (Figure 3). Thereby, dietary phosphate restriction

in healthy participants resulted in decreased intact FGF23 level,
whereas phosphate-enriched diets increased intact FGF23 (110).
The same findings were observed in studies of CKD and
phosphate-restricted vs. phosphate-enriched diets (111, 112).
However, it was further reported that C-terminal FGF23 was not
changed regardless of the dietary phosphate content (113, 114).
A recently published randomized clinical trial in stage 3b/4
CKD patients, the CKD Optimal Management with BInders and
NicotinamidE (COMBINE) study, hypothesized that lowering
phosphate level in early CKD prevents rising level of FGF23 and
with that FGF23-associated morbidity and mortality (Figure 3).
However, a 12 months therapy with lanthanum carbonate and/or
nicotinamide failed to lower serum phosphate and FGF23 levels
(115). The same was observed in other studies (116–118).
Calcimimetics turned out to be more effective in lowering FGF23
and with that lowering mortality and CVD events significantly
in patients with kidney failure (Figure 3) (119). However,
further studies need to confirm the promising beneficial use of
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calcimimetics on cardiac function in the future and to elucidate
the exact molecular mechanisms of its possible cardioprotection.

Further studies included the treatment of Vitamin D
deficiency in 5/6 nephrectomized rats with calcitriol that
reduced the expression of FGF23 and FGFR4 in the heart
inactivating calcineurin/NFAT signaling and thereby reduced
the development of LVH (102). However, active vitamin D
treatment failed to improve LVH in pediatric CKD patients
(Figure 3) (120). Targeting FGFR4 with neutralizing antibodies
attenuated LVH in animal models of CKD or high phosphate
load by reducing cardiac remodeling without affecting FGF23
level (78). However, clinical studies on the therapeutic benefit of
anti-FGFR4 antibodies in LVH are still pending. Treatment of
uremic cardiomyopathy in rodents with recombinant αKlotho
ameliorated LVH and fibrosis independent of high FGF23
synthesis (Figure 3), but again, clinical studies are lacking
to prove the positive effects of Klotho therapy on the CV
system (121).

Currently, FGF23 concentrations are not routinely measured
in patients. One reason is the absence of reliable immunoassays
for measurement of FGF23, which are validated for clinical use
(93, 122). Another reason is the reduced stability of biologically
active intact FGF23 when blood processing is delayed (123), thus
making it difficult to apply its use in routine clinical work. It
remains questionable if FGF23 is a good predictor for progression
of CKD. So far, only one study in adults with CKD has shown a
benefit of adding FGF23 to existing prediction models for CKD
progression (124), whereas all other studies have thus far failed
to show any advantage in risk prediction for CKD onset when
including FGF23 (125–127). Nevertheless, for the prediction of
all-cause mortality in CKD patients, FGF23 seems to be a better
prognostic marker (125, 128). Regarding CV outcomes, studies
remain inconsistent. Alderson et al. point toward FGF23 to be
a good predictor of CV events in pre-dialysis patients (128).
Besides, Emrich et al. suggest that inclusion of NT-proBNP into
the prediction model eliminates the association between FGF23
level and CV outcome (129). However, there is evidence that
measured FGF23 levels can nevertheless predict the accessibility

of patients to certain therapeutic approaches as shown for the
treatment of patients with e.g., stable ischemic heart disease with
angiotensin-converting enzyme inhibitor (130).

Experimental and clinical data reviewed here suggest it
remains reasonable to consider that reducing elevated level
of FGF23 is potentially a promising therapeutic pathway for
reducing CVD in CKD in adult and children. Randomized
clinical trials targeting the pathophysiology of FGF23-induced
CVD are needed to help clarify the impact of FGF23 on LVH
in CKD.

CONCLUSION

In summary, the scientific community gained a lot of knowledge
about the regulation and effects of FGF23. Although FGF23
mainly regulates phosphate homeostasis, in adults as well as
in pediatric CKD the levels of FGF23 are markedly increased
with progressing kidney failure and high FGF23 levels are
strongly associated with left ventricular hypertrophy. However,
a direct link to other CKD associated CV abnormalities needs
to be proven in pediatric patients. In fact, CV events e.g.,
cardiac arrest and arrhythmia, are the leading cause of death
in children with CKD and a dysregulated FGF23 metabolism
may additionally have detrimental effects on the cardiovascular
system. Regardless, many findings are contradictory and
large prospective clinical studies are needed to elucidate the
exact pathological mechanisms of FGF23 induced CVDs in
pediatric CKD.
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