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Introduction: The fetal alcohol spectrum disorder (FASD) is a complex and

heterogeneous disorder, caused by gestational exposure to alcohol. Patients with fetal

alcohol syndrome (FAS—most severe form of FASD) show abnormal facial features. The

aim of our study was to use 3D- metric facial data of patients with FAS and identify

machine learning methods, which could improve and objectify the diagnostic process.

Material and Methods: Facial 3D scans of 30 children with FAS and 30 controls

were analyzed. Skeletal, facial, dental and orthodontic parameters as collected in

previous studies were used to evaluate their value for machine learning based diagnosis.

Three machine learning methods, decision trees, support vector machine and k-nearest

neighbors were tested with respect to their accuracy and clinical practicability.

Results: All three of the above machine learning methods showed a high accuracy of

89.5%. The three predictors with the highest scores were: Midfacial length, palpebral

fissure length of the right eye and nose breadth at sulcus nasi.

Conclusions: With the parameters right palpebral fissure length, midfacial length and

nose breadth at sulcus nasi, machine learning was an efficient method for the objective

and reliable detection of patients with FAS within our patient group. Of the three tested

methods, decision trees would be the most helpful and easiest to apply method for

everyday clinical and private practice.

Keywords: fetal alcohol spectrum disorder, 3D facial scans, machine learning, decision tree, K-nearest neighbor,

support vector machine

INTRODUCTION

The fetal alcohol spectrum disorder (FASD) is a developmental disorder with an estimated
worldwide prevalence of 0.77 % (1, 2). It is caused by maternal alcohol intake during pregnancy
and results in lifetime problems for the affected person and high costs for the public health care
systems (3, 4).

FASD symptoms comprise growth deficiencies, abnormal facial phenotype and damage or
dysfunction of the central nervous system. Lange et al. describes correlations between FASD and
428 accompanying diseases (1, 5). In a study concerning daily living skills of adult patients with
FASD, the affected persons showed lower skills than IQ-matched controls (6). A meta-analysis by
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Popova et al. describes that if lacking an appropriate diagnosis,
intervention and support, persons affected with FASD are at a
high risk for becoming involved in the legal system as offenders
or as victims. According to the same meta-analysis, youth with
FASD are 19 times more likely to be incarcerated than youth
without FASD (2, 5, 7). Streissguth et al. describe higher rates
of disrupted school experience, trouble with law, inappropriate
sexual behavior, alcohol and drug problems for FASD patients (8).

FASD as a generic term comprises different severities of the
disorder. The most severe form is the fetal alcohol syndrome
(FAS), followed by the partial fetal alcohol syndrome (pFAS),
the alcohol-related birth defects (ARBD) and the alcohol-related
neurodevelopmental disorders (ARND) (9).

The different subgroups of FASD are diagnosed within four
diagnostic categories, namely (a) growth deficiencies, (b) facial
characteristics, (c) abnormalities of the central nervous system
and (d) confirmed or unconfirmed intrauterine alcohol exposure.
However, across the four most current FASD diagnostic
guidelines (4-Digit Code, Canadian, IOM, and Revised IOM),
there are different criteria as for the division into the subgroups
(FAS, pFAS, ARBD and ARND). For the diagnosis fetal alcohol
syndrome (FAS), abnormalities in all four diagnostic categories
(a), (b), (c), (d) should be present. However, diagnosis of FAS is
still possible, even if exposure to alcohol cannot be verified. This
is due to the significant abnormalities of (a), (b), and (c). For the
other three less severe forms of FASD, alcohol consumption must
be confirmed. The diagnosis pFAS is verified if all characteristics
(a–d) are found but less severe, only the Canadian guideline
defines pFAS without growth deficiencies (a). For the diagnosis
ARND growth deficiencies (a) and facial phenotype (b) are not
mentioned in the Canadian and IOM guidelines, for the 4-digit-
code only growth deficiencies (a) do not have to be detectable,
but all other categories apply. The diagnosis ARBD is a category
only present in the IOM and revised IOM guideline and can be
verified if the central nervous system (c) is without abnormalities
but all other three categories apply (10).

To date it is still challenging to accurately detect patients with
FASD (11) as most diagnostic guidelines are based on different
methods and are in parts based on subjective evaluation (12).

Studies concerning FAS as the most severe form of FASD
found a wide range of craniofacial and dental anomalies, which
can be used in the course of the diagnostic process (13–22).
The most established guideline for the diagnosis of FASD is
the 4-digit diagnostic code, which was developed by Astley
et al. (19). The lip-philtrum guide, which is part of the 4-
digit diagnostic code, covers the diagnosis of lip and philtrum
parameters. The evaluation of the lip and philtrum in patients
with FASD as described by Astley et al. is based on comparison
with photographs (19, 23, 24), which is a subjective method.

More recent studies by our research group compared 3-D
facial and dental cast scans of patients with FAS to healthy control
patients. We found significant metric differences concerning
vertical facial measurements, philtrum depth, palpebral fissure
length, nose breadth, maxillary width and also dental deficiencies
(13–18). The aforementioned studies allow for objective metric
measurements, which can be used in the diagnostic process
of FAS.

Machine learning is a technology, which is presently used
in many different areas of everyday life (25). For medical
purposes machine learning is becoming of more and more
interest for diagnosis and prediction (26). For example, a study
on machine learning and diabetic retinopathy detection from
photographs showed high sensitivity and specificity for the
applied method (27).

Machine learning refers to a class of algorithms that recognize
patterns in a training dataset and use them to derive predictions
for new input data. In the methods used here, this is done
in the form of “supervised learning”, i.e. labels are specified
for the training data for the classification to be performed.
The evaluation of the data is done by statistical models,
the parameters of which are adjusted in the course of the
“learning process” by means of regression techniques. These
can subsequently be applied to new data sets. These methods
include, for example, the algorithms known as “decision trees”,
“support-vector machines,” and “k-nearest neighbors” (28).

In the case of the decision trees (DT), the result is a
classification based on a sequence of branched yes/no decisions,
which are made depending on threshold values determined for
the features (29). The support-vector machine (SVM), on the
other hand, renders a classification by separating data in the n-
dimensional parameter space with a hyperplane, where n denotes
the number of features considered. Basically, this is a linear
regression technique which tries to maximize the gaps between
different classes by paying special attention to themarginal values
(30). Finally, the k-nearest neighbors method (KNN) performs
the classification by assigning samples according to the distances
of the feature values to the most common among its k nearest
neighbors (31). For a practical introduction to these methods
see (32).

Therefore, machine learning can help the clinician in making
a diagnosis based on input data, even if the clinician is not
an expert in the particular medical field. For example, machine
learning methods, trained by supervised learning can enable
the clinician to take metric data of a patient and obtain a
prediction on the diagnosis based on known patterns. This, of
course requires profound databases with verified values for the
known patterns given to the computer during the supervised
learning process.

For medical purposes decision trees represent an easy to
use method via yes/no decisions. If a comparable accuracy
for diagnosis can be achieved, decision trees may therefore be
preferred over other machine learning methods. In this study,
we included decision trees as well as support vector machine and
k-nearest neighbors methods to compare the accuracy of these
commonly used machine learning techniques.

A number of morphological and medical parameters are
known in which children with FASmay differ from their peers. Of
these, the following data are available from previous studies for
review as for their potential in machine learning based diagnosis:

These parameters in patients with FAS comprise skeletal
parameters such as significantly smaller head circumference,
facial and dental parameters. The facial parameters are:
significantly lower philtrum depth, smaller nose breadth at sulcus
nasi, reduction in palpebral fissure length, smaller inner canthal
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distance (in male children with FAS), shorter middle facial third,
longer lower facial third, greater philtrum length, profile more
askew to the back in comparison to healthy controls (14, 15).

Dental parameters show higher values for the Developmental
Defects of Enamel (DDE)-index and the Decayed Missing Filled
Teeth (DMFT)-index, which both are significantly higher in
patients with FAS (18).

Orthodontically a study could identify a significant increase in
malocclusion (higher Peer Assessment Rating (PAR) score) and a
higher prevalence of crossbites in patients with FAS (13).

The aim of our study was to use the existing 3D- metric facial
data of patients with FAS and identify machine learningmethods,
which could improve and objectify the diagnostic process.

MATERIALS AND METHODS

Study Design, Inclusion Criteria and
Participants
In the course of previous investigations, 3D-facial scans and scans
of dental casts of a total of 30 Caucasian children with FAS (mean
age 8.8 years; range 6.6–11.2 years; 15 male and 15 female) and
30 healthy Caucasian controls (mean age 8.2 years; range 5.8–
11.9 years; 18 male and 12 female) were taken in the Department
of Orthodontics of the University Hospital Muenster in the time
period between 2012 and 2016 (13–18). Children with FAS were
recruited in cooperation with the Department of Pediatrics of
the University Hospital Muenster. The control group consisted of
voluntary healthy children from local schools. The FAS diagnosis
was verified by a pediatric specialist according to the German FAS
diagnostic guideline (3).

Exclusion Criteria
Patients with less severe forms of FASD such as partial FAS,
ARBD or ARND were excluded from our investigation.

Exclusion criteria for both groups were former or present
orthodontic treatment, deciduous or permanent dentition and
any previous or present disease, trauma, surgical intervention,
disorder or syndrome affecting craniofacial structures.

Facial 3D Scan
The face scans were carried out with an optical 3D measurement
system based on the fringe projection technique developed at
the University Hospital Muenster (33). With an LCD projector
(VT 58, NEC), 13 different fringe patterns are projected onto
the face and recorded by three cameras (Imagingsource GmbH,
Bremen, Germany) with a digital interface (IEEE1394) at a
resolution of 1,024 x 768 pixels. The images are evaluated
photogrammetrically which renders approx. 50,000 to 800,000
coordinates. The measurement takes about 1.5s (Figure 1).

Machine Learning Methods
Three different supervised machine learning methods were used
and compared concerning applicability in the clinical diagnostic
process of FAS:

1. Support vector machine (SVM)
2. K-nearest neighbors (KNN)
3. Decision trees (DT)

FIGURE 1 | Optical 3D measurement system based on the fringe projection

technique. The head of the sitting patient, positioned at a defined distance

from the scanner is adjusted according to the Frankfort horizontal and the

pupillary planes parallelised to the ground horizontal with the aid of a light

projection. A LCD projector in the middle projects a sequence of binary and

sinusoidal vertical stripes onto the face, which are recorded by three charge

coupled device (CCD) cameras. Within approximately 1 s a point cloud

consisting of approximately 50,000–800,000 facial 3D coordinates is rendered

per patient.

The methods in question were implemented in the Python
programming language (version 3.7.1) (34) using the Scikit-learn
library (version 0.21.3) [https://scikit-learn.org/stable/tutorial/
basic/tutorial.html] (35, 36).

For statistical evaluation of the results the statistics software R
(Version 3.6.2) (37) was used. All calculations were carried out
on a personal computer running on the Microsoft Windows 10
operating system.

All three machine learning techniques perform a classification
based on regression techniques using the selected features. For
the decision tree (DT), the branched yes/no decisions were based
on a criterion called the Gini impurity. This is a measure of the
likelihood of an incorrect classification of an element. The Gini
impurity varies between 0 and 1, with 0 representing a perfect
classification of a yes/ no decision whereas 1 represents a random
distribution of features to the yes/no decision. Therefore, Gini
should be ideally close to 0.

As a further means to restrict the complexity of the tree,
the depth of the tree was limited to two nodes where the
minimum sample size required for a split was two [https://
towardsdatascience.com/decision-trees-in-machine-learning-
641b9c4e8052].

The support vector machine (SVM) on the other hand renders
a classification by separating data in the three-dimensional
parameter space with a hyperplane.

In the K-Nearest Neighbors method (KNN), the number of
neighbors used for classification (k) was set to 5.

Variables and Data: Calculation of
Best-Fitting Predictors
The following demographic and morphometric parameters were
included in the evaluation as possible predictors for FAS: Age in
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months; philtrum depth; palpebral fissure length left eye (PFL l);
palpebral fissure length right eye (PFL r); midfacial length (MFL);
asymmetry index; palatal depth; mouth breadth; nose breadth at
sulcus nasi (NBSN); inner canthal distance.

However, a regression method with so many parameters
would make the statistical models too specific to the training
data (overfitting). As a means of regularization, i.e., to prevent
overfitting, three parameters were selected from the statistical
distributions, which showed the greatest discriminatory power
between the group of children with FAS and the control group.
This was carried out using a scoring approach based on the
ANOVA F-value which is the variance of the group means
divided by the mean of the within group variances. This means,
the morphometric parameters were scored according to their F-
values, which is the standard approach used in the Scikit-learn
software library.

Training and Evaluation of Machine
Learning Methods
Before the data were classified using these procedures (with the
exception of the decision tree), the individual predictors were
scaled to ensure the same weighting of all features.

The machine learning approach used here was supervised
learning. This means that all samples were labeled according
to whether they belonged to the FAS group or to the controls.
The data set was randomly split into a training set (66% of the
data) and a test set (33% of the data). The three models (DT,
SVM, KNN) were then fitted to the training data. Finally, the
models were applied to the test set and the percentage of correctly
classified samples was calculated. The procedure was repeated
1,000 times and the distributions of the hit rates of the three
methods were determined. The entire flow is shown in Figure 2.

Bias
To minimize bias, controls were recruited from local schools
rather than an orthodontic university department to avoid
selection of extreme malocclusions and oral phenotypes, which
could have had a potential influence on facial contour. All study
participants were screened based on a standardized orthodontic
examination protocol and all scans and measurements were
performed by the same experienced orthodontist. All data
regarding study groups were blinded prior to measurements
and statistical evaluation. Since children with FAS show a
delayed developmental trajectory, we chose to include slightly
(but not statistically significant) younger children as controls in
order to optimize comparability (8, 38, 39). Thus, the included
children were similar in terms of parameters such as body length
or weight.

RESULTS

Selection of Predictors
The three predictors with the highest scores, i.e., those with the
highest F-values were the following facial parameters (Figure 3):

1. Nose breadth at sulcus nasi (NBSN) (F= 60.81) (p < 0.001)
2. Midfacial length (MFL) (F= 53.04) (p < 0.001)

FIGURE 2 | Workflow for the applied supervised machine learning technique.

The data set is split into a training set (66% of the data) and a test set (33% of

the data). The three models [decision trees (DT), support vector machine

(SVM), k-nearest neighbors (KNN)] were then fitted to the training data. The

models are then applied to the test data and the hit quota is calculated. This

process is repeated 1,000 times.

FIGURE 3 | Facial landmarks and thin plate spline visualization. The left image

shows the landmarks for measurement of the three predictors for machine

learning methods, defined via results of the ANOVA-F analysis (PFL r, MFL,

and NBSN); the image on the right side shows thin plate spline. These thin

plate splines enable visualization of aberrant facial structures. The blue areas

show lower distances for palpebral fissure length, midfacial length and nose

breadth at sulcus nasi.

3. Palpebral fissure length right eye (PFL r) (F= 30.60) (p
< 0.001)

The Boxplots (Figure 4) for midfacial length (Figure 4A), right
palpebral fissure length (Figure 4B) and nose breadth at sulcus
nasi (Figure 4C) show significant differences between the values
for the FAS and control group with lower results for patients
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FIGURE 4 | Boxplots for facial landmarks. The boxplots for midfacial length

(A), right palpebral fissure length (B) and nose breadth at sulcus nasi (C) show

significant differences between the values for the FAS and control group with

lower results for patients with FAS. Nevertheless overlapping of all three

parameters for patients with FAS and control group can be found.

with FAS. Nevertheless overlapping of all three parameters
for patients with FAS and control group can be found. This
overlapping impedes solitary clinical diagnosis, which explains
the need for machine learning methods in order to improve the
diagnostic accuracy. Figure 5 shows scatter plots for all possible
combinations of the three above mentioned predictors. The
scatter plots demonstrate that a complete division of the values
by a trend line is not possible (Figure 5). Taking these outcomes

FIGURE 5 | Scatter plots for landmark values. The scatter plots show that a

complete division of the values by a trend line is not possible for all

combinations of the predictors (A) Palpebral fissure length righ vs. midfacial

length, (B) Nose breath at sulcus nasi vs. midfacial length, and (C) Palpebral

fissure length right vs. nose breadth at sulcius nasi.

into account, significant differences for the three predictors could
be found. However, a simple classification into patients with FAS
vs. healthy controls with conventional methods is not possible.
Consequently, these three features were used to compare the
three machine learning methods.

Accuracy of Support Vector Machine
The support vector machine method resulted in a median
predictability of accurate diagnosis of 0.895 (25% quantile
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FIGURE 6 | Quota for the three machine learning methods SVM, KNN, DT.

The black rectangles denote the mean values. The boxplots show a median of

0.895 for all three parameters.

FIGURE 7 | Decision tree for the parameters midfacial length (MFL), right

palpebral fissure length (PFL r), and nose breadth at sulcus nasi (NBSN).

0.842, 75% quantile 0.895) (Figure 6). For this method, the
classification, i.e., the diagnosis, was determined by the algorithm
using the values of the three predictors selected with the ANOVA
F analysis.

Accuracy of K-Nearest Neighbors
Using the k-nearest neighbors method, the correct diagnosis was
possible with a predictability of median 0.895 (25% quantile
0.842, 75% quantile 0.947) (Figure 6). For this method, the values
of the three predictors selected with the ANOVA F analysis were
also used for classification.

Accuracy of Decision Tree
The decision tree method resulted in a predictability of a median
of 0.895 with 25% quantile 0.790 and 75% quantile 0.947 for
FAS diagnosis (Figure 6). For our patient data three metric
measurements were necessary (Figure 7):
1) Measurement of the midfacial length. If the value was equal
or below 45.83mm the next step is the measurement of the
palpebral fissure length. If the value of the palpebral fissure length
is equal or below 24.07mm the diagnosis is positive for FAS. If the

value palpebral fissure length is larger than 24.07mm, the patient
is not affected by FAS.
2) If the measurement of the midfacial length is larger than
45.83mm the next step is the measurement of nose breadth as
sulcus nasi. If the value is equal or below 18.12mm the patient
has FAS. If the value is larger than 18.12mm, the patient is not
affected by FAS.

DISCUSSION

Up to now the diagnostic process in FASD patients
is difficult and some parameters depend on subjective
assessment (12). As this leads to a comparatively high
number of misdiagnosed cases, there is a strong need
for new and improved methods to help diagnose
FASD correctly (11).

A study by Goh et al. described a high accuracy of the results
when using the decision tree method to identify children affected
by prenatal alcohol exposure (40). The parameters used in this
study were two parent questionnaires, an IQ score, and a physical
examination. However, interviewing biological parents may lead
to answers that are not objective or even untrue, and for a
majority of these children it is not possible to get answers at all
as they live in foster care.

Therefore the use of facial parameters as proposed in our study
is a big advantage as they provide reliable data. They can be
obtained by taking 3D- scans of intraoral and facial structures
which can be done within a short period of time. They have a
high accuracy and patients’ compliance to this method is very
good. The subsequent analysis of the facial and dental features
in the 3D-scans can easily be done by the practitioner and is not
very time-consuming either.

Recent studies by Suttie et al. 2013 and Valentine at al. 2017
suggest that computer based facial recognition could also be
used for the detection of facial features of less severe forms of
FASD (such as pFas or ARND) (20, 41). This implies that our
findings for aberrant facial structures in patients with FAS (the
most severe form) may possibly also be detected in children with
more moderate forms of FASD. To date this is not included in
the established diagnostic guidelines. Therefore it is important to
investigate this option in further studies covering the analysis of
facial structures in children with less severe forms of FASD.

Machine learning methods are already used in many fields.
Zhang et al. compared machine learning methods (decision
trees, support vector machines and k- nearest neighbors) for the
detection of multiple sclerosis in magnetic resonance imaging.
They could show best results for the use of the k-nearest
neighbors method (42). This is in accordance with our results
for the k-nearest neighbors method, which showed the highest
accuracy with the smallest standard deviation (m = 0.886; SD
= 0.059).

All three machine learning methods tested in our study
showed high accuracy withm > 0.8. However, we found that the
decision tree method is the most suitable approach for clinical
practice. Using this method, medical staff can easily diagnose FAS
patients via simple yes/no decisions.
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A limitation of this study is that metric results for the yes/no
decisions in the decision tree method were based on values
from earlier studies with group sizes of ∼30 Caucasian children
each. In further studies they should be extended to other racial
groups as well, as values for facial features can differ. Our
study population includes children at primary school age since
difficulties associated with FASD often become evident for the
first time at the beginning of primary schooling and lead to
the consultation of a specialist. According to May et al., this
age group is also best suited for an accurate diagnosis as most
physical, behavioral and neuropsychological signs are sufficiently
evident and verifiable. Of course, the earlier FASD is diagnosed,
the higher is the benefit for treating the affected children, which
supports the need for early detection methods (43).

The described ANOVA F statistics is a valuable method for the
evaluation of suitable parameters, which should be used for the
choice of parameters from 3D facial values in bio-databases. The
ANOVA F value of our data suggested that the three parameters
described above [midfacial length (MFL), right palpebral fissure
length (PFL r), nose breadth at sulcus nasi (NBSN)] were the
most suitable ones for detecting FAS. This might be different for
larger patient samples or different age groups.

Further studies and a larger number of values for the suggested
facial or dental parameters are necessary in order to develop a
decision tree which could be used in clinical practice.

Research done in this paper is just a start and needs to be
repeated with larger groups of patients at different ages and of
different racial background and should be extended to the other
subgroups of FASD as well.

A strength of this study are the clear results for all three
machine learning systems, even though the group size was
small. This shows the efficiency of machine learning methods
for the diagnosis of FAS patients in general. Decision trees
in particular stand out as being a new efficient and easy to
apply method.

In the future, decision trees could be implemented in everyday
clinical practice and could simplify diagnostic process via
yes/no decisions after metric measurements. Furthermore even
pediatricians or general practitioners could use the decision tree
method to check a suspected diagnosis for FASD. This would lead
to earlier referral to a specialist and therefore earlier diagnosis
and help for the affected patient.

CONCLUSION

Within our study sample, machine learning in combination
with the parameters palpebral fissure length, midfacial length
and nose breadth at sulcus nasi proved to be an efficient
method for the objective and reliable detection of patients
with FAS. Machine learning can help the clinician in making
a preliminary diagnosis based on morphometric data. This, of
course requires substantial databases with verified values for the
known patterns given to the computer during the supervised
learning process.

Clinically, the decision tree method is the simplest
and least time consuming method for the detection
of FAS.
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