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Introduction: High oxygen concentrations have been identified as one factor

contributing to the pathogenesis of the retinopathia of prematurity, chronic lung disease

of the preterm infant and preterm brain injury. Preterm infants also show short- and

long-term alterations of the endocrine system. If hyperoxia is one pathogenetic factor

has not been investigated yet. With regard to the high prevalence of neurodevelopmental

impairments in preterm infants, the hypothalamus-pituitary-thyroid (HPT) axis, the

hypothalamus-pituitary-adrenal (HPA) axis and the hypothalamus-pituitary-somatotropic

(HPS) axis are of special interest due to their important role in neurodevelopment.

Objective: The aim of this study was to investigate the effect of hyperoxia on the

endocrine system in the neonatal rat by analyzing the activities of the HPT, HPA and

HPS axes, respectively.

Methods: Three-days old Wistar rats were exposed to hyperoxia (oxygen 80%, 48 h).

On postnatal day 5 (P5) and P11, transcript levels of thyroid-stimulating hormone

(TSH), proopiomelanocortin and growth hormone (GH) were analyzed in pituitary

sections by in situ hybridization. Serologic quantification of TSH and thyroxine (T4),

adrenocorticotropic hormone and GH were performed by Multiplex analysis and

Enzyme-linked Immunosorbent Assay.

Results: At P5, significantly lower GH levels were observed in pituitaries (mRNA) and in

sera of rats exposed to hyperoxia. Serum TSHwas significantly elevated without changes

in T4.

Conclusion: This is the first study demonstrating transient endocrine alterations

following hyperoxia in the neonatal rat making oxygen a possible contributor to

the pathogenesis of endocrine alterations seen in preterm infants. Considering the

detrimental multi-organ effects of hyperoxia on the immature organism, a rational use

of therapeutic oxygen in the treatrnent of preterm infants is of utmost importance.
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INTRODUCTION

Fetal development occurs under relative hypoxic conditions
(PaO2 of ∼25mm Hg) in utero. Consequently, the transition
to the relative hyperoxic extra-uterine environment (PaO2 of
70mm Hg) exposes a preterm born infant to oxidative stress in
a period when the antioxidant system is still immature (1, 2) with
detrimental effects on the developing child. At the same time,
supplemental oxygen is the most used therapeutic agent in the
care of preterm born infants in the treatment and prevention
of hypoxia (3). Thus, understanding its effects on the immature
infant is indispensable.

It is well-established that high levels of oxygen contribute to
the development of the retinopathia of prematurity and chronic
lung disease of the preterm infant (4, 5). Furthermore, clinical
and pre-clinical studies showed, that hyperoxia is one factor
contributing to the development of preterm brain injury (2, 6). In
a rat model of hyperoxia-induced brain injury, our study group
could repeatedly show that the exposition of rat pups to 2-48 h
of hyperoxia (FiO2 80%) leads to transient hypomyelination and
long-term cognitive deficits by cellular degeneration, oxidative
stress and inflammation (7–13).

Preterm infants show short- and long-term endocrine
alterations. To which extent hyperoxia effects the endocrine
system of the immature organism, has not been investigated
yet. Considering the increased risk of neurodevelopmental
impairment of preterm infants (14, 15) and the effect of hyperoxia
on neurodevelopment, alterations in the hypothalamus-
pituitary-thyroid (HPT) axis, the hypothalamus-pituitary adrenal
(HPA) axis and the hypothalamus-pituitary-somatotropic (HPS)
axis are of special interest due to the role of thyroid hormone,
glucorticoids and growth hormone/Insulin-like growth factor in
central nervous system development and function (16–18).

As part of the HPT axis, thyroid-stimulating hormone
(TSH) regulates the production of the thyroid hormones the
prohormone thyroxine (T4) and its active form triiodothyronine
(T3), which are essential factors in neuronal migration,
proliferation and differentiation, myelination and synaptogenesis
(19). Preterm infants born before 32 weeks’ gestation might
develop transient hypothyroxinemia of prematurity (THOP)
which is characterized by low T4 levels and normal TSH. THOP
normally resolves within the first 3 weeks of life (20, 21). A
small number of infants were shown to exhibit a transient
TSH elevation due to a delayed thyroid-releasing hormone
(TRH) surge, which physiologically occurs at the transition
from intra- to extrauterine life in term born infants (21).
Besides developmental immaturity, factors like illness and
drugs might play a role in the pathogenesis of THOP and
the delay of the TRH surge (20). Prematurity might have
an impact on long-term thyroid function as a recent study

Abbreviations: ACTH, adrenocorticotropic hormone; ELISA, Enzyme-

linked Immunosorbent Assay; GH, growth hormone; HO, hyperoxia; HPA,

hypothalamus-pituitary adrenal axis; HPS, hypothalamus-pituitary-somatotropic

axis; HPT, hypothalamus-pituitary-thyroid axis; ISH, in situ hybridization;

NO, normoxia; P, postnatal day; POMC, proopiomelanocortin; TRH, thyroid-

releasing hormone; TSH, thyroid-stimulating hormone; T3, triiodothyronine;

T4, thyroxine.

by Posod et al. showed significantly higher TSH levels in
very preterm born children at preschool age compared to
term born children (22). The effects of thyroid dysfunction
in preterm infants on long-term neurodevelopment remains
controversial; while researchers of some studies did not find
any effects (23), others found inferior neurodevelopmental
outcome associated with lower neonatal thyroid hormone
levels (24, 25). In a study by Ng et al., plasma free T4
levels in the lowest quartile in a cohort of very preterm
infants were associated with lower fractional anisotropy
in diffusion tensor imaging as sign of poorly organized
microstructure at term equivalent age (26). Nevertheless,
prophylactic thyroid hormone replacement in extremely preterm
infants has not been proven to exert any beneficial effects
(27, 28).

Adrenocorticotropic hormone (ACTH) and its precursor
protein proopiomelanocortin (POMC) are part of the HPA
axis which is important for fetal development and transition
at birth (29). In very preterm infants, the HPA axis is still
immature which is reflected by an impaired stress reaction
(20, 30). Long-term alterations of the HPA axis with increased
glucocorticoid bioactivity and its negative effects on growth,
metabolism, body composition, and neurodevelopment have
been described (31). Studies showed that ACTH promotes
the differentiation of oligodendroglial progenitor cells to
oligodendrocytes accompanied by increased myelination and
protects the progenitor cells from excitotoxic and inflammation-
related damage (32). In a rat model of intraventricular
hemorrhage, ACTH showed neuroprotective effects in newborn
rats (33).

Growth hormone (GH) can be detected in the human fetus
by 9 weeks’ gestation and levels rise until term (34). With
GH receptors being present in the fetal and juvenile brain and
especially enriched in cortical, hypothalamic and hippocampal
neurons, GH is assumed to influence growth and development
of the CNS, but exact mechanisms are still unknown (18).
Preterm birth seems to disrupt the normal GH release pattern
as very preterm infants show an increased GH secretory activity
(35). Following a study by Scratch et al., higher GH levels
in the first 6 weeks of life in a cohort of very preterm
infants were associated with cognitive deficits at the age of 7
years (36).

We hypothesized that hyperoxia leads to alterations in the
activity of the HPT, HPA and HPS axes, respectively. Rat pups
were exposed to 48 h hyperoxia from postnatal day 3 (P3) to P5, a
period when the rat’s endocrine system including the pituitary is
still immature as anatomical and functional maturation occurs
during the first 2 weeks of life (37). We chose that period
based on our studies on hyperoxia-induced brain injury where
we focused on white matter disturbances at a time when the
maturation state of oligodendrocytes is comparable to that of
extremely preterm infants (GA < 28 weeks of gestation) (38).
We then analyzed the hormones of interest in pituitaries (TSH,
POMC, GH) by mRNA in situ hybridization (ISH) and in
sera (TSH and T4, ACTH, GH) by using a luminex-multiplex
assay and Enzyme-linked Immunosorbent Assay (ELISA) at P5
and P11.
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MATERIALS AND METHODS

Animals and Experimental Design
All animal procedures were approved by the local animal welfare
committee by the State Agency for Nature, Environment and
Consumer Protection North Rhine-Westphalia and performed
according to the guidelines of the University Hospital Essen.

Three-days old (P3) Wistar rat pups were placed in an oxygen
chamber (OxyCycler, Bio-Spherix, Lacona, NY, USA) with an
oxygen level of 80% for 48 h. The control group was kept
under normoxic conditions (21% oxygen). Both groups were
accompanied by their lactating dams. After a period of 24 h,
dams were exchanged in order to avoid prolonged exposition
to hyperoxia. Animals were kept under controlled light cycle
(12 h light, 12 h dark). In total, 34 pups (P5: 9 NO group,
8 HO group; P11: 8 NO group, 9 HO group) were enrolled
derived from four litters. To ensure heterogeneity, pups were
derived from two litters per experiment and randomly assigned
to the different treatment groups. All groups were sex- and
weight matched. Increase of bodyweight was raised regularly and
showed a comparable pattern between the study groups.

Pups were sacrificed on P5 (17 pups, 2 litters, 8 female, and
9 male) and P11 (17 pups, 2 litters, 9 female, and 8 male)
by decapitation. The rationale for this litter size was based on
our experience with studies on hyperoxia-induced brain injury,
where these litter sizes are necessary to see significant effects as
the exposition to 48 h hyperoxia only leads to subtle and diffuse
changes. At P5 mean weight was 10.41 g (SD 0.457) for the NO
group and 10.85 g for the HO group (SD 0.566), at P11 mean
weight in the NO group was 24.78 g (SD 1.595) and 23.33 g
in the HO group (SD 1.668). There were no significant weight
differences at P5 (p= 0.1) and at P11 (p= 0.09).

Brains were removed and pituitaries were embedded in
Tissue-Tek medium (Sakura Finetek, Torrance, CA, USA) and
frozen on dry ice. Pituitary sections (14µm) were cut on a
cryostat (Leica, Bentheim, Germany), mounted on supefrost plus
slides and stored at−80 until further processing.

Trunk blood was collected from the site where the animal was
decapitated. Serum was removed after centrifugation for 10min
at 1,000 × g. Samples were stored in polypropylene tubes at
−80◦C. For a schematic outline of the study protocol please see
Figure 1.

In situ Hybridization Analysis of Pituitary
TSH, POMC, and GH Expression
ISH histochemistry was carried out as described before (39).

In brief, frozen 14µm pituitary sections were air-dried,
fixed in 4% phosphate-buffered PFA solution (pH 7.4) for 1 h
at RT, rinsed with PBS, permeabilized with 0.4% phosphate-
buffered Triton X-100 for 10min, and then washed with PBS.
Acetylation was carried out in 0.1M triethanolamine (pH 8.0)
containing 0.25% (v/v) acetic anhydride. After 10min, sections
were rinsed with PBS, dehydrated with 50 and 70% ethanol,
and air-dried. CDNA fragments corresponding to nt 190-443
of rat TSH (accsession no. M10902.1), nt 56-526 of rat POMC
(accession no. AH002232) and nt 248-445 of rat GH (accession
no. U62779.1) were used as templates for the synthesis of

digoxigenin-labeled riboprobes by in vitro transcription. After
synthesis and purification, digoxigenin-labeled riboprobes were
diluted in hybridization buffer containing 50% formamide, 10%
dextran sulfate, 0.6M NaCl, 10mM Tris/HCl (pH 7.4), 1×
Denhardt’s solution, 100µg/ml sonicated salmon sperm DNA,
1mM EDTA, and 10mM dithiotreitol to a final concentration 5
ng/µl cRNA for all probes.

After applying the hybridization mix, sections were
coverslipped and incubated at 52◦C overnight in a humid
chamber. After hybridization, sections were rinsed in 2×
standard saline citrate (0.3M NaCl and 0.03M sodium citrate,
pH 7.0) and subsequently treated with ribonuclease A/T1 at
37◦C for 30min. Additional washing steps for 20min were
carried out in 1×, 0.5×, 0.2× standard saline citrate at RT
followed by incubation in 0.2× standard saline citrate at 65◦C
for 1 h. Sections were rinsed in B1 (100mM Tris-HCl pH
7.5, 150mM NaCl, pH 7.5), blocked for 90min in buffer B1
containing 10% milk-powder and then incubated overnight at
4◦C with anti-digoxigenin antibody conjugated with alkaline
phosphatase (1:500 dilution; Roche) in B1 were washed with
B1 and B3 (100mM Tris-HCl pH 9.5, 100mM NaCl, 50mM
MgCl2). Staining proceeded in substrate solution containing
nitroblue tetrazolium chloride (75 mg/ml; Sigma), X-Phosphate
(5-bromo-4-chloro-3-indolyl phosphate, 50 mg/ml, Sigma),
100mM Tris, 100mM NaCl and 50mM MgCl2 for 4.5 h (TSH),
3.5 h (POMC) and 2 h (GH). Experiments were carried out using
the respective sense probes that did not produce any ISH signals.

Image analysis was carried out with ImageJ (National
Institutes of Health, Java 1.8.0). Images were converted to 8-
bit and inverted using the “invert” tool in ImageJ. The total
area of the anterior pituitary, defined as total field of view area,
was outlined for each image with the tool “polygon,” excluding
artifacts. Studies showed an equal distribution of somatotropes
and corticotropes in the anterior pituitary in coronal sections (40,
41), while to the best knowledge of the authors no publication to
the distribution of thyrotropes exists. For quantification, the total
area was measured in square pixels. To differentiate background
staining, the intensity of the background signal for each hormone
was quantified. After defining the background signal, this was
excluded by using the plugin “threshold.” The remaining area,
called “threshold area,” represents the positive mRNA signals for
each hormone. To quantify mRNA expression, the “threshold
area” was measured in square pixels, and the percentage of
“threshold area” of the total area was calculated.

The number of analyzed images ranged from 6-8 per group
at P5 and 6-9 at P11 due to insufficient staining quality or to
extended artifacts.

Serological Examination of TSH and T4,
ACTH, and GH
For simultaneous quantification of TSH and ACTH serum
concentrations, the MILLIPLEX R© MAP Rat pituitary magnetic
bead panel (EMD Millipore Corporation, Billerica, USA.; #
RPTMAG-86K) was used. Serum samples were diluted 1:3 in the
diluted Serum Matrix provided in the kit. GH was determined
in sera using a commercial Rat/Mouse ELISA kit according to
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FIGURE 1 | Schematic presentation of the study design. At postnatal day 3 (P3) rat pups were exposed to 48 h hyperoxia (HO, 80% oxygen). The control group was

kept under normoxic conditions (room air). At P5 and P11, rat pups were sacrificed and pituitaries were removed and blood samples were conserved. We then

analyzed TSH, POMC, and GH in pituitaries by mRNA in situ hybridization and TSH, T4, ACTH, and GH in sera by multiplex analysis (ACTH, TSH, T4) and ELISA (GH).

the manufacturer’s instructions (EMD Millipore Corporation,
Billerica, USA.; # EZRMGH-45K). Serum samples were diluted
1:2 in the Assay Buffer provided. Serum T4 was measured
with the MILLIPLEX R© MAP Rat thyroid hormone magnetic
bead panel (EMD Millipore Corporation, Billerica, USA.; #
RTHYMAG-30K) using a 1:6 dilution. One probe of the NO
group at P5 was not measured for T4 due to insufficient probe
volume. All kits were used according to the manufacturer’s
instructions. Quality control samples provided by the kits were
measured within the expected parameters. Standard curves
ranged from 3.2–10,000 pg/ml for the ACTH and TSH assay
(accuracy 88, 90%), 0.07-50 ng/ml for the GH assay (accuracy
96-101%) and 823-200,000 pg/ml for the T4 assay (accuracy
131%). All samples except of 1 in the ACTH assay (P11, HO
group, excluded for statistical analysis) were in the range of the
standard curve.

Statistical Analysis
Statistical analysis was performed with Prism 6 (GraphPad
Software, San Diego, CA, USA). Graphical data are presented
as mean ± standard deviation. Normality distribution was
confirmed with the D’Agostino-Pearson test. Unpaired student’s
t-test was applied to determine differences in positive area in
ISH experiments and in serum concentrations of the hormones.
p-values ≤ 0.05 were considered as statistically significant.

RESULTS

Decreased Pituitary GH Transcript Levels
Following Hyperoxia
In this study, 3-days old Wistar rat pups were exposed to 48 h
hyperoxia (HO, oxygen 80% from P3-P5), while the control
group was under normoxic conditions (NO, oxygen 21%). To
investigate the effect of hyperoxia on the activity of the HPT, HPA
and HPS axes, mRNA expression of TSH, POMC and GH was
analyzed in pituitary sections of 5- and 11-days old Wistar rat

pups by ISH using digoxigenin-labeled cRNA probes for TSH,
POMC and GH (Figure 2A). Quantification of ISH signals in the
anterior pituitary showed significant lower GH mRNA levels in
the HO group compared to the NO group at P5 (Figure 2F),
while no differences were found at P11 (Figure 2G). ISH with
mRNA probes specific for TSH and POMC in pituitaries did
not show significant differences in signal intensities at P5 or P11
(Figures 2B-E).

Transient Alterations of GH and TSH Serum
Levels Following Hyperoxia
To confirm the analyses of mRNA expression in pituitaries,
corresponding analyses of TSH, ACTH and GH serum levels
were performed in the same rat pups on P5 and P11 by a
bead-based fluorescence MILLIPLEX R© assay/Luminex (TSH
and ACTH) and ELISA (GH). Significantly higher serum TSH
levels could be detected in rats after hyperoxia (Figure 3A) only
at P5 but not at P11 (Figure 3B). In order to assess whether the
early rise in TSH serum levels affect thyroid hormone production
and secretion, we also measured T4 levels at P5 by a bead-based
fluorescence MILLIPLEX R© assay/Luminex assay. However, no
significant differences could be detected (Figure 3C). Serum
ACTH levels were not different between NO and HO groups at
P5 and P11 (Figures 3D,E). In correspondence to the decreased
GH transcript levels, serumGHwas significantly lower in the HO
group at P5 without differences at P11 (Figures 3F,G).

DISCUSSION

Although oxygen is an indispensable therapeutic agent in
neonatal care, its use is linked to the development of several
prematurity associated morbidities such as retinopathia, chronic
lung disease and brain injury (2, 4–6). If hyperoxia also effects the
immature endocrine system, has not been investigated yet.

Based on our studies on hyperoxia-induced brain injury
in the neonatal rat, which is characterized by subacute
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FIGURE 2 | (A) mRNA expression of different pituitary hormones of 5- and 11-days (P5 and P11) old Wistar rat pups after 48 h of hyperoxia (HO, 80% oxygen) and in

the control group (NO, 21% oxygen). 14µm thick sections of pituitaries were hybridized with digoxigenin-labeled cRNA probes for TSH, POMC and GH. Scale bar =

(Continued)
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FIGURE 2 | 500µm. (B-E) Hybridization signal intensities were quantified and expressed as percentage of threshold area (%) of the total area (anterior pituitary). The

threshold was set for each hormone to differentiate specific hybridization signals from background signals. No differences were found for TSH and POMC between

NO- and HO-groups at P5 or P11 (F). A significant lower threshold area was observed for GH in the HO group compared to the control group at P5 without

differences at P11 (G). Mean ± SD. **p < 0.01. n = 6-9 per group.

myelination deficits and long-term cognitive impairments (7–
13), we focused on the hypothalamus-pituitary-thyroid (HPT)
axis, the hypothalamus-pituitary adrenal (HPA) axis and the
hypothalamus-pituitary-somatotropic axis (HPS) due to their
crucial role in neurodevelopment (16–18).

We studied the expression of the pituitary hormones TSH,
POMC/ACTH and GH, as changes in the production and
secretion of these hormones would provide a first hint regarding
to hyperoxia-induced alterations of the activities of theHPT,HPA
and HPS axes, respectively. We found transient alterations of
serum TSH and of pituitary GH mRNA as well as GH serum
levels at P5 that confirm our hypothesis.

TSH is a glycoprotein, that consists of the two subunits
TSHα and TSHß. While the subunit TSHα is common with
the pituitary gonadotropins, TSHß, which was detected in
our mRNA ISH, is specific for thyrotropes and necessary
for the bioactivity of TSH. The transcription of the ß-
subunit and secretion of TSH is mainly modulated by thyroid
hormones via a negative feedback mechanism and by the
thyrotropin releasing hormone (TRH) via a positive feed-
forward mechanism (42). Divergent results for TSH mRNA
levels in pituitaries and protein concentrations in sera might
be explained by a short or ultra-short negative feedback
loop based on TSH autoregulation at the level of the
pituitary (43).

Elevated TSH levels in sera might be explained by the
modulating effects of TRH neurons which are localized in the
paraventricular nucleus of the hypothalamus. These neurons
receive afferents from various brain regions. Besides the thyroid
hormone mediated negative feedback mechanism, TRH neurons
are activated by different internal (e.g., energy status) and
environmental (e.g., light, cold) stimuli (44). The effect of
hyperoxia on TRH transcription and release remains to be
determined. Increased TSH levels might also be explained by
a transient depressed thyroid function. Although T4 levels
were not altered, there is still the possibility of subclinical
hypothyroidism (45). Furthermore, altered T3 levels cannot be
excluded, because physiologically low T3 levels at P5 prevented
a valid quantification in this study (37). The effect of hyperoxia
on the thyroid of adult rats has already been studied by Galton.
In that study, male Sprague-Dawley rats showed depressed
thyroid activity (i.e., decreased T4 concentration and binding
capacity in serum, a decreased rate of deiodination) after the
exposition to 40-80% oxygen for 96 h (46). These findings
might be explained by the effect of oxidative stress caused
by hyperoxia on the thyroid. Oxidative stress results from a
disbalance between the formation of radical oxygen species
(ROS) and the activity of antioxidative enzymes—a mechanism
that also plays a crucial role in the pathogenesis of hyperoxia-
induced brain injury (2). The damaging effect of oxidative

stress on macromolecules of the thyroid has previously been
described (47).

GH is first detectable in the fetal rat pituitary by gestational
day 18. The percentage of somatotrophs in the pituitary rises to a
peak on P5, when they comprise 40% of all cells in the pituitary
(48). Soon after birth there is a GH surge and a decline to adult
levels after the first 2 weeks of life (49). Within the 10- to 12-
days old rat, GH receptors and binding proteins are widespread
in the CNS on neurons and on neural cells such as Purkinje cells,
astrocytes and oligodendrocytes, especially in regions involved
in neurogenesis such as the hippocampus, the olfactory bulbus
and the subventricular zone. Central GH receptors decline by
P25 (18). In this study, we found decreased GH levels following
hyperoxia, which might be a direct effect of hyperoxia on the
somatotropes. The effect of hyperoxia on the somatotropes or
other cells of the anterior pituitary during postnatal development
remains unclear. To answer the question whether hyperoxia
induces injury of the pituitary, especially of the somatotropes,
further studies are necessary that investigate markers of oxidative
stress (e.g., markers of lipid peroxidation or oxidative injury to
nucleic acids) and cell death (50).

Although GH and TSH were only transiently altered in this
study, these changes might be clinically relevant as they occur in
a vulnerable period of brain development, which is influenced by
both the HPT and HPS axes (16, 18, 51). The fact that transient
perinatal changes in hormone levels might be relevant for
long-term neurodevelopmental outcome is supported by clinical
studies which showed an association between neonatal thyroid
hormone and GH levels and neurodevelopmental outcome at
pre- and school age (25, 36). Further studies are necessary
to prove the hypothesis that transient endocrine alterations
observed in this study are at linked to the phenotype seen in
the model of hyperoxia-induced brain-injury (hypomyelination,
microstructural changes, neurocognitive deficits) (7–13).

While changes in GH and TSH were observed in this study,
no effects on ACTH as part of the HPA axis were found. This
is in contrast to the findings of Kobayashi et al. who found an
increased secretion of stress hormones including ACTH upon
exposition to hyperoxia (FiO2 100% for 48 h) in 3months old rats
(52). Nevertheless, these rats were much older and considering
the age-related response of the HPA axis, the results are not
comparable. Studies have described a stress hyporesponsive
period until the second week of life in rat pups (53, 54) with
blunted ACTH and corticosterone rise. Bruder et al. described
an ACTH independent adrenocortical response to hypoxia at P5
(55). Future studies should evaluate the effect of hyperoxia at
later time points in HPA axis maturation (beyond P3-P5) and
further time points for ACTH measurements should be assessed.
In this study, only ACTH (mRNA of POMC and hormone) was
assessed as the measurement of corticosterone was considered to
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FIGURE 3 | Serum concentration of TSH, ACTH, and GH were determined at P5 and P11 after 48 h hyperoxia (80% oxygen from P3-P5). (A) TSH levels at P5 were

significantly higher in the HO group compared to the NO group but no difference could be noted at P11 (B). (C) Analysis of serum T4 levels at P5 also did not reveal

any changes. No differences in POMC levels at P5 (D) or P11 (E) were found. (F) Significant lower GH levels in the HO group were detected at P5, but not at P11 (G).

Mean ± SD. *p < 0.05, ***p < 0.001, n = 7-8 rats/group.
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be less reliable, as even a short period of maternal deprivation
and handling before sacrifice might influence corticosterone
concentrations independent of hyperoxia treatment (56).

This study has some limitations. We found transient
alterations of the pituitary hormones GH and TSH at P5 in the
neonatal rat following hyperoxia. As we focused on pituitary
gland hormones, other hormones of the respective axes except
of T4 were not studied. Furthermore, we only investigated two
time points (P5 and P11). which were chosen on the basis of
our previous studies focusing on the acute (P5) and subacute
(P11) (oligodendrocyte status equivalent to a term born infant)
effects of hyperoxia-induced brain (10, 57). Additional later time
points (e.g., in the adolescent and adult rat) are subject to further
studies. Keeping the complex phenotype and the multiple origins
of pathology of preterm infants in mind, a further limitation
results from our single-hit experimental model. Although we
found significant alterations in endocrine parameters following
the exposition of hyperoxia in a vulnerable period of endocrine
development, the clinical significance of these findings has to
be proven. Considering the importance of both HPT and HPS
axes for neurodevelopment including myelination and cognitive
outcome, we hypothesize that transient endocrine alterations
contribute to the adverse effects of hyperoxia we repeatedly found
in the model of hyperoxia-induced brain injury (7–13).

Nevertheless, the study results are important as they underline
the multi-organ effects of high levels of oxygen in the immature
organism. They underline the necessity of a rational application
of oxygen and further research on optimal saturation limits
and monitoring (3). Furthermore, the results underline the fact
that research on endocrine changes is necessary as they might
open new options for neuroprotection. Both axes may serve
as a target for neuroprotective interventions. In a model of
hypoxia-ischemia, the application of GH led to reduced neuronal
apoptosis in the neonatal rat (58). Also clinical studies hint
at neuroprotective effects of GH in children born small for
gestational age (59, 60). Although the neuroprotective effect of
thyroid hormone was not confirmed in neonatal models (61) or
clinical studies (27), a better understanding of thyroid hormone
regulation in preterm brain injury is crucial. Although low
thyroid hormone levels in preterm infants have been associated
with impaired outcome, the causality is still unknown (27).
Decreased thyroid hormone levels are also observed in critical
ill patients and might be protective in an acute phase of illness
(27, 62). A further question is if by the supplementation of T4
sufficient levels of T3 are locally achieved. Thyroid hormone
regulation is complex and little is known about the cellular
and molecular mechanism thyroid hormone influences brain
development—and even less is known about the impact of an
interrupted intra-uterine development as it is the case in the

preterm infant. Thyroid hormone regulation includes different
types of local deiodinases (e.g., in the CNS up to 80% of active

T3 is produced locally), thyroid hormone receptors and cell-
specific thyroid hormone transporters (16). Further research
is necessary to understand thyroid hormone regulation in
the preterm infants to adjust, e.g., time point of application
with consideration of the clinical state of the infant and
the applicated thyroid hormone metabolite in future clinical
trials.

CONCLUSION

In this study, hyperoxia led to transient endocrine changes in the
neonatal rat by altering the activities of the HPT and HPS axes,
respectively. Considering the multi-organ effects of hyperoxia on
the immature organism, this study underlines the importance of
rational use of therapeutic oxygen in neonatal care. Future studies
need to elucidate the impact of these transient endocrine changes
on neurodevelopment.
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