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Phosphoinositide-3-kinase δ (PI3Kδ) is found in immune cells and is part of

the PI3K/AKT/mTOR/S6K signalling pathway essential to cell survival, growth and

differentiation. Hyperactivation of PI3Kδ enzyme results in Activated PI3-kinase

delta syndrome (APDS). This childhood onset, autosomal dominant, combined

immunodeficiency, is caused by heterozygous gain of function (GOF) mutations in

PIK3CD (encodes PI3Kδ catalytic subunit p110δ), mutations in PIK3R1 (encodes PI3Kδ

regulatory subunit p85α) or LOF mutations in PTEN (terminates PI3Kδ signalling) leading

to APDS1, APDS2 and APDS-Like (APDS-L), respectively. APDS was initially described

in 2013 and over 285 cases have now been reported. Prompt diagnosis of APDS is

beneficial as targeted pharmacological therapies such as sirolimus and potentially PI3Kδ

inhibitors can be administered. In this review, we provide an update on the clinical

and laboratory features of this primary immunodeficiency. We discuss the common

manifestations such as sinopulmonary infections, bronchiectasis, lymphoproliferation,

susceptibility to herpesvirus, malignancy, as well as more rare non-immune features such

as short stature and neurodevelopmental abnormalities. Laboratory characteristics, such

as antibody deficiency and B cell and T cell, phenotypes are also summarised.

Keywords: PIK3CD, PIK3R1, phosphatase and tensin homolog, activated PI3K delta syndrome, PI3 K

KEY POINTS/PRACTICAL PEARLS

• APDS is a childhood onset, clinically heterogenous disorder.
• Patients may initially be diagnosed with Hyper IgM syndrome, CVID, combined

immunodeficiency, specific antibody deficiency or autoimmune lymphoproliferative
syndrome-like disorder.

• The immunodeficiency phenotype in APDS can be predominantly antibody deficiency, with
recurrent sinopulmonary tract infections, or combined immunodeficiency, with a predisposition
to herpesvirus in addition to bacterial infections.

• Benign lymphoproliferation can manifest as lymphoid hyperplasia, lymphadenopathy,
splenomegaly or hepatomegaly.

• The most common autoimmune manifestation is autoimmune cytopenia (ITP or AIHA).
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• B cell lymphomas are the most common malignancy and are
often associated with EBV infection.

• Clinical manifestations of APDS typically progress from
recurrent infections and lymphoproliferation in early
childhood, to autoimmunity in mid-childhood, and
malignancy in late childhood-adulthood.

• Short stature and neurodevelopmental delay are more
common in APDS2 compared with APDS1.

• Hyper IgM is the most common immunoglobulin
pattern, but a range of antibody defects can occur;
hypogammaglobulinaemia, agammaglobulinaemia, IgG
subclass deficiency, specific antibody deficiency (poor
response to pneumococcal polysaccharide vaccination), and
normal immunoglobulin levels. Therefore, a diagnosis of
APDS should not be ruled out based on immunoglobulin
levels alone.

• Lymphocyte subset testing typically reveals B cell
lymphopenia, CD4+ T cell reduction, with an inverted
CD4/CD8 ratio.

• Diagnosis is made by detecting a heterozygous mutation in
PIK3CD (APDS1), PIK3R1 (APDS2) or PTEN (APDS-L).

• Treatment is tailored according to the clinical phenotype
and includes prophylactic antibiotics, immunoglobulin
replacement therapy, immunosuppression (steroids,
rituximab, sirolimus) and HSCT. Selective PI3Kδ inhibitors
such as leniolisib are emerging treatments.

• Early recognition and disease diagnosis are important in trying
to prevent long term complications such as bronchiectasis,
hearing loss, and malignancy.

• Fatalities can occur as a result of infection or malignancy.
• Patients should have regular monitoring to detect cytopenias,

bronchiectasis, and malignancy.
• Patients should be managed by immunology services

in conjunction with respiratory services, particularly if
bronchiectasis is present. Input from other specialists, such
as haematology, infectious diseases and gastroenterology,
may be required. Children with APDS should also have a
general paediatrician.

• PTEN deficiency causes PHTS and can also manifest as
an APDS-like disorder. APDS-L patients have a phenotype
similar to APDS with lymphoproliferation, autoimmunity,
andmalignancy. However, they have an increased frequency of
autoimmune thyroiditis and solid organ tumours, in contrast
to cytopenias and B cell lymphomas.

BACKGROUND

In this review, we discuss the clinical and immunological features
of Activated PI3-Kinase Delta Syndromes - Activated PI3-Kinase
Delta Syndrome 1 (APDS1) and Activated PI3-Kinase Delta
Syndromes 2 (APDS2) and the APDS-Like (APDS-L) condition
PTEN deficiency.

PI3-kinase δ is a class 1 phosphoinositide-3-kinase consisting
of the catalytic subunit p110δ and, most commonly, the
regulatory subunit p85α, although association with other
regulatory subunits is also possible (1). p110δ is expressed

primarily in haematopoietic cells and cells of the nervous system,
whereas p85α expression is more ubiquitous (1, 2). PI3Kδ is
activated by antigen receptors, co-receptors, growth receptors
and cytokine receptors. Activation catalyses the phosphorylation
of phosphatidylinositol 3,4-bisphosphate (PIP2) to generate
phosphatidylinositol 3,4,5-triphosphate (PIP3) (Figure 1) (1).
This leads to cell activation, growth, metabolism and inhibition
of apoptosis via the AKT/mTOR/S6K signalling pathways (2).

APDS1 is caused by autosomal dominant, gain of function
(GOF) mutations in the p110δ catalytic subunit (encoded by
PIK3CD). The most frequently reported mutation in APDS1
is the p.E1021K missense mutation (3). APDS 1 mutations
have high penetrance with only 1 of 53 patients in the largest
described cohort being asymptomatic (3). PI3Kδ is dynamically
regulated and demonstrates the fine balance of the immune
system as underactivation, as well as overactivation, leads
to immunodeficiency. Germline biallelic loss of function
(LOF) mutations leading to underactivation of PI3Kδ present
with infections, colitis, panhypogammaglobulinemia and
lymphopenia (1).

APDS2 is caused by autosomal dominant mutations in
PIK3R1 which encodes the PI3Kδ regulatory subunit p85α.
Mutant p85α is less able to inhibit PI3Kδ as wild-type p85α (4).
This allows for hyperactivation of the catalytic subunit P110δ.
Therefore, LOF mutations of the regulatory subunit result in
overall gain of function of the PI3Kδ enzyme. Over 285 cases of
APDS1 and 2 have been described in the literature.

APDS-L is caused by heterozygous LOF mutations in
phosphatase and tensin homologue (PTEN). PTEN is a
lipid phosphatase that converts PIP3 back to PIP2, hence
terminating the signal initiated by PI3Kδ activation. PTEN
was initially described as a tumour suppressor gene (5).
Autosomal dominant LOF mutations in PTEN (encoded by
PTEN) lead to PTEN hamartoma tumour syndrome (PHTS)
which encompasses a variety of syndromes predisposing to
cancer, such as Cowden syndrome and Bannayan–Riley–
Ruvalcaba syndrome (6). A study of 79 individuals with
PHTS did not report an increased rate of infections in
this condition (7). It was only after the description of
APDS that a causative link between LOF PTEN mutations
and immunodeficiency was explored and individuals with
recurrent infections and PTEN deficiency were discovered
(8–10). This phenotype is referred to as APDS-L (6). In
individuals with APDS-L, PTEN expression in activated T
cells is reduced (∼60% of normal) and lower degrees of AKT
hyperactivation have been shown, compared with APDS1 and
APDS2 (7, 11, 12). This is perhaps why immunodeficiency
was rarely previously described in patients with PHTS (7).
Homozygous loss of function of PTEN is incompatible with
life (13).

APDS 1, APDS2 and PTEN deficiency (APDS-L) are classified
as predominantly antibody deficiencies by the International
Union of Immunological Societies Expert Committee (14) as
the most common manifestation is bacterial infections of the
respiratory tract. However, in some individuals the susceptibility
to severe viral infection suggests APDS can also be phenotypically
similar to a combined immunodeficiency.
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FIGURE 1 | The catalytic subunit (P110 δ) of the PI3K δ enzyme converts PIP2 to PIP3. PTEN converts the PIP3 back to PIP2.

Age of Onset and Progression of
Symptoms
APDS is a childhood onset immunodeficiency. Jamee et al. (15)
on systematic review reported a median age of onset of 1.6
years [Inter-quartile range (IQR) 0.58–3.0 yrs] with significant
delay in diagnosis of 7.0 years (IQR 3.4–14.0yrs). Jamee et al.
also described that the various clinical manifestations of APDS
typically present at different ages with recurrent infections
beginning in the first year of life (median age 1.16 yrs) and
lymphoproliferation developing in early childhood (median
age 3 yrs). Autoimmunity presents in later childhood, while
malignancy can occur at any age (3, 15, 16) but most commonly
in late childhood - early adulthood (median age 18 yrs).

Clinical Features
Respiratory Tract Infections
Recurrent sinopulmonary tract infections are the most common
clinical manifestation of APDS, affecting almost all patients
described in the largest studies (3, 16–22) (see Table 1 for
clinical features).

Respiratory tract infections include pneumonia (43%),
sinusitis (29%) and otitis media (26%) (15).

Other upper respiratory tract complications, including
adenoid and tonsillar hypertrophy and parotitis also occur (3,
15). Recurrent tonsillitis often results in tonsillectomy (3). In
some cases, otitis media is severe enough to cause permanent
hearing loss (3, 20).

Around 50% of patients with APDS develop bronchiectasis on
a background of recurrent respiratory tract infections (3, 19).

Small airway damage and mosaic attenuation on CT is also
commonly described and thought to be the consequence of
repeated episodes of viral bronchiolitis compounded by local
obstruction secondary to focal lymphoid hyperplasia (3, 23).

APDS-L (PTEN deficiency) has presented with
recurrent upper and lower respiratory tract infections and
pan-hypogammaglobulinemia (8–10).

TABLE 1 | Clinical features of APDS1, APDS2 and APDS-L.

APDS 1 APDS 2 APDS –L (PTEN deficiency)

Infections XXX XXX X

Bacterial sinopulmonary XX XX

Herpesvirus

Benign lymphoproliferation XXX XXX XXX

Autoimmunity XX XX X

Cytopenia X X XX

Other*

Malignancy XX XX XX

Lymphoma

Other†

Short stature X XX

Neurodevelopmental delay X XX XXX

*Autoimmune thyroiditis, glomerulonephritis, diabetes, pancreatitis, hepatitis, colitis,

arthritis.
†Basal cell carcinoma, dysgerminoma, rhabdomycosarcoma, melanoma, carcinoma of

breast, endometrium, thyroid, kidney, colorectum.

Bacterial Infections
Significant bacterial infections at a variety of sites have been
reported in APDS.

There is a predisposition to eye infections with reports of a
variety of ocular infections including orbital cellulitis (3, 16, 18).

Septicaemia, meningitis, infectious lymphadenitis,
osteomyelitis, dental abscesses and Staphylococcus aureus
skin abscesses are also described (15, 16, 19, 24).

The most commonly cultured bacteria are those typical in
antibody deficiencies, Streptococcus pneumoniae, Haemophilus
influenzae and Staphylococcus aureus (3, 15).

In a Chinese cohort, Wang et al. found 20% (3 of 15)
patients had tuberculous infections prior to diagnosis of APDS1
(20). Persistent local granulomatosis skin reactions to BCG
vaccination have been described in 3 of 10 known BGC
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vaccinated patients with APDS1, and 2 of 18 BCG vaccinated
patients with APDS2 (3, 18, 23, 25). Recently, Fekrvand et al.
(2021) reported a patient with APDS2 who succumbed to a fatal
BCG infection following BCG vaccination (22).

Viral Infections

Herpesvirus
The PI3K pathway has a critical role in herpesvirus infection,
and the control of herpesviruses by the immune system.
Herpesviruses manipulate this pathway to enhance virus
entry, replication, latency, and reactivation (26). In APDS
the most frequent infections are due to Epstein-Barr
virus (EBV), presenting as persistent EBV viremia or EBV
lymphoproliferation (26). Cytomegalovirus (CMV) infection
can also be common, presenting as persistent CMV viremia
or lymphadenitis (26). Sporadic cases of severe herpes simplex
viral infections, including pneumonia and keratitis, have been
reported (3). An increased frequency of herpesvirus infections
has not been reported in APDS-L (6–10).

Other Viral Infections
Extensive warts caused by papillomavirus and molluscum
contagiosum lesions have been reported (3, 16, 18, 27).
Adenovirus and norovirus infections have also been
described (3).

Fungal Infections
Patients with APDS can develop mucocutaneous candidiasis
(3.5% in Jamee et al.) (3, 15, 18).

An increased frequency of fungal infections has not been
reported in APDS-L (7–10).

Lymphoproliferation
Benign lymphoproliferation is the second most common
manifestation of APDS (after respiratory tract infections),
present in the majority of patients (59–93%) (3, 15, 16,
19, 20, 24). Lymphadenopathy occurs most frequently (61%),
followed by splenomegaly (47%) and hepatomegaly (29%) (15).
Lymphadenopathy can be persistent or recurrent, and is often
localised to sites of infection (3).

Reactive hyperplasia and lymphadenitis can occur in the
gastrointestinal and respiratory tracts in APDS (32% of patients,
Coulter et al.) (3). Tonsillar and adenoid hypertrophy can require
multiple surgical excisions (18).

Interestingly, lymphoid hyperplasia has been reported in
24–47% of patients with APDS- L (7, 28). This is usually
hyperplasia of the adenoids, tonsils and gastrointestinal tract,
with lymphadenopathy also described (7, 22, 28, 29).

Autoimmunity
Autoimmunity is present in just under one-third of patients (15).
Cytopenias are the most common autoimmune manifestation
(accounting for 76% of all autoimmune complications)
and include immune thrombocytopenia purpura (ITP) and
autoimmune haemolytic anaemia (AIHA) (3, 15, 19).

Autoimmune conditions affecting various other organs
have been reported, including autoimmune thyroiditis,
glomerulonephritis, nephrotic syndrome, insulin-dependent

diabetes, exocrine pancreatic insufficiency, autoimmune
hepatitis, arthritis, Sjogren’s syndrome and pericarditis
(3, 18, 19, 21).

Autoantibodies have been reported in 4 of 23 (17%) and 3 of
53 (5%) in two APDS1 series (3, 21).

APDS-L has a similar frequency of autoimmunity (27–32% of
APDS-L cases) to APDS (7, 28). However, in APDS-L, thyroiditis
is much more common than autoimmune cytopenia, accounting
for 36–81% and 5–9% of autoimmunemanifestations in APDS-L,
respectively (7, 28).

Malignancy
The most common malignancies reported in APDS are B
cell lymphomas; diffuse large B cell lymphoma (DLBCL),
Hodgkin lymphoma and marginal zone B cell lymphoma all
being described. The frequency of lymphoma appears higher in
patients with a history of chronic viral infections, with chronic
EBV reported in almost half of the patients who developed
lymphoma (15).

Non-haematological malignancies have also been reported;
basal cell carcinoma, dysgerminoma, rhabdomyosarcoma, and
papillary neoplasm of the breast (18, 19, 30, 31).

As PTEN is a tumour suppressor gene, PTEN deficiency
increases the risk of malignancy independently of an APDS-L
phenotype (6). Patients are at increased risk of breast, thyroid,
kidney, endometrial, colorectal cancer, and melanoma with an
estimated lifetime risk of 85, 35, 33, 28, 9, and 6%, respectively
(12), whereas B cell lymphomas are less commonly described.

Gastrointestinal and Hepatic Features
Enteropathy occurs in patients with APDS in ∼25% of cases,
manifesting as diarrhoea and / or malabsorption (3, 15). The
underlying pathology can be autoimmune, infectious or both.

Ben-Yakov et al. observed transaminitis in 9 out of 33 (27%)
APDS patients (32). Four of five patients had liver biopsies
on which features were suggestive of nodular regenerative
hyperplasia (NRH) and mildly increased portal pressure (32).
Primary sclerosing cholangitis has also been reported in APDS
(3, 33).

In a series of 34 patients with PTEN mutations (APDS-
L), gastrointestinal lymphoid hyperplasia (n = 16) and
indeterminate colitis (n = 1) were described (28). Chen et al.
also found colitis in 5% of the 79 patients with PTEN mutations
described in their case series (7).

Neurodevelopmental Features
PI3Kδ is expressed broadly in the developing central
nervous system of mice (34). Neurological abnormalities,
neurodevelopmental delay and autism spectrum disorders, are
described in APDS and are more common in APDS2 (26.6%)
than APDS1 (9.5%) (15). Neurodevelopmental delay may
present as mild cognitive impairment or learning disabilities
(21). Macrocrania has been described in APDS1 (3, 24) and
microcephaly in APDS2 (35).

PTEN deficiency is commonly associated with macrocephaly
(80–100%) and developmental delay (12–20%) (36). Autism
spectrum disorders are also described (29).
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Other Non-Infectious Features
Short stature has been observed frequently (45–60%) in APDS2
(6, 18) but not APDS1 (4.5%) (15). This difference may be
due to p85α (the effected subunit in APDS2) being more
ubiquitously expressed in cells than p110δ (the effected subunit
in APDS1). Mutations in PIK3R1 that lead to underactivation
of PI3K are known to cause SHORT syndrome (short stature,
hyperextensibility of joints, ocular depression, Rieger anomaly,
and teething delay syndrome) (37).

Eczema was described in 20% of patients with APDS in the
ESID-APDS registry (19).

Immunological Characteristics of APDS1
and APDS2
Immunoglobulins
APDS can present with a variety of different immunoglobulin
profiles. IgG and IgA levels are commonly low or normal,
while IgM can be high or normal. A hyper IgM-like pattern
is the most common immunoglobulin profile reported (low
IgG, low IgA and high IgM). This is explained by the fact
that PI3Kδ signalling pathways are involved in immunoglobulin
class switching (25) with class switched memory B cells reduced
in APDS. Hypogammaglobulinaemia, agammaglobulinaemia,
selective IgA deficiency and specific antibody deficiency are the
other immunoglobulin patterns found in APDS (3, 25).

Patients can also have normal immunoglobulin levels,
therefore, the diagnosis of APDS cannot be ruled out based on
immunoglobulin profile alone.

Vaccine Responses
Vaccine responses are often impaired (3, 16). Defective anti-
polysaccharide vaccine responses were detected in 52 of 58
patients (90%) and defective anti-peptide antibody responses in
14 of 42 (33%) (15).

Lymphocyte Studies
Lymphopenia occurs in around one third of patients (15). Low
B cell counts are reported in the majority of patients (67–88%)
(3, 15, 17, 19). T cell profiles often show a reduction in CD4+ T
cells (1, 3, 17), with an inverted CD4/CD8 ratio (3, 17, 23). Mild
NK cell deficiency may also be present (20–27%) (3, 20).

Extended lymphocyte phenotypes have shown: reduced naive
CD4+ T cells (CD4+CD45RA+); increased activated CD8+ T
cells (CD8+CD45RO+); reduced class-switched memory B cells
and expanded transitional B cells (15).

Kang et al. reported impaired lymphocyte proliferation to
PHA in 3/3 of their patients (24).

Immunological Features in PTEN
Deficiency (APDS-L)
Immunological abnormalities such as reduced CD4+ T cells,
reduced CD4:CD8 ratio, or altered immunoglobulin levels are
described and can often be detected even in patients without
clinical immunodeficiency (7, 28).

TREATMENT

Due to the wide clinical spectrum of APDS, treatment
is personalised to the severity of the clinical phenotype.
Asymptomatic family members may need no treatment at all
(38). Patients who present primarily as antibody deficiencies
are treated with immunoglobulin replacement therapy and/or
prophylactic antibiotics.

Immunosuppressive treatments (steroids, rituximab
etc.) have been used to manage autoimmune cytopenias
and benign lymphoproliferation (38). Sirolimus inhibits
mTOR (downstream of PI3K) and acts as a more targeted
immunosuppressive agent in lymphoproliferation.

Haematopoetic stem cell transplantation (HSCT) remains the
only curative treatment but does have a significant associated
mortality rate (27). HSCT may be indicated in cases with
severe infection or lymphoma. 12.8% of reported cases have
underwent HSCT (15). A recent study by Dimitrova et al.
showed that post HSCT 2-year overall and graft failure–free
survival probabilities were 86 and 68%, respectively, and did
not differ significantly by APDS1 vs. APDS2, donor type, or
conditioning intensity. Interestingly, they found the use of
rapamycin/mTOR in first year post transplant resulted in more
graft failure (42 vs. 9% without mTOR) and increased incidence
of unplanned donor cell infusion (65% with mTOR vs. 23%
without) (39).

Selective PI3Kδ inhibitors are emerging treatments. Leniolisib
is an oral small molecule inhibitor of PI3Kδ that is in phase II
clinical trials. Six patients received leniolisib as part of an open
label trial (40), which suggested it could be beneficial, particularly
for treating lymphoproliferation (40). Leniolisib has been given
orphan drug designation by the European Commission and US
Food and Drug Administration.
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