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Background: Treatment of bloodstream staphylococcal infections (BSI) necessitates

the prompt initiation of appropriate antimicrobial agents and the rapid de-escalation of

excessive broad-spectrum coverage to reduce the risk of mortality. We, therefore, aimed

to demonstrate the diagnostic accuracy of nucleic acid amplification tests (NAAT) for the

identification of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus

(MSSA) in clinically suspected patients.

Methods: Until November 23, 2020, databases including PubMed, Scopus, Embase,

and Web of Science were scanned for eligible studies. A bivariate random-effects model

was used for meta-analysis of the 33 included studies obtained from 1606 citations, and

pooled summary estimates with 95% confidence intervals (CI) were generated.

Results: Twenty-three studies (n = 8,547) assessed NAAT accuracy for MSSA

detection, while three studies (n = 479) evaluated MRSA detection in adults. The

pooled NAAT sensitivity and specificity for MRSA in adults was higher [sensitivity: 0.83

(95% CI 0.59–0.96), specificity: 0.99 (95% CI 0.98–1.0)] as compared to MSSA

[sensitivity: 0.76 (95%CI 0.69–0.82), specificity: 0.98 (95%CI 0.98–0.99)]. Similarly, eight

studies (n = 4,089) investigating MSSA in pediatric population reported higher NAAT

accuracy [sensitivity: 0.89 (95% CI 0.76–0.96), specificity: 0.98 (95% CI 0.97–0.98)]

compared to adults. Among NAA tests, SeptiFast (real-time PCR, commercial) was

frequently applied, and its diagnostic accuracy corresponded well to the overall summary

estimates. A meta-regression and subgroup analysis of study design, sample condition,

and patient selection method could not explain the heterogeneity (P > 0.05) in the

diagnostic efficiency.

Conclusions: NAAT could be applied as the preferred initial tests for timely diagnosis

and BSI management.
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INTRODUCTION

Bloodstream staphylococcal infection (BSI) is an urgent medical
issue due to its rising incidence, associated poor outcome and
the emergence of high rates of secondary infections such as
osteomyelitis, septic arthritis, infective endocarditis and septic
metastases (1, 2). Many surveillances worldwide recorded a rise
in the incidence of BSI to varying degrees, including Thailand
(27.4%) (3), France (24%) (4) and Brazil (40–70%) (5), but the
majority of documented cases are in adults. Pediatric incidence
statistics are minimal, but infants younger than 1 year have been
reported as having a higher incidence compared to adolescents
(6). Especially in developed countries, methicillin-resistant S.
aureus (MRSA) has been observed in over 60% of all isolated
S. aureus, and associated MRSA mortality rates have reportedly
been higher than methicillin-susceptible S. aureus (MSSA) (7).
The burden of BSI is utterly immense in both clinical (8) and
economic terms (9), with mortality rates ranging between 20 and
70% (10, 11). Thus, rapid identification of the causative agents
and detection of resistance markers in patients with BSI, such as
the mecA gene, may provide clinically vital information to guide
effective care on time, leading to improved patient outcomes.

Vancomycin, a glycopeptide antimicrobial agent, has
frequently been included as empirical therapy for suspected
BSI (12), along with the awareness that delays in initiating
effective antimicrobial therapy may affect patient outcomes.
Once identification and susceptibility of microorganisms
are established, treatment can be optimized to target isolated
bacteria, including discontinuation of vancomycin whenMSSA is
present. Though safe, this approach exposes the patient to wide-
spectrum antibiotic overuse. Even short anti-MRSA treatment
courses may alter host flora, expose to drug-induced toxicity,
escalate multidrug-resistant pathogens, treatment-related side
effects, and increase hospitalization costs (13). Vancomycin, the
preferred antibiotic solution for MRSA infections, is also less
effective than oxacillin in the treatment of MSSA infections (14).
If the initial antibiotics are inadequate and changed after the
diagnostic tests are available, the mortality rate does not improve
significantly. Therefore, it is increasingly important to balance
these two competing interests, namely the need for complete
coverage while avoiding unnecessary medications.

Blood cultures currently represent the primary method for

determining the etiology of the BSI (15). This traditional culture-
based approach can be time-consuming, including growth-

based assays, colony morphology and microdilution resistance

tests. It takes about 48–72 h to classify the causative organism,
even with a positive blood culture. A positive microbiological

diagnosis in BSI can only be made in ∼20–30% of cases
with a substantially higher false-negative rate (16, 17), and
requires a certain amount of sample to begin the cultivation
process. Nevertheless, obtaining adequate amounts of blood
from neonates for culture is often difficult (18). Furthermore,
samples collected after antibiotic exposure may reduce culture-
based bacterial detection. As a result, the patients will likely miss
the optimal chance of treatment. Therefore, if no pathogenic
bacterial agent is detected, sepsis diagnosis is based solely on
clinical symptoms, often coupled with an increase in essential

biomarkers such as C-reactive protein or procalcitonin (19). For
these reasons, there is an obvious need for a more rapid, yet
precise tool that uses a limited blood volume to detect organism
and guide antibiotic choices in patients with suspected BSI.

While the pathogen culture remains the gold standard,
molecular amplification tests, which typically have a shorter
turnaround time, can drastically reduce the critical time
to initiate preventive and therapeutic strategies, including
appropriate antibacterial therapy. Unlike traditional blood
culture, NAAT relies on detecting bacterial DNA rather than the
recovery of viable bacteria and is less affected by antibiotic pre-
administration. A previous study demonstrated a decrease in the
length of anti-MRSA antibiotics in patients with BSI following
a rapid diagnostic test (20). Several studies have assessed the
importance of molecular techniques including PCR, real-time
PCR, GeneXpert, LAMP, and FilmArray (21–25), but literature
on the relevance of these tests to timely BSI management
is widely scattered for any meaningful interpretation. Given
the need to make clinical decisions among the pediatric and
adult population, we have systematically reviewed and analyzed
the available data to demonstrate NAAT diagnostic accuracy
compared with microbiological culture.

METHODS

Search Strategy
This systemic review was carried out in compliance with
the guidelines for Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (26). A computerized
search of the relevant studies without any restrictions was
performed through PubMed (available since April 01, 1991),
Scopus (available since April 01, 1992), Embase (available since
July 01, 1992), Web of Science (available since December
01, 1999), and a reference study of the retrieved papers
published until November 23, 2020. The search included a
variation of the Boolean “OR” and “AND” operators with the
following medical subject headings (MeSH): “Staphylococcus
aureus,” “S. aureus,” “methicillin-resistant S. aureus,” “MRSA,”
“Bloodstream infection,” “Blood infection,” “Blood culture,”
“Bacteremia,” “Septicemia,” “Sepsis,” “Blood poisoning,” “Nucleic
acid amplification,” “NAAT,” “Molecular assay,” “Loop-mediated
isothermal amplification,” “LAMP,” “Polymerase chain reaction,”
“PCR,” “Ligase chain reaction,” “LCR,” “Real-time PCR,”
“qPCR,” “RT-PCR,” “Amplicor,” “SeptiFast,” “ProbeTec,” “Roche,”
“Gen-Probe,” “FilmArray,” “Cepheid,” Abbott,” “Sensitivity,”
“Specificity,” and “Accuracy.” No effort was made to obtain data
from unpublished studies.

Study Selection
The MeSH terms were used to search through electronic
databases for all relevant citations, and duplicates were carefully
removed using the EndNote X9 software (Thomson Reuters,
New York, NY, USA). The records obtained were initially
scrutinized by reviewing titles and abstracts, and subsequent
analysis excluded irrelevant studies. The full-text of potentially
eligible studies for accuracy data was retrieved and carefully
analyzed. The data collected by two independent researchers (K.
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Chen and A. A. Malik) were compared, and any comparative
discrepancies were resolved by mutual consensus.

Inclusion Criteria
We included full-text, peer-reviewed, cross-sectional,
randomized controlled, and case-control studies using NAAT
to diagnose and compare BSI with a culture reference standard.
For the index test, the studies explicitly provided True positive
(TP), True negative (TN), False positive (FP) and False negative
(FN) values or included sufficient information to derive 2
× 2 contingency tables. All studies that met the standard
BSI definition were eligible for inclusion, including fever,
chills, palpitations, rapid breathing, gastrointestinal symptoms,
confusion and shock.

Exclusion Criteria
Studies were considered for exclusion if they were conference
proceedings, commentaries, reviews, meta-analysis, editorials,
case reports, mechanism, and animal experimentation. Studies
providing insufficient data for constructing a 2 × 2 contingency
table and comprising <10 specimens were excluded. Non-
interpretable test results by both index test and microbiological
reference standard were also not included.

Data Extraction
Two independent analysts (K. Chen and A. A. Malik) scanned all
the related papers with pre-specified eligibility requirements in
order to ensure the reproducibility of study selection. Disagreed
studies were resolved by consultation with a third investigator (S.
C. Ojha). The data were collected from eligible studies including
authorship, publishing year, country, settings, study type, patient
selection, patient characteristics, sample type, sample size, NAAT
specifics, potential risks, and information for construction of 2
× 2 contingency table. For missing details, ambiguous reference
standards, and specimen preparation techniques, the authors
were consulted individually. Contingency tables for NAAT
performance compared to microbiological reference standards
were constructed on the basis of available data from the
qualifying studies. Studies involving different index tests as
compared to the specific reference standard were considered
separate studies.

Quality Assessment
The methodological quality of the studies was assessed using the
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-
2), a validated diagnostic study tool (27). The four QUADAS-2
domains were: patient selection, index test, reference standard,
and flow and timing. All four domains for the possible risk of
bias and the first three domains for applicability concerns were
evaluated by reviewing authors (K. Chen and A. A. Malik). Each
domain was assessed in terms of risk of bias using signaling
questions that are answered with “yes,” “no,” or “unclear” and are
judged as “low,” “high,” or “unclear,” respectively. The first three
domains are simultaneously evaluated in terms of applicability
concerns, which are also graded as “low,” “high,” or “unclear” with
identical characteristics. The differences between the reviewing
authors were settled by consensus.

FIGURE 1 | Flow chart of study selection.

Statistical Analysis
The following software was used for data analysis: RevMan
5.4 (Nordic Cochrane Centre, Copenhagen, Denmark) for the
methodological quality assessment of included studies and
summary plots generation (28). Meta-DiSc 1.4 (Cochrane
Colloquium, Barcelona, Spain) for computation of pooled
summary estimates including specificity, sensitivity, likelihood
ratios, diagnostic odds ratio (DOR), and heterogeneity amongst
data (29). Diagnostic accuracy of NAAT in association with
95% CI was computed against microbiological culture using a
random-effects model. Furthermore, the I-square (I2) statistics
were used to evaluate the heterogeneity of the included
studies, where I2 values ranging from 0 to 40% indicate
low heterogeneity, 30–60% moderate heterogeneity, 50–90%
substantial heterogeneity, and values >90% signify considerable
heterogeneity (30). Using subgroup analysis, different specimen
conditions, patient selection, study design, and patient type were
analyzed as possible heterogeneity sources. Publication bias was
inspected using Deeks’ funnel plot asymmetry test (31). A P-value
of < 0.05 was generally considered to be statistically significant.

RESULTS

Literature Selection
In total, our search identified 1,606 unique records (PubMed,
402; Scopus, 818; Embase, 180; Web of Science, 206) (Figure 1).
Of which, due to duplication in databases, 496 citations were
eliminated. Following the scanning of the titles and abstracts of
1,110 publications, 156 studies considered potentially significant
were subjected to a full-text revision. Supplementary Table 1

summarizes the studies reviewed, includin why these studies were
excluded (see Supplementary Table 1). Essentially, 33 studies
were included in subsequent analyses that met all the inclusion
criteria (21, 32–63).
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TABLE 1 | Baseline features of included studies.

References Year Country Setting Pros

enroll

Patients selection Patient type Sample type Sample size NAAT specifics Potential risks

Abd El-Aziz et al. (32) 2020 Egypt TCC No Convenience Pediatric Fresh 30 qPCR Sepsis

Arabestani et al. (33) 2014 Iran UHL No Convenience Adult Fresh/Frozen 126 mPCR Bacteremia

Bloos et al. (34) 2010 Germany TCC Yes Convenience Adult Fresh/Frozen 347 SeptiFast Sepsis

Etchebarne et al. (35) 2017 USA TCC Yes Consecutive Adult Fresh 31 LAMP Sepsis

Faraji et al. (36) 2018 Iran UHL No Convenience Adult Fresh 20 qPCR IE

Fernández-Romero et al. (37) 2014 Spain UHL Yes Convenience Adult Fresh 96 SeptiFast BSI, SIRS

García-Gudiño et al. (38) 2018 Mexico TCC No Convenience Pediatric Fresh/Frozen 22 PCR-DGGE Sepsis

Ginn et al. (39) 2017 Australia TCC No Convenience Adult Fresh/Frozen 15 MT-PCR Sepsis

Grosse-Onnebrink et al. (40) 2017 Germany UHL Yes Convenience Adult Fresh 72 SeptiFast CF

Josefson et al. (41) 2011 Sweden UHL Yes Consecutive Adult Fresh/Frozen 1540 SeptiFast BSI

Kitagawa et al. (42) 1996 Japan UHL No Convenience Adult Fresh 41 Nested PCR Bacteremia

Knabl et al. (43) 2016 Austria UHL Yes Consecutive Adult Fresh 58 SeptiFast SIRS

Korber et al. (44) 2017 Austria TCC No Convenience Adult Fresh 470 SeptiFast Sepsis

Lehmann et al. (45) 2009 Germany UHL No Convenience Adult Fresh 467 SeptiFast Sepsis

Liberto et al. (46) 2006 Italy TCC No Convenience Adult Fresh 31 qPCR-M Bacteremia

Liu et al. (47) 2017 China TCC No Convenience Adult Fresh 30 qPCR Sepsis

Lucignano et al. (48) 2011 Italy TCC No Convenience Pediatric Fresh 1,673 SeptiFast Sepsis

Makhoul et al. (21) 2005 Israel TCC Yes Convenience Pediatric Fresh 215 PCR Bacteremia

Moore et al. (49) 2018 Uganda TCC No Convenience Adult Fresh/Frozen 336 qPCR-TAC Sepsis

Obara et al. (50) 2011 Japan UHL Yes Convenience Adult Fresh 78 SeptiFast Bacteremia

Oeser et al. (51) 2020 UK TCC No Convenience Pediatric Fresh/Frozen 208 qPCR Sepsis

Pasqualini et al. (52) 2012 Italy UHL Yes Consecutive Adult Fresh 391 SeptiFast SIRS

Peters et al. (53) 2007 Netherlands UHL No Convenience Adult Fresh/Frozen 175 qPCR Bacteremia

Rogina et al. (54) 2014 Slovenia TCC No Consecutive Adult Fresh 23 SeptiTest, IHP SIRS, Sepsis

Santolaya et al. (55) 2011 Chile TCC Yes Convenience Pediatric Fresh/Frozen 177 RT-PCR Bacteremia

Schaub et al. (56) 2014 Switzerland UHL Yes Convenience Adult Fresh/Frozen 110 SeptiFast SIRS, Sepsis

Van den Brand et al. (57) 2018 Netherland UHL Yes Convenience Pediatric Fresh/Frozen 91 mPCR Sepsis

Wallet et al. (58) 2010 France TCC Yes Consecutive Adult Fresh 100 SeptiFast Sepsis

Wu et al. (59) 2011 Italy TCC No Convenience Pediatric Fresh 1,673 mPCR Sepsis

Xiao et al. (60) 2019 China UHL No Consecutive Adult Fresh/Frozen 2,844 PCR-MCA BSI

Yanagihara et al. (61) 2010 Japan UHL Yes Convenience Adult Fresh/Frozen 407 SeptiFast SIRS

Zboromyrska et al. (62) 2016 Spain TCC Yes Convenience Adult Fresh 92 GeneXpert CRB

Ziegler et al. (63) 2016 Sweden UHL No Consecutive Adult Fresh/Frozen 696 MST Sepsis

BSI, bloodstream infection; CRB, catheter related bacteremia; IE, infective endocarditis; IHP, in-house PCR; pros enroll, prospective enrollment; MST, magicplex sepsis real-time test;

MT-PCR, multiplexed tandem real-time PCR; PCR-MCA, PCR coupled with melting curve analysis; qPCR, quantitative PCR; SIRS, systemic inflammatory response syndrome; TCC,

tertiary care center (hospital); UHL, university hospital laboratory.

Characteristics of the Included Studies
Table 1 shows the baseline features of the studies included
(21, 32–63). Twenty-six studies were performed in countries
with high incomes and seven in countries with lower-middle
incomes. Studies reporting the usefulness of multiple index tests
against a single reference standard were treated as separate
studies. Centered upon this theory, this meta-analysis included
33 publications comprising 35 datasets. Out of 23 studies, 24
datasets (n = 8,547) evaluated the accuracy of NAAT for MSSA
detection, while three studies (n = 479) examined the NAAT
accuracy for MRSA detection in adults. Similarly, eight studies (n
= 4,089) evaluated NAAT’s accuracy for the identification of BSI
in children. The total number of samples submitted for diagnostic
assessment ranged from 15 to 2,844, with a median value of 100.

All experimental tests were carried out in tertiary care hospitals
or university research facilities. Only studies published in English
before November 23, 2020, were included.

Quality Appraisal
We applied the QUADAS-2 tool to evaluate the methodological
quality of included studies against microbiological culture
reference standard (see Figure 2). For a few studies in the
patient selection domain (34, 38, 40, 48, 53, 55, 63), the
risk of bias was high because the studies could not prevent
improper sample exclusion. Regarding the applicability concern,
all studies included blood samples from patients suspected of
BSI, indicating a low risk of bias. Other domains, including
the index test and the reference standard, were presumably at
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FIGURE 2 | Methodological quality and risk of bias assessment of the eligible studies.

FIGURE 3 | Forest plot for detection of MSSA in the pediatric population. The square stands for the sensitivity and specificity of a particular study, the black line

represents its confidence interval. TP, true positive, FP, false positive, FN, false negative, TN, true negative, CI, confidence interval.

low risk of bias, as NAAT used pre-established binary response
investigation criteria. Concerns about the index test conduct’s
applicability are unclear, as no proven protocol is available for
global use. Reference standards of all studies have been carried
out in hospitals or university-affiliated reference labs; as such, we
expect operator error bias to be of low concern. Subsequently,
there was no uncertainty regarding the possible risk of bias in
the flow and timing domain as both the index test and the
reference standards were applied to the same samples. In general,
the quality of the studies included in our meta-analysis met the
methodological standards.

Summary Estimates
The studies were rather heterogeneous, so obtaining NAAT
pooled summary estimates from integrated pediatric and adult
populations was not considered meaningful for antimicrobial
therapy. Initially, we concentrated on diagnosing BSI in children
as it is often difficult to procure sufficiently large amounts of
blood from children for microbiological culture. Subsequently,
the pooled summary estimates of NAAT in the adult population
to diagnose BSI were assessed. The accuracy of index tests,
commercial tests, and a potential source of heterogeneity among
studies in predefined subgroups have also been demonstrated.

Detection of BSI Among the Pediatric
Population
Eight studies (21, 32, 38, 48, 51, 55, 57, 59) met the inclusion
criteria for comparing NAAT with a microbiological culture

among children consisting of a total of 4,089 samples for MSSA
detection in suspected BSI patients. The sensitivity and specificity
of NAAT for MSSA detection ranged from 0.25 (95% CI 0.0–
0.94) to 1.0 (95% CI, 0.85–1.0), whilst our search did not result
in any MRSA studies (Figure 3). The pooled summary estimates
of NAAT for detection of MSSA in blood were [sensitivity:
0.89 (95% CI 0.76–0.96), specificity: 0.98 (95% CI 0.97–0.98),
positive likelihood ratio (PLR): 26.9 (95% CI 6.35–114.2),
negative likelihood ratio (NLR): 0.25 (95% CI 0.08–0.8), DOR:
142.34 (95% CI 16.85–1,202.7)]. The I2 sensitivity and specificity
statistical values were 57.0 and 95.7%, respectively, indicating
substantial to considerable heterogeneity. The area under the
curve (AUC) of summary receiver operating characteristics
(SROC) was 0.90 (95% CI 0.74–1.0), indicating overall justifiable
diagnostic validity (Figure 5A).

Detection of BSI Among the Adult
Population
Of 23 studies (33–37, 39–47, 49, 50, 52–54, 56, 58, 60–63), 24
datasets consisting of 8,547 blood samples evaluated the accuracy
of NAAT for MSSA identification, whereas three datasets (n
= 479) assessed the NAAT accuracy for MRSA identification.
The sensitivity and specificity of NAAT for identification of
MSSA ranged from 0.17 (95% CI 0.0–0.82) to 1.0 (95% CI
0.85–1.00) and from 0.90 (95% CI 0.73–0.98) to 1.00 (95% CI
0.99–1.00), respectively (Figure 4A). While the sensitivity and
specificity of NAAT for identification of MRSA ranged from
0.25 (95% CI 0.0–0.94) to 1.0 (95% CI 0.74–1.00) and from
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FIGURE 4 | Forest plot for detection of (A) MSSA and (B) MRSA in the adult population. The square stands for the sensitivity and specificity of a particular study, the

black line represents its confidence interval. TP, true positive, FP, false positive, FN, false negative, TN, true negative, CI, confidence interval.

0.93 (95% CI 0.77–0.99) to 1.00 (95% CI 0.99–1.0), respectively
(Figure 4B). Pooled summary estimates of NAAT for MSSA
identification was lower [sensitivity: 0.76 (95% CI 0.69–0.82),

specificity: 0.98 (95% CI 0.98–0.99), PLR: 28.63 (95% CI 18.59–
44.1), NLR: 0.34 (95% CI 0.23–0.50), DOR: 116.38 (95% CI
57.68–234.8)] compared to MRSA [sensitivity: 0.83 (95% CI
0.59–0.96), specificity: 0.99 (95% CI 0.98–1.0), PLR: 40.73 (95%
CI 3.89–426.1), NLR: 0.32 (95% CI 0.08–1.32), DOR: 268.6
(95% CI 32.1–2250.0)]. The I2 statistical scores for sensitivity
and specificity of MSSA identification were 57.4 and 88.9%,
respectively, indicating substantial to considerable heterogeneity.
While I2 statistical scores for sensitivity and specificity of MRSA
were 76.9 and 82.1%, indicating considerable heterogeneity. The

AUC of SROC for assorted MSSA and MRSA among adult
population was 0.97 (95% CI 0.94–1.0), suggesting overall valid
diagnostic accuracy (Figure 5B).

Diagnostic Accuracy of In-house vs.
Commercial Tests
The diagnostic accuracy of studies based on various NAA tests
is summarized in Table 2. For pediatric and adult populations,
the pooled summary estimates of the in-house NAA tests for
detecting MSSA were consistently higher (sensitivity ≥78%;
specificity ≥93%). The pooled summary estimates of the
commercial tests were higher forMSSA identification [sensitivity:
0.75 (95% CI 0.66–0.82), specificity: 0.98 (95% CI 0.97–0.98),
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FIGURE 5 | SROC plot of NAAT for (A) pediatric and (B) adult population. Red circles indicate the data point from each of the investigations, and the solid blue line

represents the SROC curve.

PLR: 31.9 (95% CI 20.4–50.0), NLR: 0.3 (95% CI 0.2–0.5),
DOR: 126.1 (95% CI 62.1–256.2) and AUC 0.98 (95% CI 0.96–
0.99)] as compared to MRSA [sensitivity: 0.56 (95% CI 0.21–
0.88), specificity: 1.0 (95% CI 0.99–1.0), PLR: 113.2 (95% CI
4.7–2,699.8), NLR: 0.53 (95% CI 0.26–1.0), and DOR: 234.2
(95% CI 4.65–11,801.6)]. Among NAAT studies, SeptiFast were
consistently performed to detect BSI in blood samples compared
to other tests.

Meta-Regression and Subgroup Analysis
We assessed the possible source of heterogeneity through
a meta-regression analysis on predefined subgroups. Meta-
regression suggested that study design (prospective/others),
country (developed/developing), and patient selection
(consecutive/convenience) were not the significant source
of heterogeneity (meta-regression P = 0.42, P = 0.34, and P =

0.62, respectively) with the exception of the sample condition
(fresh/frozen) (P = 0.04).

Publication Bias
Using Deek’s funnel plot asymmetry test, publication bias was
measured. In our analysis, we did not find striking publication
bias (P = 0.25).

DISCUSSION

Despite advances in supportive care, BSI is a leading cause
of death worldwide (10). In recent years, most studies have
centered on screening positive blood culture to identify causative
staphylococcal pathogen (64–66); however, it remains a matter of
concern as every hour of delay in initiating effective antimicrobial
therapy increases mortality by 7.6% in sepsis patients (67).

Therefore, it is essential to recognize staphylococcal species
and their resistance markers rapidly in patients with suspected
BSI, as the prompt intervention will lead to improved clinical
outcomes with effective antimicrobial therapy. Currently, several
multiplex molecular assays have been cleared by the Food and
Drug Administration (FDA) that can identify a wide range of
microorganisms concurrently with specific resistance genes in
blood samples, and several of these assays have been rendered
commercially accessible (68). Nevertheless, the numerous case
descriptions and the diverse samples used in the various studies
make it difficult to compare research results and restrict diseases’
management. We, therefore, conducted a systematic review and
meta-analysis to evaluate NAAT’s diagnostic performance for
diagnosing BSI in clinically suspected patients.

Our results revealed that NAAT overall summary estimates for
MRSA detection [sensitivity: 0.83 (95% CI 0.59–0.96), specificity:
0.99 (95% CI 0.98–1.0), AUC: 0.98 (95% CI 0.96–0.99)] were
higher as compared to MSSA [sensitivity: 0.76 (95% CI 0.69–
0.82), specificity: 0.98 (95% CI 0.98–0.99), AUC: 0.98 (95%
CI 0.97–0.99)] among adults. Relatively smaller sample size,
different DNA extraction technique, target genes adopted, and
reaction material quality are among factors that could have
contributed to greater NAAT accuracy for MRSA detection.
Figure 6 shows the pooled sensitivity and specificity of NAAT for
BSI detection in children and adults.

In the pediatric population, NAAT displayed consistently
higher diagnostic accuracy for MSSA detection [sensitivity: 0.89
(95% CI 0.76–0.96), specificity: 0.98 (95% CI 0.97–0.98), AUC:
0.90 (95% CI 0.74–1.0)]. Albeit not perfect, the higher sensitivity
of NAAT among a pediatric population, where the acquisition
of large volumes of blood is a major concern, and relatively
small non-interpretable results, encourages the use of the test for
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TABLE 2 | Subgroup analysis of studies based on different NAA tests.

Subject Diagnostic target Subgroup Total data NAAT methods % Sensitivity (95% CI) % Specificity (95% CI) PLR (95% CI) NLR (95% CI) DOR (95% CI) AUC (95% CI)

Adult S. aureus In-house 8 79 (66–88) 100 (99–100) 23.4 (6.5–84.7) 0.3 (0.1–0.9) 91.7 (12.3–684.4) 86 (84–88)

qPCR (3) 75 (56–89) 92 (88–96) 9.3 (5.3–16.2) 0.3 (0.2–0.5) 34.7 (12.8–93.8) 94 (92–97)

PCR (2) 56 (20–88) 98 (94–100) 28.3 (9.2–87.2) 0.4 (0.1–3.0) 67.6 (6.75–677.9) –

PCR-MCA (1) 100 (85–100) 100 (100–100) – 0.0 – 100 (99–100)

MT-PCR (1) 0 (0–84) 100 (75–100) – 1.0 (1.0–1.0) – 87 (60–98)

Commercial 17 75 (66–82) 98 (97–98) 31.9 (20.4–50.0) 0.3 (0.2–0.5) 126.1 (62.1–256.2) 98 (96–99)

SeptiFast (14) 76 (66–84) 98 (98–99) 36.9 (21.9–62.4) 0.3 (0.2–0.5) 160.8 (66.8–387.2) 99 (97–100)

qPCR TAC (1) 25 (63–81) 99 (97–100) 27.7 (3.6–212.2) 0.8 (0.4–1.3) – 98 (96–99)

GeneXpert (1) 100 (40–100) 97 (90–99) 29 (9.7–89.2) 0.0 – 97 (91–99)

MST (1) 74 (49–91) 95 (93–96) 14.3 (9.4–21.7) 0.3 (0.1–0.6) – 94 (92–96)

MRSA In-house 1 Nested PCR (1) 100 (74–100) 93 (77–99) 14.5 (3.8–55.2) 0.0 – 95 (84–99)

Commercial 2 56 (20–88) 100 (99–100) 113 (4.7–2699.8) 0.53 (0.26–1.0) 234 (4.65–11801.6) –

LAMP (1) 0 (0–98) 100 (88–100) – 1.0 (1.0–1.0) – 97 (83–100)

SeptiFast (1) 67 (22–96) 100 (99–100) – 0.3 (0.1–1.0) – 100 (98–100)

Children S. aureus In-house 7 78 (57–92) 96 (95–97) 17.5 (5.0–61.8) 0.4 (0.2–0.8) 72.2 (9.9–528.0) 74 (57–97)

qPCR (4) 75 (48–93) 89 (86–92) 9.1 (4.8–17.4) 0.3 (0.2–0.7) 39.7 (10.4–151.2) 93 (83–100)

GSPBRT-PCR (1) 100 (29–100) 100 (99–100) – 0.0 – 100 (99–100)

PCR-DGGE (1) 0 (0–98) 91 (70–99) 0.0 1 (0.9–1.3) – 86 (65–97)

PCR (1) 100 (40–100) 100 (98–100) – 0.0 – –

Commercial 1 SeptiFast (1) 100 (85–100) 100 (99–100) 206 (103–412) 0.0 – 100 (99–100)

not estimable; AUC, area under curve; DOR, diagnostic odds ratio; LAMP, loop-mediated isothermal amplification; NAAT, nucleic acid amplification tests; NLR, negative likelihood ratio; PLR, positive likelihood ratio; qPCR, quantitative PCR.
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FIGURE 6 | Summary for NAAT’s pooled sensitivity and specificity.

the diagnosis of BSI in principle. Furthermore, NAAT identified
more pathogens than blood cultures alone in all studies, and
specificity (∼98%) of the test was consistent among pediatric
and adult populations, highlighting higher NAAT diagnostic
accuracy. Compared to previously published systematic reviews
conducted by Pammi et al. (69) in the neonatal population, we
found that the pooled sensitivity of 0.90 (95% CI 0.82–0.95) and
specificity of 0.93 (95% CI 0.89–0.96) were similar to our study.
Similarly, a meta-analysis by Su et al. (70) mainly summarized
the diagnostic value of the 16S rRNA gene PCR test for neonates,
which reported a nearly similar sensitivity of 0.85 (95% CI,
0.81–0.88) and a specificity of 0.96 (95% CI, 0.95–0.96) for BSI
diagnosis. All these reviews were not unique to MSSA or MRSA
for the definitive diagnosis of BSI.

Additionally, NAAT subgroup analysis found that in-house
tests [sensitivity: 0.78 (95% CI 0.66–0.88), specificity: 0.99 (95%
CI 0.99–1.0)] and commercial tests [sensitivity: 0.75 (95% CI
0.66–0.82), specificity: 0.98 (95% CI 0.97–0.98)] were comparable
for MSSA detection (Table 2). The PLR for commercial research
was 31.9, implying that patients with BSI are ∼32 times more
likely than patients without BSI to be NAA test positive.
In the case of MRSA, there was insufficient data in the in-
house and commercial test subgroups to allow meaningful
comparisons. Searching for more accurate commercial test
details, we observed that SeptiFast was often used in BSI
diagnosis, and the pooled summary estimates of tests [sensitivity:
0.76 (95% CI 0.66–0.84), specificity: 0.98 (95% CI 0.98–0.99)]
corresponded well-with the study by Chang and colleagues
[sensitivity: 0.75 (95% CI 0.65–0.83), specificity: 0.92 (95% CI
0.90–0.95)] (71). However, Chang and colleagues evaluated the
accuracy of SeptiFast against a composite reference standard,
including bacteremia and fungemia, which was not unique
to BSI.

The vital strengths of this study include a rigorous search
strategy, utility of systemic guidelines, impartial selection criteria,
a precise reference standard, a bivariate random-effects model
for data-manipulation, meta-regression analysis on predefined
subgroups, and independent analysts’ interpretation. Studies that
did not adhere to specific guidelines for diagnosing BSI, as well as

those with a high risk of bias and high applicability concerns, as
judged by the QUADAS-2 tool, were removed from subsequent
analysis. We also excluded studies with fewer than ten samples
to reduce the effects of publication bias while also discouraging
future researchers from conducting small-scale studies, which is
consistent with other meta-analyses (72, 73). Furthermore, and
involved pre-enrichment steps before molecular testing, which
may tend to overstate the index test’s diagnostic performance,
were excluded.

There are a few limitations to our analysis. It is likely
that we may have overlooked a few crucial studies through
systematic literature searches across databases. Due to the high
degree of reporting variability of the included studies, the effect
of factors such as sample volume, non-standardized sample
preparation, NAA testing expertise, amplification procedures,
and laboratory facilities on the accuracy of NAA tests could
not be addressed. It should be noted that the gene targets
were also different, which could be possible reasons for the
heterogeneity. Although the study design, sample condition, and
patient selection were not significant sources of heterogeneity
in the meta-regression analysis, these variables could enhance
heterogeneity and limit the generalizability of the NAAT’s
overall diagnostic accuracy. In addition, this meta-analysis was
constrained due to insufficient MRSA studies among both
children and adult populations, and should be interpreted
with caution.

CONCLUSIONS

Our findings suggest that currently available molecular assays
may not have adequate diagnostic accuracy to replace microbial
cultures. However, molecular assays have a shorter turnaround
time, a higher proportion of false-positives, a higher specificity,
and may detect minute amounts of DNA from a dead organism.
Furthermore, because the specimen type and gene target for
MRSA detection are the same in adults and children, NAAT’s
accuracy in adult blood samples could provide a glimpse of its
applicability for subsequent detection in the pediatric population.
Therefore, NAAT should be considered as the preferred initial
tests for diagnosing BSI in order to avoid unnecessary anti-
MRSA therapy. The utility of NAAT, in combination with
microbiological culture, should be considered whenever feasible.
Given the limited data on MRSA, it would be of interest
to conduct a detailed investigation using a higher number
of prospective studies to fully validate the clinical outcomes
associated with NAAT’s utility. Additionally, future research
should analyze additional measures, including NAAT’s impact on
decreased hospitalizations, cost-effectiveness, antibiotic-related
adverse effects, and electronic clinical decision supporting tools
to accelerate therapy adjustment.
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