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Necrotizing enterocolitis (NEC) represents one of the major causes of morbidity and

mortality in premature infants. Several recent studies, however, have contributed to

a better understanding of the pathophysiology of this dreadful disease. Numerous

intracellular pathways play a key role in NEC, namely: bacterial lipopolysaccharide (LPS),

LPS toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. In a

large number of pathologies, canonical Wnt/β-catenin signaling and PPARγ operate in

opposition to one another, so that when one of the two pathways is overexpressed

the other is downregulated and vice-versa. In NEC, activation of TLR4 by LPS leads

to downregulation of the canonical Wnt/β-catenin signaling and upregulation of PPARγ.

This review aims to shed light on the complex intracellular mechanisms involved in this

pathophysiological profile by examining additional pathways such as the GSK-3β, NF-κB,

TGF-β/Smads, and PI3K-Akt pathways.
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INTRODUCTION

Necrotizing enterocolitis (NEC) is the most common and major cause of morbidity and mortality
in premature infants (1–3). Morbidity is particularly significant in very premature babies treated
in neonatal intensive care. The prevalence of NEC is about 7% in infants with a birth weight from
500 to 1,500 g (4). Mortality is 30% in pre-term infants born after 28 to 36 weeks of gestation and
40% after gestation of <28 weeks (5). Several risk factors have been reported in NEC, namely,
prematurity, overfeeding, bacterial translocation, birth asphyxia, polycythemia, congenital heart
disease, hyperosmolar formulas, maternal preeclampsia and respiratory distress syndrome. Four
major pathways play a central role in the pathophysiology of NEC: bacterial lipopolysaccharide
(LPS), toll-like receptor 4 (TLR4), canonical Wnt/β-catenin signaling and PPARγ. LPS activates
TLR4 which in turn downregulates the Wnt/β-catenin pathway and upregulates PPARγ. Other
pathways must also be discussed, i.e., NF-κB, TGF- β/Smads and PI3K-Akt pathways. Usually,
canonical Wnt/β-catenin signaling and PPARγ are expressed in opposing ways so that when one
pathway is upregulated, the other is downregulated and vice versa (6). It appears that in NEC,
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the canonical Wnt/β-catenin pathway is downregulated and
PPARγ is up regulated through the complex inhibiting effects of
TLR4, itself activated by LPS. This review discusses this profile,
with a particular focus on the interactional roles of the NF-κB,
TGF-β/Smads and PI3κ-Akt pathways. Moreover, in premature
infants, a genetic predisposition to NEC has been reported (7–
9). Inherited defects in the regulation of innate immune pathway
contribute to NEC susceptibility in premature newborns.

HISTOLOGY AND PATHOPHYSIOLOGY OF
NEC

The intestinal epithelium represents the first barrier of defense
against luminal agents. It remains in permanent turnover and
is progressively replaced by intestinal stem cells (ISCs). These
cells are localized within the intestinal crypts and maintain
the integrity and viability of the epithelium, necessary for gut
regeneration. During NEC, loss of ISCs leads to severe gut
damages (10). In premature infants, the intestinal mucosa can
be altered by various factors such as hypoxia, infections and
administration of non-maternal milk (11–14). Main histological
findings in NEC consist of bacterial overgrowth, inflammation
and ischemic necrosis of the intestine. In premature infants, NEC
is associated with an immune response to the gut microbiota in
the intestinal tract, leading to inflammation and lesions that can
result in infarction (15). Intestinal damages range from alteration
of the intestinal mucosa to perforation and necrosis. The terminal
ileum and the large intestine are usually affected and, in the most
severe cases, the entire intestinal tract is subject to thickening
of the intestinal wall, edema of the intestinal mucosa, areas of
fibrinous adhesions, bleeding sites, areas of intestinal stenosis and
bands of transmural necrosis secondary to bacterial infiltration
and gas collections. The initial lesion in the small intestine
consists of a loss of intestinal villi by apoptosis, leading to
local weakening of the intestinal barrier and to translocation
of bacteria and other elements present in the intestinal lumen,
responsible for intestinal inflammation (16, 17). In response
to the loss of continuity in the intestinal epithelium, a repair-
healing program begins. This involves the migration of healthy
enterocytes at the level of the injured parts, in order to seal
the intestinal mucosa and to limit bacterial translocation (18).
The generation of new enterocytes takes place in the crypts of
Luberkuhn (19–22). In premature infants, enterocyte migration
and proliferation are largely inhibited, which limits the intestinal
repair processes (23).

DYSMATURITY OF INTESTINAL IMMUNE
RESPONSE IN NEC (24, 25)

NEC is rare in full term neonates and can appear in a
context of ischemia (26). This suggests a dysmature intestinal
immune response in NEC. In mouse fetus, the TLR4 signaling
plays a central role in crypt development and intestinal
epithelial cell (IEC) differentiation (27). After preterm birth, a
persistent activation of the IEC TLR4 pathway is potentially
pathological, due to the fact that gut bacteria can induce intestinal

inflammation and necrosis via TLR4 activation. In term neonates,
there is a rapid desensitization of the IEC TLR pathway and
acquisition of a postnatal intestinal tolerance (28). This is a
consequence of a decreased expression of IRAK1, which is a
mediator of the TLR pathway, and inhibition of NFκB (28–30).
In IEC, TLRs maintain both the mucosal homeostasis and the
IEC function while contributing to inflammation and necrosis.
Thus, in the preterm intestine, there is an imbalance between pro-
inflammatory and anti-inflammatory immune processes, and the
expression of inhibitors of the TLR pathway, such as SIGIRR,
A20, and TOLLIP, is decreased (31). In themouse intestine, breast
milk and probiotics prevent NEC and upregulate the expression
of genes that inhibit the TLR4 pathway (32–34).

LIPOPOLYSACCHARIDE (LPS) AND
TOLL-LIKE RECEPTOR 4 (TLR4)

Bacterial Lipopolysaccharide (LPS)
Lipopolysaccharides (LPS) are endotoxins found in the outer
membrane of Gram-negative bacteria. They consist of three parts:
O antigen, core oligosaccharide and lipid A, which is considered
to be toxic on epithelial cells and granulocytes. LPS induces
a strong response from the immune system. LPS binds with
the TLR4 receptor and promotes the release of several pro-
inflammatory cytokines. LPS plays a key role in NEC and patients
with NEC present high levels of plasmatic LPS. Intraperitoneal
injection of LPS in mice and rats induces intestinal injury. LPS is
the ligand for TLR4 that mediates NEC (23, 35, 36).

Bacterial LPS Toll-Like Receptor 4 (TLR4)
TLR4 is a transmembrane protein and member of the toll-
like receptor family, which belongs to the pattern recognition
receptor (PRR) family. Activated TLR4 leads to activation of
the NF-κB pathway and production of numerous inflammatory
cytokines. TLR4 is an important mediator of the innate
immunity. TLR4 drives the inflammatory response by activation
of pro-inflammatory agents (37). TLR4 plays a key role in
inflammatory processes such as sepsis (38), ulcerative colitis
(39–41) and atherosclerosis (42). It also plays a central role
in NEC pathogenesis (23, 35, 43, 44). TLR4 expression and
function are upregulated in premature infants. Indeed, inside the
intestinal epithelium of premature infants, activation of TLR4
by LPS alters the intestinal mucosa and reduces epithelial repair
mechanisms. Moreover, TLR4 is a mediator of innate immunity
in macrophages and is linked to a susceptibility to inflammatory
bowel diseases (45–48).

TLR4 Activation on the Intestinal
Epithelium in NEC
LPS-Induced TLR4 Activation Inhibits Enterocyte

Migration in the Intestinal Epithelium in NEC
TLR4 is expressed in the intestinal epithelium. NEC is
characterized by a marked defect in the migration of enterocytes,
leading to serious alterations of the intestinal mucosa (23, 49–
51). Activation of TLR4 diminishes the migration of enterocytes
via an increase in actin stress fibers. This increases the adhesion
of enterocytes to the basal membrane (52). TLR4 increases the
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activity of the GTP-ase RhoA which itself activates the formation
of actin stress fibers via activation of the focal adhesion kinase
(FAK). FAK enhances adhesion of enterocytes to the intestine
wall (23, 49). TLR4 also displaces β-1 integrins and this further
restricts cell movements. Thus, β-1 integrin antibodies or FAK
inhibitors reverse the deleterious effects of TLR4 activation
on enterocyte migration. This is mediated by the release of
pro-inflammatory cytokines such as interferon (53), which in
turn inhibits enterocyte migration via the Connexin 43 (54).
Nitrite oxide inhibits enterocyte movements via the activation of
RhoA (50).

LPS-Induced TLR4 Activation on the Intestinal

Epithelium Inhibits Enterocyte Proliferation in NEC
The loss of enterocytes initiates the migration of enterocytes
from healthy to diseased areas. This induces the proliferation
of enterocytes from stem cells located in the intestinal crypts.
However, this proliferation is reduced during NEC (1, 55).
NEC development requires activation of the innate immune
TLR4 in enterocytes. TLR4 activation by LPS inhibits enterocyte
proliferation and favors NEC progression (49, 56). Activation
of TLR4 alters enterocyte proliferation in the ileum of newborn
mice and in cultured enterocytes (1). Enterocyte proliferation is
also inhibited after endotoxin exposure (57, 58).

LPS-Induced TLR4 Activation on Intestinal Stem

Cells Leads to Their Loss Through Apoptosis in NEC
During intestinal aggression, the regular and rapid turnover
primarily involves stem cells or progenitors located at the base
of the intestinal crypts (59), Bmi1 (60–62), and Lgr5 (63–67).
TLR4 is expressed in Lgr5-positive intestinal stem cells (23).
TLR4 activation increases apoptosis through upregulation of p53,
a modulator of apoptosis (PUMA). Inhibition of PUMA in vivo
restores proliferation and reduces apoptosis in NEC.

In enterocytes, TLR4 promotes enterocyte apoptosis. In
experimental NEC, a significant decrease in the number of
enterocytes is observed at an early stage due to an increase
in apoptosis processes (17, 68–73). This favors the transmural
passage of infectious agents and the activation of immune
processes. Within the intestinal epithelium, early activation of
TLR4 promotes the loss of enterocytes (1, 23, 27, 74). The TLR4
deficient mouse is protected from the development of NEC.
Moreover, inhibition of TLR4 in the epithelium of newborn
mice prevents the development of NEC and decreases enterocyte
apoptosis (1, 23, 74). Inhibition of TLR4 activation within the
intestinal epithelium enhances enterocyte proliferation (1, 75)
and inhibits enterocyte apoptosis in the small intestine of the
premature host (10, 18).

In human infant NEC, there is an increased expression of
TLR4 while inhibitors of TLR signaling, such as SIGIRR, are
decreased (32–34, 76). In preterm infants with NEC, microbiota
presents numerous Gram-negative bacteria suggesting that TLR
activation plays a role in human NEC pathogenesis (77, 78).
In NEC C3HeJ mice that lack the functional TLR4 signaling
(35), IEC-specific deletion of TLR4 induces protection against
experimental NEC. Mice lacking SIGIRR, a negative regulator of
the TLR pathway, present severe experimental NEC (7, 79).

GENERALITIES ON CANONICAL
WNTβ-CATENIN SIGNALING AND PPARγ

Canonical Wnt/β-Catenin Signaling
The canonical Wnt/β-catenin pathway plays a key role in cell
fate, metabolism, epithelial-mesenchymal transition (EMT) and
embryogenesis (80–82). In the presence of Wnt ligands, the
canonical Wnt receptor is linked with both Frizzled (FZD) and
the LDL receptor-related protein 5/6 (LRP5/6). FZD, which is
linked to Disheveled (DSH), disrupts the destruction complex
composed of the tumor suppressor adenomatous polyposis coli
(APC), AXIN and glycogen synthase kinase-3β (GSK-3β). GSK-
3β negatively regulates β-catenin by phosphorylation leading
to its degradation into the proteasome. PI3K-Akt signaling
is a negative regulator of GSK-3β, inactivating GSK-3β by
phosphorylation of its Ser 9 residue leading to pGSK-3β (83).
The activated receptor finally results in the inhibition of the
β-catenin phosphorylation, thereby preventing degradation of
the β-catenin by the proteasome. The stabilized β-catenin then
accumulates in the cytoplasm, translocates to the nucleus and
interacts with the transcription factor T-cell /lymphoid enhancer
(TCF/LEF) to activate numerous β-catenin target genes such as
cyclin D1,MMP7, c-Myc, and fibronectin (84–86). In the absence
of Wnt ligands, β-catenin is phosphorylated by the destruction
complex and then degraded in the proteasome (Figure 1).

In enterocytes, LPS activates GSK-3β and increases the
phosphorylation of β-catenin, leading to its proteasomal
degradation. Phosphorylation of GSK-3β is mediated by the
phosphorylation of the PI3K-Akt pathway (87). LPS causes a
decrease in PI3K-Akt phosphorylation. siRNA knockdown of
GSK-3β completely reverses the inhibitory effects of LPS on
enterocyte proliferation. Lithium chloride reverses the LPS-
induced inhibition of the nuclear translocation of β-catenin
in IEC-6 cells (1). TLR4 and the PI3K-Akt/GSK-3β signaling
mediates the inhibitory effects of LPS on enterocyte proliferation
(1). NEC is associated with TLR4-mediated inhibition of
the pGSK-3β/β-catenin pathway in enterocytes. Inhibition of
enterocyte proliferation in mice is similar to that occurring in
human infants with NEC.

PPARγ
PPARγ is a transcriptional factor belonging to the nuclear
hormone receptor superfamily. It heterodimerizes with the
retinoid X receptor. PPARγ is expressed in numerous cell
types, such as adipose tissues, muscles, brain, and immune
cells. It regulates innate immune responses, insulin sensitivity,
inflammation, glucose and lipid homeostasis, and cell fate (88,
89). PPARγ is activated by synthetic ligands such as PPARγ

agonists thiazolidinediones (TZDs) and natural agents such
as 15d-prostaglandin J2. TZDs improve insulin sensitivity in
peripheral tissues and ameliorate glucose tolerance and insulin
sensitivity in type 2 diabetic patients. Abnormalities of PPARγ are
observed in several pathological states such as cancers, diabetes,
obesity, and atherosclerosis. Some TZDs have been used for
treating type 2 diabetes. PPARγ also plays an important role
in regulating cardiovascular rhythms by controlling circadian
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FIGURE 1 | Schema of canonical Wnt/β-catenin pathway and PPARγ. (A) In the absence of the WNT ligands (“off state”), cytosolic β-catenin is phosphorylated by

GSK-3β. APC and AXIN combine with GSK-3β. Thus, p-β-catenin induces the destruction process and migrates to the proteasome. PPARγ inhibits the β-catenin

/TCF-LEF-induced activation of the Wnt target genes. (B) In the presence of the Wnt ligands (“on state”), a Wnt agent binds both Frizzled and LRP5/6 receptors to

initiate LRP phosphorylation and disheveled-mediated Frizzled internalization. GSK-3β is phosphorylated and β-catenin phosphorylation is inhibited, which prevents its

degradation into the proteasome. Thus, β-catenin accumulates in the cytosol and translocates to the nucleus to bind TCF-LEF co-transcription factors. This induces

the Wnt-response gene transcription (PDK, MCT-1, Myc, Cyclin D1, fibronectin). β-catenin inhibits PPARγ. APC, adenomatous polyposis coli; DSH, Disheveled; FZD,

Frizzled; GSK-3β, glycogen synthase kinase-3β; LRP5/6, low-density lipoprotein receptor-related protein 5/6; PPARγ, peroxisome proliferator-activated receptor

gamma; TCF/LEF, T-cell factor/lymphoid enhancer factor; MCT-1, monocarboxylate lactate transporter-1.

variations of blood pressure and heart rate through BMAL1
(6, 90, 91).

Crosstalk Between the Canonical
Wnt/β-Catenin and PPARγ
In numerous diseases, the canonical Wnt pathway is generally
regulated in an opposing manner to that of PPARγ (6). If one of
them is downregulated, the other is upregulated and vice versa.
Numerous studies have shown the direct interaction between
β-catenin and PPARγ (92–96). PPARγ activation inhibits the
β-catenin activity of TCF/LEF transcription factors (97). TZDs-
PPARγ agonists (troglitazone, rosiglitazone and pioglitazone)
and the non-TZD PPARγ activator GW1929 inhibit the β-
catenin-induced transcription in a PPARγ-dependent manner.
PPARγ ligands repress the canonical Wnt pathway via the
PI3K/Akt signaling (98).

Some diseases are characterized by downregulation of the
canonical Wnt/β-catenin signaling and upregulation of PPARγ.
Conversely, numerous diseases are characterized by upregulation
of the canonical Wnt/β-catenin signaling and downregulation of
PPARγ (6, 90, 91, 99).

TRANSFORMING GROWTH FACTOR-β
(TGF-β) AND SMADS

TGF-β is a growth factor involved in numerous physiological
processes such as embryonic development, tissue repair,

differentiation and cell growth (100). Three TGF-β isoforms,
TGF-β1, TGF-β2, and TGF-β3, are encoded by three distinct
genes. After activation, TGF-β induces a cellular response
by binding to specific type I and type II receptors (TβRI
and TβRII, respectively). TGF-β binds with TβRII. Signal
transduction from receptors to the nucleus is provided
primarily by the phosphorylation of Smad proteins (101).
The Smad family is divided into three different functional
groups: the Smads associated with the receptors or R-Smads,
which specifically interact directly with the activated TβRI;
the co-Smads, common mediators for all members of the
TGF-β family; and the inhibitory Smads or I-Smad. TGF-β1
binds with TGF-βR2 which recruits TGF-βR1 This forms a
heterotetramer that phosphorylates Smad2 and Smad3 which
bind with Smad4 (Figures 2, 3). This complex translocates to
the nucleus where it binds with the Smad binding element
DNA sequences, and acts as a transcription factor. Smad7,
an I-Smad, binds with the activated TβRI, thus preventing
phosphorylation of Smad2 and Smad3. Smad7 blocks TGF-
β signaling by preventing the complex formation between
Smad2 or Smad3 and Smad4 and the nuclear accumulation
of Smad2 and Smad3 in response to TGF-β signaling (102).
On the other hand, Smad7 is a general antagonist of the
TGF-β family through the TGF-β type 1 receptor (103). The
inhibitory action of Smad7 functions as a negative feedback
loop. Smad7 acts by blocking the TGF-β-induced growth
inhibition and apoptosis. There is a high Smad7 expression
both in the uninflamed preterm intestine and during NEC,
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FIGURE 2 | Schema of canonical Wnt/β-catenin, TGF-β, SMAD pathways and PPARγ in Wnt “on state.” In canonical Wnt signaling “on state,” TGF-β1 binds the type

2 TGF-βR2 receptor (TGF-βR2), Thus, TGF-βR2 recruits the type 1 TGF-βR1 receptor (TGF-βR1). This induces the formation of a heterotetramer that phosphorylates

Smad. The Smad complex then translocates to the nucleus and regulates the transcription of Smad target genes. Smad7 in turn inhibits the TGF-βR1-R2 receptors.

The PI3K-Akt pathway is a non-Smad signaling which is activated by TGF signaling and which induces phosphorylation of GSK-3β. PPARγ inhibits PI3KAkt and the

β-catenin/TCF-LEF-induced activation of WNT target genes. APC, adenomatous polyposis coli; DSH, Disheveled; FZD, Frizzled; GSK-3β, glycogen synthase

kinase-3β; LRP5/6, low-density lipoprotein receptor-related protein 5/6; PPARγ, peroxisome proliferator-activated receptor gamma; PI3K, phosphatidylinositol

3-kinase; Akt, Akt/Protein Kinase B; TCF/LEF, T-cell factor/lymphoid enhancer factor; TGF, Transforming Growth Factor; SBE, Smad binding element; EGFR,

Epidermal growth factor receptor.

where it blocks the normal autocrine induction of TGF-β2
in epithelial cells. Smad7 can suppress TGF-β signaling by
competing with activating Smads, interfering with the TGF-
β receptor function and increasing its degradation. Smad7
promotes the inflammatory activation of NEC macrophages
and interrupts the TGF-β signaling in intestinal macrophages
during NEC (104). TGF-β1 downregulates PPARγ expression
in various systems via the Smad pathway (105–107). TGF-
β1 activates the canonical Wnt signaling. The link between
TGF- β1, canonical WNT/β-catenin and PPARγ has been
well-documented (95, 96, 108). Thus, TGF-β1 stimulates
canonical WNT signaling and represses PPARγ. In NEC,
interruption of TGF-β signaling partly explains the upregulation
of PPARγ, given that these two pathways act in an opposing
manner (Figure 3).

NUCLEAR FACTOR
KAPPA-LIGHT-CHAIN-ENHANCER OF
ACTIVATED B CELLS (NF-κB)

The transcription factor NF-κB consists of five subunits (p50,
p65, p52, cRel, and RelB). These subunits heterodimerize to
form the active factor NF-κB (36). p50-p50 and p50-p65 are

the NFκB dimers mostly found in intestinal tissues (109, 110).
NF-κB is constitutively present in the cytoplasm of most cells,
in an inactive state, as it is bound to the inhibitory proteins
IκB. NF-κB binds with the inhibitor IκB kinase (IKK) in the
cytoplasm and exists in an inactivated form. Phosphorylation of
IκB dissociates it from NF-κB. Activation of NF-κB signaling is
initiated by the degradation of the IκB proteins via activation
of the IκB kinase. IKK is composed of a heterodimer of the
IKKα and IKKβ subunits and of the regulatory protein NEMO
which catalyzes the phosphorylation of the IkB proteins. IkBs
are destroyed by the proteasome, allowing NF-kB (RelA–p50
heterodimer) to translocate to the nucleus where it induces the
expression of specific genes. NF-κB controls DNA transcription,
cytokine production and cell survival. Activation of NF-κB
upregulates the production of inflammation-related proteins.
NF-κB is a rapid-acting primary transcription factor, and is
present in cells in an inactive form that does not require a
protein synthesis to become active. NF-κB is involved in cellular
responses to stimuli such as stress, cytokines, ROSs, tumor
necrosis factor alpha, interleukin 1-β, and the bacterial LPS-TLR4
pathway (111). The canonical Wnt/NF-κB signaling appears to
be complex (112, 113). Many bacterial products lead to NF-κB
activation and induce rapid changes in gene expression (114).
NF-κB signaling plays an important role in NEC. Activation
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FIGURE 3 | Schema of canonical Wnt/β-catenin, TGF-β, SMAD and PPARγ pathways in NEC. In NEC, the LPS-TLR4 complex induces inactivation of TGF-β

signaling. This leads to dephosphorylation of GSK-3β, inducing β-catenin phosphorylation and β-catenin translocation into the proteasome. The LPS-TLR4 complex

also inactivates the PI3K-Akt pathway leading to dephosphorylation of GSK-3β and β-catenin translocation to the proteasome. APC, adenomatous polyposis coli;

DSH, Disheveled; FZD, Frizzled; GSK-3β, glycogen synthase kinase-3β; LRP5/6, low-density lipoprotein receptor-related protein 5/6; PPARγ, peroxisome

proliferator-activated receptor gamma; PI3K, phosphatidylinositol 3-kinase; Akt, Akt/Protein Kinase B; TCF/LEF, T-cell factor/lymphoid enhancer factor; TGF,

Transforming Growth Factor; SBE, Smad binding element.

of NF-κB in the intestine appears at 20 days of gestation in
fetal rats, i. e., at the end of the gestation period of 21 days
(115). LPS is a potent activator of the transcription of NF-κB
(36, 116).

PI3K-AKT/GSK-3β SIGNALING

The TLR4 pathway blocks PI3K-Akt phosphorylation,
allowing GSK-3β to remain active (i.e., under the GSK-3β
unphosphorylated form) and to phosphorylate β-catenin leading
to its destruction into the proteasome (Figure 1). Inhibition of
GSK-3β with lithium chloride, which phosphorylates GSK-3β,
prevents the negative effects of LPS on β-catenin and restores
proliferation of the IEC-6 cells (117). In mice IECs and after
dextran sodium sulfate (DSS)-induced injury, activation of
TLR4 signaling increases the expression of cyclo-oxygenase
(COX)-2, prostaglandin E2 (PGE2), and endothelial growth
factor receptor ligands. This leads to a decrease in proliferation
(118). In NEC, both COX-2 and PGE2 play a key role in gut
homeostasis and inflammation (119, 120). The beneficial effect
mediated by stimulation of the canonical Wnt pathway may act
through inhibition of COX-2/PGE2 signaling. Formula-feeding
in mice induces an increase in the non-phosphorylated GSK-3β
protein, leading to a decrease in β-catenin in the ileum in
NEC newborns.

CROSSTALK BETWEEN TLR4 SIGNALING
AND THE CANONICAL WNT/β-CATENIN
PATHWAY

Activation of TLR4 Inhibits the Canonical
Wnt/β-Catenin Pathway (Excluding NEC)
The first link between TLR4 and β-catenin was established by
Ireland et al. (121). In a transgenic line (Ahcre) of adult mice,
β-catenin has been shown to be required for the maintenance of
a small intestinal cell proliferation and is implicated in goblet
cell differentiation. Excessive activation by LPS-TLR4 /NF-κB
signaling inhibits the canonical Wnt/β-catenin pathway and
induces steroid-associated necrosis of femoral head (SANFH) in
rats (122). TLR4 inhibits the canonical Wnt/β-catenin pathway,
decreases activation of the Wnt receptor LRP6, and blocks the
protective effect of the Wnt3a ligand (123). The knockout of
TLR4 activates canonical Wnt/β-catenin signaling and promotes
fracture healing (124). In skin wounds, activated Wnt7b favors
regeneration via PGE2 which is a by-product of COX-2 (125).

Activation of TLR4 Inhibits the Canonical
Wnt/β-Catenin Pathway in NEC
Several studies show that canonical Wnt/β-catenin signaling
is downregulated in NEC. TLR4 activation leads to decreased
β-catenin and increased GSK-3β expression in the intestinal
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mucosa in both human and murine NEC (1, 24, 126–128).
On the other hand, in enterocytes in vivo, inhibition of TLR4
signaling reverses these effects and restores levels of enterocyte
proliferation in experimental NEC. TLR4 inhibits enterocyte
proliferation via the inhibition of β-catenin signaling. LPS
causes a dose-dependent decrease in β-catenin expression in the
nucleus. This occurs via an increase in the dephosphorylated
form of GSK-3β, which is restricted to the small intestine of
newborn mice (1).

In both mice with experimental NEC and infants with acute
active NEC, the canonical Wnt/β-catenin signaling and intestinal
regeneration are decreased. LPS-induced activation of TLR4
leads to dephosphorylation of pGSK-3β (1). An increase in the
GSK-3β form leads to the degradation of the β-catenin into the
proteasome. Importantly in mice with NEC, exogenous Wnt7b
repairs intestinal injury and restores the ISC function and the
intestinal epithelial homeostasis (24) (Wnt7b is a ligand for
members of the frizzled family of receptors that is involved
in canonical Wnt/β-catenin signaling). Moreover, a Wnt7b
supplementation attenuates intestinal injury by rescuing ISCs
and restoring intestinal regeneration (129). The Wnt/β-catenin
pathway controls the proliferation and maintenance of ISCs
(130). The canonical Wnt signaling regulates ISCs and promotes
the formation of Paneth cells (131). Wnt ligands are released
from the Paneth cells (132). β-catenin is essential for intestinal
homeostasis and maintenance of ISCs and promotes intestinal
cell proliferation (133).

In both mice and humans, NEC is associated with decreased
β-catenin signaling (24). In NEC intestinal mucosa, inhibition
of the enterocyte β-catenin pathway can be reversed, and
enterocyte proliferation is restored through an adenoviral-
mediated inhibition of TLR4 signaling. In NEC mice, inhibition
of TLR4 in enterocyte signaling restores enterocyte proliferation,
reverses inhibition of β-catenin expression and favors GSK-3β
phosphorylation (1). Animals with mutant or deficient TLR4
pathways are protected against NEC (23, 35). From a preventive
and therapeutic viewpoint, this highlights the key role of the
canonical Wnt/β-catenin pathway in NEC (1, 134).

Downregulation of TGF-β Signaling in NEC
The link between TGF-β1, canonical Wnt/β-catenin and PPARγ

has been well-documented (96, 106, 108). TGF-β1 has been
shown to activate canonical Wnt signaling and to inhibit
PPARγ. TGF-β1 activates the Smad pathway and non-Smad
pathways as MAPK and PI3K-AKT. TGF-β1 downregulates
PPARγ expression in various systems via the Smad pathway
(105–107). TGF-β signaling is downregulated in NEC. A low
blood TGF-β1 level is associated with NEC in infants with an
extremely low birth weight (ELBW) (135). Blood TGF-β1 is a
biomarker used to estimate the risk of NEC in a newly-born
premature infant.

NEC is associated with a decreased intestinal tissue expression
of TGF-β. In an LPS mouse model, the disruption of the TGF-
β pathway results in a severe NEC-like mucosal injury (136).
Macrophage cytokine production is decreased in the developing
intestine by TGF-β, particularly the TGF-β2 isoform (136). The
TGF-β2 isoform suppresses macrophage inflammatory responses

in the developing intestine and protects against inflammatory
mucosal injury. Smad7 is an important negative regulator of
TGF-β signaling in the gastrointestinal tract (137). Smad7
inhibits TGF-β signaling by competing with activating Smads,
thus interfering with the TGF-β receptors and increasing
their degradation. Bacterial products induce Smad7 expression
in neonatal macrophages.

Smad7 upregulates IKK-β expression inmacrophages through
direct binding and transcriptional activation of the IKK-β
promoter. Smad7 interrupts the TGF-β signaling in intestinal
macrophages and promotes inflammatory activation of these cells
during NEC (104).

In macrophages in NEC, there is an increase in Smad7
expression, particularly in areas with severe intestinal tissue
damage and high bacterial concentration. The LPS-induced
increase in Smad7 expression suppresses the TGF-β pathway
activity and upregulates NF-κB activation via an increased
expression of IKK-β by directly activating its promoter in
macrophages. This further increases Smad7 expression in a
feedback loop of inflammatory activation.

Smad7 is a TGF-β1 receptor antagonist and blocks TGF-
β1 (Figures 2, 3). Smad 7 is a key negative regulator of TGF-
β signaling and mediates the crosstalk between TGF-β and
other signaling pathways. Smad7 presents both anti-fibrotic and
anti-inflammatory activities, so that its overexpression has a
therapeutic potential for treating fibrosis and inflammation.

Surgically-resected bowel with NEC shows an increased
expression of Smad7. Smad7 inhibits the autocrine expression
of TGF-beta2 in intestinal epithelial cells in baboon NEC (138,
139). In the healthy intestinal mucosa, macrophages undergo
inflammatory downregulation under the influence of both TGF-
β1 and TGF-β2.

LPS treatment of RAW264.7 cells blocks the TGF-β2-induced
Smad 2 phosphorylation. Smad7 knockdown reverses the LPS-
mediated suppression of TGF-β signaling in macrophages.
Smad7 augments LPS-induced NF-κB activation in macrophages
by increasing IKK-β expression in these cells.

TLR4 ACTIVATES NF-κB IN NEC

A strong link has been reported between NF-κB and the
pathogenesis of NEC (140). Activation of TLR4 by its ligand
LPS leads to the activation of NF-κB. TLR4 activates NF-κB
signaling in numerous cells, for examples in kidney (141) and
in atherosclerotic plaque (142). In NEC, the LPS-TLR4 pathway
also activates the NF-κB signaling (36). In a neonatal NECmodel,
the mRNA expression of both TLR4 and NF-κB is significantly
increased (143). In isolated IECs from the small intestine, TLR4
activates NF-κB in response to LPS.

CROSSTALK BETWEEN TLR4 SIGNALING
AND PPARγ IN NEC
Premature rat pups delivered by abdominal incision on day 20 of
gestation (day 21 is considered as full term) were given a single
administration of formula milk via an orogastric catheter (144).
This NEC model mimics the pathophysiological conditions that
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triggers the onset of NEC. The incidence of NEC increases with
the volume of formula milk. Expression of IκB-α/β and PPARγ

mRNA increases in the inflamed intestine. Activation of NFκ
B induces the synthesis of inflammation-related proteins. These
results could reflect a negative feedback mechanism in response
to intestinal inflammation. PPARγ plays an inhibitory role in
the inflammatory responses mediated by NFκB (145–148). In
NEC, increased PPARγ expression helps inhibit the intestinal
inflammation elicited by NF-κB.

In an adult mouse model of NEC (in intestine, by using an
ischemia-reperfusion (I/R) model of NEC), activation of PPARγ

induces a protective effect on the small bowel during I/R-induced
gut injury (149). The PPARγ expression in both jejunum and
ileum is significantly increased at 30min after I/R injury, an
increase that returns to baseline after 3 h. NF-κB activity increases
during I/R-induced intestinal injury with attenuated response
in 15d-PGJ2-pretreated jejunum. PPARγ agonist pretreatment
with 15d- PGJ2 is protective for the small bowel during I/R-
induced NEC. Intestinal injury is decreased with early activation
of PPARγ by its ligand, 15d-PGJ2. This helps attenuate the NF-
κB response. Activation of PPARγwith the consequent inhibition
of NF-κB expression, could represent a beneficial therapy in
premature infants with NEC.

GENETIC PREDISPOSITION TO NEC IN
PREMATURE INFANTS

In premature infants, a genetic predisposition to NEC has
been observed (7–9). Genetic studies of NEC concern several
candidate genes or factors such as TLR, single immunoglobulin
and toll-interleukin 1 receptor (SIGIRR), nucleotide binding
oligomerization domain containing protein 2 (NOD2),
autophagy-related 16-Like 1 (ATG16L1), mannose binding
lectin (MBL), platelet activating factor (PAF), nuclear factor-
kappa B, pro-inflammatory cytokines, fucosyltransferase 2
(FUT2), vascular endothelial growth factor (VEGF), arginine
and nitric oxide, heparin-binding epidermal growth factor-like
growth factor (HB-EGF) (9). Infants of very low birth weight
(VLBW) carrying NOD2 loss-of-function mutations present an
increased risk of severe gastrointestinal complications, such as
NEC. These infants may require surgery and could benefit from
NOD2 genotyping with supplementation by means of probiotics
(8). In premature infants, inherited abnormalities in the TLR
regulation pathway can contribute to NEC susceptibility. A stop
mutation (p.Y168X) associated with NEC and a missense variant
(p.S80Y) have been reported in SIGIRR, a gene that inhibits the
intestinal TLR signaling. SIGIRR inhibits inflammation induced
by lipopolysaccharide, a component of Gram-negative bacteria
implied in NEC (7).

Possible postnatal mechanisms can suppress abnormal TLR4
activation after birth. Thus, the intestinal mucosa undergoes
a strong transition from a sterile protected site toward a
permanent colonized surface. In neonates, both protection
from bacteria-induced epithelial damage and intestinal epithelial
innate immune tolerance involve the microRNA-146a-mediated
translational repression and proteolytic degradation of the TLR

signaling molecule, interleukin 1 receptor associated kinase 1
(150). The flagellin-dependent IL-8 response of an immature
human enterocyte cell line to a bacterial infection is higher than
that of a mature enterocyte cell line. The immature enterocytes
express a low level of IκB genes. This may favor the pathogenesis
of NEC (29).

NEC PROTECTION OBTAINED BY TLR4
INHIBITION IN THE INTESTINAL
EPITHELIUM

Innate Immune Response and Protective
Effects on NEC
Several human and animal studies suggest that an abnormal
activation of the intestinal immune system contributes to the
appearance of NEC. In premature infants, inherited defects in
the regulation of innate immune processes probably contribute
to NEC susceptibility. In these infants, NEC is partly the
consequence of an excessive inflammatory response to an
initial bacterial colonization due to the immature expression
of the gene innate immune response. Probiotics prevent NEC
by modulating enterocyte genes that regulate the immune-
mediated inflammation (33). Probiotic conditioned media
favors maturation of the gene innate immune response, partly
explaining their protective effects in NEC (33). The immune
receptor nucleotide-binding-oligomerization domain-2 (NOD2)
regulates the immune system. NOD2 activation inhibits TLR4 in
enterocytes and reverses the effects of TLR4 on intestinal mucosal
injury (74). Single-immunoglobulin interleukin-1 receptor-
related molecule (SIGIRR) is a transmembrane protein. In
intestinal epithelial cells, SIGIRR inhibits inflammation induced
by lipopolysaccharide. SIGIRR is a negative regulator of the TLR4
pathway in the developing intestine. Its insufficiency leads to an
intestinal TLR hyper-responsiveness and to severe experimental
NEC in mice (79). Moreover, it has been observed that VLBW
infants having ≥2 NOD2 genetic risk factors of inflammatory
intestine disease have an increased risk of NEC (8).

Beneficial Effects of Breast Milk
Breast milk inhibits NF-κB activation in IECs and thereby plays
a protective role against NEC (32, 151). In Ly6c+ monocytes,
NF-κB inactivation attenuates NEC (152).

Role of Epidermal Growth Factor (EGF)
Signaling
In the intestinal epithelium, breast milk protects against the
development of NEC by inhibiting TLR4 through activation of
the epidermal growth factor receptor (EGFR) (126). In IEC-
6 enterocytes, breast milk protects against NEC by attenuating
TLR4 pathway activity through activation of EGF/EGFR
signaling and the phosphorylation of GSK-3β (pGSK-3β). This
does not occur in mice lacking EGFR. Selective removal of
EGF from breast milk reduces its protective properties against
NEC. EGF is abundant in breast milk and amniotic fluid and
appears to be important for intestinal development (153–157).
In the neonatal intestinal epithelium, the amniotic fluid inhibits
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the TLR4 pathway via EGFR signaling (75). Cetuximab, an
EGFR inhibitor, prevents the protection of breast milk via the
TLR4 pathway. Breast milk attenuates the TLR4-mediated NF-κB
activation by inhibiting GSK-3β in vitro (i.e., by phosphorylating
GSK-3β) (158–160). In wild-type IEC-6 cells, pre-treatment
with either EGF or breast milk, prior to LPS administration,
significantly increases phosphorylation of GSK-3β. In IEC-6
cells, lithium chloride increases the phosphorylation of GSK-
3β and decreases the expression of TLR4-mediated IL-1β and
IL-6. Breast milk reverses the effects of TLR4 on enterocyte
apoptosis and proliferation via EGFR and favors phosphorylation
of GSK-3β. Breast milk does not protect against NEC-mediated
enterocyte apoptosis nor enhances enterocyte proliferation in
EGFR1IEC mice (126). This shows that breast milk activation of
EGFR is required to obtain these protective effects.

GSK-3β/β-catenin signaling plays a key role in determining
the enterocyte proliferation that occurs in response to EGFR
activation (161).

Inactivation of GSK-3β by phosphorylation at serine
9, negatively affects the NF-κB activation (162–164), thus
decreasing NF-κB-dependent pro-inflammatory cytokine
production (163). Inactivation of GSK-3β leads to the
stabilization of β-catenin, a critical factor responsible for
intestinal growth and proliferation (161, 165). Formula-
feeding in mice induces an increase in non-phosphorylated
GSK-3β protein and a decrease in β-catenin in the ileum of
NEC newborns.

Beneficial Effects of PPARγ Agonists in
NEC
In a neonatal preterm rat model, the PPARγ agonist pioglitazone
(PIO) reduces the development of NEC (166). PIO in a preterm
rat model study has shown a decrease in incidence and severity
of NEC. In the ileal tract of treated mice, this is associated
with an increase in the anti-inflammatory IL-4 and a decrease
of the pro-inflammatory IL-12 and INF-γ levels. In an adult
mouse model of NEC (using an intestine ischemia-reperfusion
(I/R) model of NEC), activation of PPARγ induces a protective
effect on the small bowel during I/R-induced gut injury (149).
Although PPARγ appears upregulated in NEC (144), PPARγ

agonists may help decrease the major inflammatory processes
observed in NEC.

Beneficial Effects of Wnt/β-Catenin
Agonists in NEC
Administration of Wnt7b results in the maintenance of intestinal
epithelial homeostasis and the avoidance of NEC intestinal injury
in mice (24). Intestinal epithelial proliferation is reduced in
NEC, but is rescued by Wnt7b administration. Wnt7b reduces
the mortality and severity of NEC by increasing intestinal
regeneration. Organoids derived from NEC damaged intestine

are rescued by Wnt7b supplementation. TLR4 inhibits the
canonical Wnt/β-catenin pathway, decreases activation of the
Wnt receptor LRP6, and blocks the protective effect of theWnt3a
ligand (123).

Lithium Chloride
PI3K-Akt phosphorylates GSK-3β and upregulates
β-catenin activity.

The TLR4 pathway blocks the PI3K-Akt phosphorylation
that allows GSK-3β to remain active (unphosphorylated) and
to phosphorylate β-catenin, leading to its destruction into
the proteasome. Lithium chloride phosphorylates GSK-3β.
Inhibition of GSK-3β with lithium chloride prevents the negative
effects of LPS on β-catenin and restores the proliferation of IEC-6
cells (117).

TGF-β2
TGF-β2 is sequestered in preterm human milk by chondroitin
sulfate proteoglycans (139). Enteral supplementation with
recombinant TGF-β2 protects mice from experimental NEC-like
injury. The TGF-β1 colostrum level is inversely correlated with
birth weight and gestational age. The TGF-β2 level is higher
than TGF-β1 in the colostrum of maternal breast milk (167).
In growth-restricted infants, the decrease in TGF-β2 plays a
significant role in feeding intolerance.

CONCLUSION

This review of NEC sheds light on the complexity of the
pathophysiology of the disease. In particular, the downregulation
of the canonical Wnt/β-catenin pathway induced by activation
of the LPS-TLR4 systems makes it possible to understand why
canonical Wnt agonists attenuate the severity of the disease
in experimental NEC models. Some PPARγ agonists can also
minimize the deleterious effects of this disease by downregulating
NF-κB signaling. This provides us with the hope that current
research will lead to the development of new therapeutic avenues
to treat this particularly serious disease.
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