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Objective: The objective of the study was to develop an automatic quantitative approach

to identify infants with abnormal movements of the limbs at term equivalent age (TEA)

compared with general movement assessment (GMA).

Methods: GMA was performed at TEA by a trained operator in neonates with

neurological risk. GMs were classified as normal (N) or abnormal (Ab), which

included poor repertoire and cramped synchronized movements. The signals from four

micro-accelerometers placed on all limbs were recorded for 10min simultaneously. A

global index (KC_index), quantifying the characteristics of individual limb movements

and the coordination among the limbs, was obtained by adding normalized kurtosis

of the distribution of the first principal component of the acceleration signals to the

cross-correlation of the jerk for the upper and lower limbs.

Results: Sixty-eight infants were studied. A KC_index cut-off of 201.5 (95% CI:

199.9–205.0) provided specificity = 0.86 and sensitivity = 0.88 in identifying infants with

Ab movements.

Conclusions: KC_index provides an automatic and quantitative measure that may allow

the identification of infants who require further neurological evaluation.

Keywords: general movement assessment, neurodevelopment, accelerometer, infant, newborn

INTRODUCTION

Neurodevelopment is highly interconnected, especially in early infancy, where motor experiences
drive cognitive and socio-emotional development (1, 2); in particular, in the first months of
life, the presence of spontaneous movement leads to more directed and intentional movements
through exploration and problem solving (3). Consequently, the characteristics of spontaneous
movement in early infancy is a higher predictor for later neurodevelopmental performances (4).
The identification of infants at high risk of adverse neurodevelopmental outcomes, including, but
not limited to, cerebral palsy, is of paramount importance when planning specific intervention
strategies (5), considering that the earlier the treatment, the higher the beneficial impact on the
neurodevelopment of the child (6, 7). Early detection of infants at higher neurodevelopmental
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risk usually relies on the comprehensive evaluation of the
clinical history, neuroimaging data, and different neuro-sensorial
assessments (5, 7). Based on the clinical history, the American
Academy of Pediatrics (8) suggests that preterm infants
[especially those born ≤32nd week of gestational age (GA) or
with a birth weight of ≤1,500 g] and term infants suffering from
hypoxic–ischemic encephalopathy or other acquired perinatal
brain lesions should be included in a neurodevelopmental follow-
up program.

Among clinical neurological assessments, one of the
most commonly used and reliable tools to detect early
neurodevelopmental disorders is the Prechtl General Movements
(GMs) assessment (GMA). GMs are spontaneous movements
observable in infants up to the fifth month post-term, involving
the entire body in a variable sequence and with different patterns
of amplitude, intensity, and speed. In typical development,
GMs are characterized by large movement variation, while
a limited variation could indicate a higher risk for later
neurodevelopmental impairments (9). GMs occur in age-specific
patterns, in particular, from term equivalent age (TEA) up to the
secondmonth after term; the typical pattern is represented by the
so-called “Writhing movements” (WMs), which are movements
of the trunk and the four limbs with a small-moderate amplitude
and moderate speed.

During the WMs period, abnormal GMs are classified as
(a) poor repertoire (PR—repetitive sequences of movements,
with low variability), (b) cramped synchronized (CS—rigid
and not smooth nor fluent movements characterized by the
simultaneous contraction and relaxation of all body parts), and,
very rarely, (c) chaotic movements (Ch—abrupt movements
with large amplitude and high speed). GMA, especially in those
infants that exhibit early CS movements, provides high accuracy
in the early identification of children at risk of developing
cerebral palsy (9–11). The significance of PR movements has
also been investigated and proven to be associated with the
risk of later minor neurodevelopmental disorders that can affect
the motor, cognitive, or socio-emotional areas (1, 12, 13). In
particular, increasing evidence highlights how the persistence
of a PR pattern after term is associated with a moderate
to severe cognitive delay (14). In addition, Einspieler et al.
described the presence of any abnormal GM pattern during
the WM period with a later diagnosis of autism spectrum
disorder or Rett syndrome (13). From 3 to 5 months post-term,
fidgety movements (FMs) are present and are characterized by
tiny movements of moderate speed and variable acceleration
involving the neck, trunk, and limbs in all directions. The absence
of FMs is highly predictive for the presence of cerebral palsy
(15, 16).

GMA is performed through direct or video-recorded
observation by a specifically trained operator, resulting in a
qualitative description of the motor performance of the infants.
However, the need for a trained examiner to accurately classify
GMs over the observation period limits its widespread use,
highlighting the importance of developing an objective and
automated quantification approach. Recently, a growing interest
in the development of an objective and measurable methodology
has risen, and movement analysis has been performed according

to different methods based on computerized approaches ranging
from camera-based techniques to body-worn sensors (17). Most
of the recent studies focused on camera-based techniques as they
offer the advantage of not being in contact with the infant (18).
The most used approach consists of 2D cameras combined with
machine learning methods. However, machine learning methods
require a large dataset for training as they are able to correctly
classify only patterns they were trained on, and their behavior
on different patterns is unpredictable (19). Using depth cameras,
recent studies showed that it is possible to extract 3D trajectories
(20). This method allows the computation of parameters that
accurately describe movements as sensor-based methods can do.
However, further development and validation of the method
is needed as it requires very high computational power, the
storage of a large amount of data, and the manual intervention
of a technical expert (21, 22). Multiple wearable sensors have
been developed to measure movements of infants, as reported
in the review by Chen et al. (23): inertial measurement units
(accelerometers and magnets), pressure sensors, and flexible
sensors. Accelerometers and magnetic sensors are inexpensive,
small, and lightweight. They provide robust real-time accurate
quantitative data for movement evaluatuion (23), but a validated
and clinicallymeaningful, standardized quantitative approach for
data processing is still lacking.

Using clinical GMA as a reference, the present study aimed
to develop an automatic quantitative approach to identify infants
with abnormal limb movements at TEA, and to provide a simple
and interpretable quantitative index to identify infants who
would require further neurodevelopmental assessment.

MATERIALS AND METHODS

Study Population
The study was carried out in the NICU of Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico of Milan,
Italy. All neonates considered at high neurodevelopmental
risk who underwent at least one cranial ultrasound (cUS)
according to the local clinical protocols were considered
eligible for this pilot study. Neurodevelopmental risk was
defined as the presence of at least one of the following
criteria: preterm birth (≤32nd week of gestational age—
GA), very low birth weight (≤ 1,500 g), or severe brain
damage detected by cUS [defined as intracranial hemorrhage,
including high grade−3 to 4—intraventricular hemorrhage (24),
post-hemorrhagic ventricular dilation, extensive white matter
damage—including cystic periventricular leukomalacia, cortical
damage, and cerebellar hemorrhage].

Clinically stable neonates were evaluated at TEA in an alert
behavioral state, at least 2 h from feeding. In the present pilot
study, to recruit an adequate number of infants with abnormal
GMs, priority was given to enrollment of infants with the
highest neurological risk, identified as those with pathological
cUS findings or abnormal neurological examination during
NICU stay. Exclusion criteria were the presence of congenital
malformations or genetic syndromes, ongoing mechanical
ventilation, or the need for pharmacological sedation at TEA. The
ethical committee of the Milano Area B (127_2015) approved the
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protocol, and parental written informed consent was obtained
before entering the study. Characteristics of the study population
were collected from the electronic hospital charts and included
gender, birth weight, GA, small for gestational age (SGA) (25),
twin birth, mode of delivery, type, and severity of brain damage.

Study Protocol
All participants simultaneously underwent the traditional
GMA and accelerometer recording. Infants were assessed
supine, only in a condition of clinical stability and in an
alert behavioral state. Four three-axis micro-accelerometers
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(LIS3LV02DL, STMicroelectronics, Switzerland) were placed on
the lateral side of the ankles and the dorsal surface of the wrists.
Thanks to their small dimension (4.4 × 7.5 × 1mm and 72
µg), devices were secured with an elastic self-adhesive band
(Figure 1). The recordings were started ∼30 s after applying
the sensors to let the infant regain an adequate behavioral
state after being touched and to guarantee that the infant was
no longer disturbed by the interaction with the operator. The
acceleration signals were recorded on flashmemory at a sampling
frequency of 150Hz for 10min. A video recording allowed offline
standard GMA; each recording lasted about 10min, and to be
included, it had to comprise at least five general movement
sequences. To obtain the synchronization of the accelerometer
signals, the start of acquisition was given contemporaneously
to all the devices. To compensate for the small difference
among the actual sampling rate of the four accelerometers (each
accelerometer has its own timer), the actual sampling time of each
data sampled by each accelerometer was saved and differences
(<1ms) compensated for.

Data Analysis
Video and acceleration signals were analyzed independently by
two different investigators. GMs of patients were classified by
a trained operator as normal (N), poor repertoire (PR), and
cramped synchronized (CS), according to the definitions by
Einspieler et al. (9). In order to identify all infants at increased risk
for later neurodevelopmental delay, we consider both PR and CS
patterns as abnormal (Ab) as both are characterized by reduced
complexity, variability, and fluency.

Acceleration signals were processed in MATLAB (The
MathWorks, Inc., United States). All acceleration signals were
high-pass filtered (cutoff frequency 0.05Hz) to remove the
gravitational component. As GMA includes both characteristics
of single-limbmovement pattern and coordination among limbs,
we defined indexes to quantify both of them. For each limb,
the principal components of the measured acceleration signal
were computed. We considered the first principal component
and used the kurtosis of the probability distribution, which
represents the width of the probability distribution bell, to
quantify the variability of movements of each limb. In particular,
lower kurtosis values indicate less variability in the movements
(narrower probability distribution), while higher values indicate

high variability (wider probability distribution). The cross-
correlation of the jerk (i.e., the rate of acceleration change) for
upper limbs and lower limbs quantified movement correlation
among the limbs. We normalized the computed values of each

kurtosis and the cross-correlation by dividing their values for

the difference between maximal and minimal values measured

in all the subjects to provide a score between 0 and 1 for all the
parameters. After normalization, the four kurtosis and the two
cross-correlation measures were combined together into a new
index (KC_index):

where i is the ith infant, l is the single limb, and p is for upper
or lower limbs (hands, feet).

Statistical Analysis
Baseline characteristics of the patients are reported as mean
[standard deviation (SD)], median (range), and number
(percentage), as appropriate. Independent t-test, Mann–Whitney
U-test, and Fisher’s exact test were used for comparisons between
the groups.

The association between the KC_index and the clinical GM
pattern was investigated using one-way ANOVA with Tukey
HSD post-hoc test. Comparison between normal and abnormal
groups was evaluated using a logistic regression model and odds
ratio (OR) with 95% confidence interval (CI). The discriminatory
power of KC_index to identify infants with abnormal movement
patterns was assessed by the receiver operating characteristic
(ROC) curve and the area under the curve (AUC), along with
sensitivity and specificity measures, are reported. The optimal
cutoff was chosen considering Youden’s index. To evaluate the
cutoff reliability, we used bootstrap methods (26). Bootstrap is a
technique that allows estimating sample variability by drawing
a large number of repeated samples from the original data
and using them to build confidence intervals. In particular, we
have drawn 1,000 samples with replacement of the same size
of the original data, and we have used them to build the cutoff
confidence interval.

The normal distribution of data was assessed using the
Shapiro–Wilk test. All tests were two-tailed, and values of p <

0.05 were considered to be significant.
Considering an alpha level of 0.05, an 80% power, a 1.5

ratio between negative and positive cases, and an area under
the ROC curve of 0.75 as significant, we estimated for this
pilot study a minimum sample size of 65 subjects. Including a
15% dropout due to technical or clinical issues, the final sample
size for the study was 77 subjects. All statistical analyses were
performed using R version 3.5.1 (R Foundation for Statistical
Computing, Austria).

RESULTS

A total of 77 infants were enrolled. Nine infants were excluded:
seven infants because of non-optimal behavioral state during
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FIGURE 1 | Schematic representation of the setup including the four accelerometers placed on the wrists and ankles of the infants and connected to the acquisition

board that stores data on an SD memory card for offline analysis and the video recording device used for offline general movement assessment (GMA).

TABLE 1 | Baseline characteristics of the population presented for normal (N), poor repertoire (PR), cramped synchronized (CS), and abnormal (Ab) comprising both PR

and CS.

N PR CS Ab P-value

(n = 43) (n = 17) (n = 8) (n = 25) N vs. Ab

Gestational age at birth (weeks), mean (sd) 30.8 (2.4) 31.2 (5.3) 32.8 (3.3) 31.7 (4.8) 0.378a

Birth weight (g), mean (sd) 1,357 (407) 1,596 (968) 1,769 (776) 1,651.3 (898) 0.132a

Female, n (%) 26 (60) 5 (29) 6 (75) 11 (44) 0.215b

Small for gestational age, n (%) 10 (23) 3 (18) 2 (25) 5 (20) >0.999b

Twins, n (%) 28 (65) 7 (41) 4 (50) 11 (44) 0.127b

Cesarean section, n (%) 38 (88) 13 (76) 6 (75) 19 (76) 0.305b

Severe brain damage, n (%) 2 (5) 9 (53) 7 (88) 16 (64) <0.001b

Length of NICU stay (days), median (range) 51 (14–104) 51 (11–168) 85 (26–127) 73 (11–168) 0.045c

Maternal age (years), mean (sd) 34 (5.1) 35.2 (6.1) 30.6 (5.1) 33.8 (6.1) 0.856a

Gestational age at GMs evaluation (weeks), mean (sd) 42.0 (2.5) 42.3 (2.6) 41.7 (1.2) 42.2 (2.2) 0.817a

The p-value refers to comparisons between N and Ab.
at-test.
bFisher’s exact test.
cMann-Whitney U-test.

GM recording and two due to technical issues (i.e., detachment
of one of the sensors) that prevented data recording. Infants
were evaluated at a mean post-menstrual age (PMA) of 42.1 ±

2.4 weeks.
According to the clinical evaluation of GMs, 43 infants were

categorized in the N group and 25 in the Ab group, with the
latter including 17 PR and 8 CS. No chaotic GM pattern was
observed. The N and Ab groups were comparable for baseline
characteristics (Table 1), although infants in the Ab group were
more likely affected by severe brain lesions (5 vs. 64%, p < 0.001)
and had a longer hospital stay (51 vs. 73 days, p= 0.045).

A positive association was observed for the KC_index and
the clinical GMA, showing an increase in the index value to
the worsening of the motor function. The KC_index mean (SD)
was 179.2 (31.0), 223.8 (29.6), and 253.1 (44.1) for the N, PR,
and CS groups, respectively (ANOVA p < 0.001) (Figure 2).
This relationship was confirmed by logistic regression model
estimate when comparing N vs. Ab groups (OR: 1.058, 95% CI:
1.032–1.094, p < 0.001). When a KC_index cutoff of 201.5 (95%
bootstrap CI: 199.9–205.0) is used, the specificity in identifying

Ab fromN is 0.86, the sensitivity is 0.88, and a corresponding area
under the ROC curve (AUC) is 0.89 (95% CI: 0.81–0.97) showing
a clear association with the clinical GMA (Figure 3). Moreover,
with the identified cutoff, all the CS patients were correctly
classified in the abnormal group. Considering only the kurtosis
or the cross-correlation, we obtained worst performances with an
AUC of 0.80 and 0.72, and the 38% and 75% of the CS patients
were correctly classified in the abnormal group, respectively.

DISCUSSION

The early identification of infants at high risk of adverse
neurological outcomes (including cerebral palsy) is essential
to promote targeted neurodevelopmental interventions, but
it basically relies on the clinical assessment performed by
highly specialized health care professionals. This study provides
evidence that the use of accelerometers, together with an
appropriate data analysis algorithm, can be used as an automatic
tool capable of discriminating with high accuracy abnormal GMs
at TEA.
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FIGURE 2 | Distribution of the KC_Index for normal (N), abnormal (Ab =

CS+PR), poor repertoire (PR), and cramped synchronized (CS) subjects. The

identified KC_Index cutoff is indicated by the dashed line. Comparison

between N, PR, and CS groups: p < 0.001. N vs. PR, p < 0.001; N vs. CS,

p < 0.001; PR vs. CS, p = 0.095, ANOVA with Tukey’s HSD post-hoc test.

FIGURE 3 | Receiver operating characteristic (ROC) curve analysis of

KC_index and clinical GMA (normal vs. abnormal).

Several methods for motion detection of GMA have been
described; they can be divided into direct and indirect sensing
methods (17, 27). Among the indirect methods, 2D RGB
webcams are the most used (22), as they have the advantages of
being easily available at low cost and are not in direct contact with
the studied infant. However, with 2D image analysis, information
related to the third dimension, which may represent up to
53% of the movement (21), is lost. They can also be affected

by image occlusion and by errors in tracking limb position
with time.

Differently direct methods, including accelerometer-
based methods, allow high temporal resolution; they are
low cost, robust to artifacts, and accurate in describing the
movement. They also present better performances than
webcam-based technologies for motion impairment prediction
(22). Disadvantages of the accelerometer-based approach in
comparison with the webcam-based approach include low
spatial resolution and physical contact between the sensor
and the infant. Although more intrusive compared with video
cameras, the sensors we used were safe and well-tolerated by
all the study participants. The interruption of few evaluations
was mainly related to the changes in the behavioral state of
the infant not dependent on the sensors themselves. This
technology is easy to use; indeed, the four sensors were rapidly
and easily applied on the wrists and ankles of the infant close
to anatomical landmarks and easily removed and disinfected
after the measurement. The sensors and the box containing the
motherboard are light and practical, making the experimental
setting suitable for any situation in which a soft flat surface
is available. We experienced no data lost and long battery life
(more than 12 h). The user friendliness of accelerometer-based
devices is also demonstrated by the recent study by Prioreschi
et al. (28) that developed a practical and portable wearable wrist
band enclosing an accelerometer, easier to secure to the infant
limbs and allowing free movements.

Even if webcam-based approaches provide higher spatial
resolution, the use of four sensors at the same time enables the
comparison and correlation of movements of different limbs,
thus, obtaining information on simultaneous movements, those
in the same direction, and those with a specific repetitive
sequence. Previous studies analyzed patterns of a single-limb
movement using only one or two accelerometers (29, 30), being
less intrusive for the infants but, at the same time, less informative
on the general movements of the infants.

Relative to the time of assessment, we considered for the
analyses a standard time of 10min of recording, which is a
reasonable time span to observe several sequences of GMs and
during which infants at TEA are likely to maintain a quiet alert
state before behavioral changes occur. Very different recording
durations have been reported by previous authors: Heinze et al.
(31) performed evaluations lasting around 20min in infants aged
1–5 months, while Ohgi et al. (29) only recorded movements for
about 200 s at 1 month post-term age. The possible recording
time depends on postnatal age as older infants show more stable
behavioral status, allowing longer recording, compared with the
younger ones (like in our case) in which the quiet state is short
lasting; however, too short recordings, as the reported 200 s, may
not be enough as few movement sequences can be captured in
this short time frame and a limited interpretation can be given to
the motility in general.

In our study, we combined all the abnormal GMA observed,
merging CS and PR pattern. This decision was based on the
primary aim of the study that is the development of an automatic
quantitative approach to early and easily identify abnormal
GMs deserving further investigations and not to distinguish
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between different movement patterns. In addition, several studies
identified both CS and PR patterns as possible warning signs of
later neurodevelopmental delay as demonstrated by the fact that
almost up to half of the infants that display PR movements at
TEA may have an abnormal fidgety (32) pattern or, later in life,
may show a neurodevelopmental delay (33). We acknowledge
that the combination of both PR and CS movements might limit
the possibility to predict long-term outcomes; however, this was
beyond the purpose of the present study.

Most of the previous studies considered accelerometer data for
automating GMA are based on genetic algorithms or machine
learning approaches (17, 31, 34–37). These are also almost the
exclusive methods applied to 2D RGB camera data mimicking
the clinical evaluation (38–42). Machine learning methods have
great potentialities for classifying data. However, they require an
extensive training set that encompasses all the possible motion
characteristics of healthy and pathologic infants and provide
black-box classifications without a clear physiologically based
rationale. It is impossible to predict the model performances on
patterns not included in the training set (19). To our knowledge,
nowadays, large datasets are not available. Despite applying
methods for mitigating model overfitting (multiple videos from
the same infant, 10-fold random split cross-validation, leave-
one-out cross-validation, and generation of synthetic data), the
prediction models developed in previous studies are based on
small populations (38–42) and can be highly dependent on the
motion pattern of the few studied infants. A larger validated
dataset is needed to allow further advancement in this automatic
approach (18).

Different from previous studies, we propose an index designed
formimicking the clinical criteria used to classifymotion patterns
that combines information on single-limb movement patterns
and coordination among limbs. We decided to compute together
data from the upper and lower limbs as the classification of
the general movements developed by Prechtl et al. rely on
the evaluation of the movements of the whole body (9). We
validated our approach over a relatively large population and in a
closely resembling real-life clinical setting. With this preliminary
study, we were able to identify an index that can be used as a
more quantifiable measure of general movements, allowing the
identification of different movement patterns. In addition, the
reported threshold for the KC_index could help clinicians to
define a more accurate evaluation on an individual basis and to
identify those infants that require further neurologic assessments.
We obtained a sensitivity of 0.88 and specificity of 0.86, and that
are consistent with the best ones (0.71 and 0.83) reported for
webcam-based approaches in a similar population (18). Further
studies should address the prognostic value of this parameter
in predicting long-term neurological deficits, especially in the
case of PR pattern, which is known to be associated with a less
predictable outcome.

The present study has some strengths and limitations. Relative
to the methodology, one of the advantages is that the GMA
was performed and evaluated by the same clinicians, reducing
the inter-operator variability both in the preparation of the
experimental setting and in the clinical interpretation of GMs.

Moreover, the exact position of the four sensors was established
at the beginning of the study and has never been changed.
Nevertheless, the acceleration signal assessed only the movement
of the distal portion of the four limbs, therefore, not including
the movements of the trunk, which represents a limitation for
the clinical movement analysis. A second limitation is related to
the inclusion of a non-consecutive series of participants; however,
the sample size included is larger compared with previous
studies aimed at the GM quantification (17). Finally, considering
unequal weights for the variables included in the KC_index may
provide better results. However, we felt that our study population
was smaller for allowing variable weights to be optimized and
that the resulting weights would have been more dependent
on the population enrolled. Therefore, we only normalized the
variables for their range and used equal weights to give the same
importance to variability in the movements and coordination of
the limbs.

In conclusion, our results support that this approach provides
an automatic and quantitative figure that may allow the early
identification of infants with an abnormal movement pattern
deserving a more accurate evaluation by dedicated trained
personnel. The present study explores a novel approach to
movement analysis, focusing on a priori defined parameters
chosen according to the known specific characteristics of
abnormal movements to better quantify the complex patterns of
neonatal general movements. The method presented is objective,
quantitative, and easy to apply; these are essential requirements
to be fulfilled in order to make this technology clinically available
for the evaluation of large numbers of infants. More extensive
studies are needed to assess whether this automated approach
can be properly used as a screening tool, which could be used
by less experienced clinicians to distinguish between normal and
abnormal general movements.
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