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Background: An increase in pathogenic copy number variants (pCNVs) has been

recognized to associate with fetal growth restriction (FGR). Here, we aim to explore

the application value of chromosomal microarray analysis (CMA) in prenatal diagnosis

of FGR.

Methods: Prenatal ultrasound was applied to identify FGR. A total of 149 pregnant

women with FGR were enrolled in our study. All subjects underwent karyotype analysis

and CMA to reveal the chromosomal abnormalities.

Results: In this study, all subjects were successfully detected by karyotype and CMA

analyses. Of these subjects, the chromosomal abnormalities detection rate was 5.37%

(8/149) for karyotyping and 13.42% (20/149) for CMA, respectively. Among them,

an 8.05% (12/149) incremental yield of CMA over karyotype analysis was observed

(p = 0.004). In addition, a significant difference of pCNV detection rate was observed

between the groups with different high-risk factors (p = 0.005). The FGR with structural

anomalies group showed the highest pCNV detection rate (33.33%), followed by the

FGR with non-structural anomalies group (8.77%) and the isolated FGR group (8.06%).

Conclusion: In conclusion, CMA technology showed an effective application value in

etiology diagnosis of FGR. We believe that CMA should be recommended as first-line

detection technology for prenatal diagnosis in FGR.

Keywords: fetal growth restriction, chromosomal microarray analysis, karyotype analysis, prenatal diagnosis,

copy number variants (CNVs)
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BACKGROUND

Fetal growth restriction (FGR) refers to the fetus that has not
reached its growth potential, and the weight or abdominal
circumference is below the 10th percentile of its gestational
age. Currently, FGR is one of the most common and complex
diseases in obstetrics, which is an important factor for perinatal
morbidity and death. Moreover, it may also result in long-term
adverse outcomes, including childhood cognitive impairment
and increased adult diseases (1). Studies have shown that
chromosomal abnormalities can explain 15 to 20% of FGR (2).
Therefore, it is of great value in the early screening and diagnosis
of FGR.

Although the karyotype analysis technology can identify
the large structural variants and chromosome aneuploidy in
FGR, the resolution is still limited. Chromosomal microarray
analysis (CMA) showed great advantages over traditional
karyotype analysis, including array-based comparative genomic
hybridization (aCGH) technology and single-nucleotide
polymorphism array (SNP array) technology. Among them,
SNP array technology can not only provide information of copy
number variants but also identify loss of heterozygosity (LOH),
uniparental disomy (UPD), and triploid (3–5). A large-scale
study indicated that CMA can detect an additional 10% of
pathogenic copy number variants over karyotype analysis in
FGR with structural abnormalities (6). Moreover, present studies
revealed that LOH and UPD are also observed in FGR (7, 8).

To date, there are few studies or with limited subjects available
on the application of CMA in the genetic etiology diagnosis of
FGR. Our initial aim was to explore the application value of CMA
technology in the prenatal diagnosis of FGR, which was the first
large-scale study in Fujian province to our knowledge.

MATERIALS AND METHODS

Subjects
A total of 171 singleton pregnant women from January 2017
to December 2019, who were diagnosed with FGR by fetal
ultrasound in our hospital, were enrolled. Among them, 149
cases underwent interventional prenatal diagnosis. In the study,
multiple pregnancies, cytomegalovirus infection, and chronic
diseases related to drug use and abuse were excluded. All subjects
signed an informed consent form and this study obtained
approval from the Ethics Committee of QuanzhouWomen’s and
Children’s Hospital (2020No.31).

Diagnostic Standard
Fetal crown rump length (CRL) was measured by ultrasound
during the first trimester of pregnancy to assess the gestation.
In the second trimester, two-dimensional obstetric ultrasound
is used to evaluate the growth indicators of the fetus, and the
weight of the fetus is estimated based on the growth status
of different gestational weeks. Hadlock formula is utilized to
calculate the estimated fetal weight (EFW) from the biparietal
diameter, abdominal circumference, and femur length. FGR is
diagnosed when EFW is below the 10th percentile of gestational
age. Additionally, according to the standard of the International

Society of Ultrasound in Obstetrics & Gynecology, the fetal
growth curve was drawn to evaluate the growth potential of the
fetuses. In general, fetal ultrasound structural anomalies referred
to morphological defects in fetal organs or parts of the body, such
as cleft lip and palate, spina bifida, etc., while other anomalies
without any structural anomalies were defined as non-structural
anomalies, such as dilatation of the lateral ventricles, enhanced
intestinal echo, etc.

Karyotype Analysis
A total of 149 pregnant women with FGR received genetic
counseling and signed informed consent. Ultrasound-guided
amniocentesis was performed at gestational age of 16–24 weeks,
and 30ml of amniotic fluid was drawn. The 20ml amniotic
fluid was analyzed according to the amniotic fluid karyotype
operation procedure of the prenatal diagnosis department of our
hospital (9).

SNP Array Analysis
The remaining 10ml amniotic fluid is used for chromosomal
microarray analysis. DNA extractions were performed using
the QIAamp DNA Blood Kit (QIAGEN, Hilden, Germany)
following the kit Handbook (www.qiagen.com). The detection
of SNP array is performed in accordance with the standard
experimental procedure of the Affymetrix CytoScan 750K chip
kit. The pathogenicity of copy number variations was interpreted
with reference to DGV (http://dgv.tcag.ca/dgv), OMIM (https://
omim.org/), DECIPHER (https://decipher.sanger.ac.uk/),
PubMed (https: //www. ncbi.nlm.nih.gov/pubmed/), and
other databases.

Statistical Analysis
The SPSS20.0 software was used for data analysis. The chi-square
test was used for statistical analysis among the groups, and the
Fisher exact probability test was used for statistical analysis when
the chi-square test is not satisfied. A value of p < 0.05 was
considered as statistical significance.

RESULTS

Cases Information
A total of 149 subjects underwent interventional amniocentesis
prenatal diagnosis, with maternal age range of 20–46 years and
gestational age range of 16–24 weeks. In the present study,
all cases were divided into three groups, including the FGR
with ultrasound structural anomalies group (n = 30), FGR with
non-structural anomalies group (n = 57), and isolated FGR
group (n= 62).

Chromosomal Abnormalities Detected by
Karyotyping
In this study, all subjects were successfully detected by the
karyotyping and CMA. Among them, three cases of chromosome
aneuploidy and five cases of chromosomal structural
abnormalities were detected by karyotype analysis (Table 1),
with a chromosomal abnormalities detection rate being 5.37%
(8/149). In addition, one case of small supernumerary marker
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TABLE 1 | Comparison of chromosomal abnormalities detected by karyotyping and CMA.

Karyotype CMA Ultrasound anomalies

associated with FGR

Inheritance Pregnancy

outcome

T21 arr(21)x3,pCNVs Isolated / TOP

T18 arr(18)x3,pCNVs Structural / TOP

45,X arr(X)x1,pCNVs Isolated / TOP

46,XN,der(8)t(8;22)(p21.1;q13.1) arr[hg19]8p23.3p21.1(158,048-28,689,154)x1,

18p11.31p11.23(6,723,060-7,824,813)x3,

22q13.1q13.33(40,195,209-

51,197,838)x3,pCNVs

Structural De novo Stillborn

46,XN,der(6)t(4;6)(q28.3;p25.2) arr[hg19]4q28.3q35.2(131,389,050-

190,957,460)x3,6p25.3p25.2(376,722-

3,552,492)x1,pCNVs

Structural / TOP

46,XN,der(22)t(11;22)(q23.3;q11.2) arr[hg19]7p12.1(51,690,431-53,295,058)x3,

11q23.3q25(116,684,163-134,938,470)x3,

22q11.1q11.21(16,888,899-

20,716,903)x3,pCNVs

Structural / Stillborn

46,XN,dup(4)(p15?) arr[hg19]4p16.3p16.2(68,345-5,440,181)x1,

4p16.2p15.1(5,447,464-34,170,864)x3,pCNVs

Structural / Stillborn

46,XN,del(5)(p13) arr[hg19]5p15.33p13.3(113,576-

29,437,705)x1,pCNVs

Structural De novo TOP

47,XN,+mar arr[hg19]13q33.1q34(103,144,279-

115,107,733)x3,pCNVs

Non-structural / TOP

46,XN arr[hg19]16q11.2(46,503,19246,925,074)x3,

17q11.2(29,075,556-30,298,421)x1,pCNVs

Non-structural De novo TOP

46,XN arr[hg19]17p13.3(1,323,985-

2,825,460)x3,pCNVs

Non-structural De novo TOP

46,XN arr[hg19]22q11.21(18,648,855-

21,800,471)x1,pCNVs

Structural / TOP

46,XN arr[hg19]7q36.1(151,797,859-

152,047,392)x1,pCNVs

Non-structural Maternal TOP

46,XN arr[hg19]14q13.2q21.3(35,428,813-

49,221,239)x2hmz,pCNVs

Structural / TOP

46,XN arr[hg19]Xp22.31(6,455,151-

8,145,527)x1,pCNVs

Isolated / Stillborn

46,XN arr[hg19]Xp22.31(6,455,151-8,141,076)x0,

Yq11.222(20,618,887-21,028,944)x2,pCNVs

Isolated / Born

46,XN arr[hg19]Xq28(154,109,413-

154,983,124)x3,pCNVs

Structural / Born

46,XN arr[hg19]Yq11.23(26,527,669-

27,448,831)x0,pCNVs

Isolated Paternal Born

46,XN arr[hg19]9p24.3p24.1(208,454-

8,927,516)x1,pCNVs

Structural / TOP

46,XN arr[hg19]2q12.3q13(109,143,782-

110,492,659)x1,pCNVs

Non-structural / TOP

TOP, termination of pregnancy.

chromosome and two cases of chromosomal polymorphism
were also detected.

Comparison of Chromosomal
Abnormalities Detected by Karyotyping
and CMA
In the study, 20 cases of pCNVs were detected by CMA, with a
pCNV detection rate of 13.42% (20/149) (Table 1). Twenty cases
of variants of unknown significance (VOUS) and one case of

benign CNVs (bCNVs) were detected as well (Table 2). Among
them, all chromosomal abnormalities detected by karyotyping
were confirmed by CMA (Figures 1, 2); moreover, an 8.05%
(12/149) incremental yield of CMA over karyotyping was
observed (χ2

= 8.100, p = 0.004) (Table 2). Among them,
three cases were from the isolated FGR group (4.84%, 3/62),
five cases were from the FGR with non-structural anomalies
group (8.77%, 5/57), and four cases were from the FGR with
structural anomalies group (13.33%, 4/30). Additionally, one case
of small supernumerary marker chromosome was detected by
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TABLE 2 | The variants of unknown significance detected by CMA.

Karyotype CMA Ultrasound anomalies

associated with FGR

Inheritance Pregnancy

outcome

46,XN arr[hg19]Xp22.31(6,538,033-

7,072,640)x3,VOUS

Non-structural / Born

46,XN,9qh+ arr[hg19]11q22.1(97,744,329-

100,023,601)x1,VOUS

Structural / Born

46,XN,9qh+ arr[hg19]5p14.3(21,758,499-

22,296,824)x1,VOUS

Non-structural / Born

46,XN arr[hg19]10q11.22q11.23(46,252,072-

51,817,663)x3,VOUS

Structural / TOP

46,XN arr[hg19]Xp22.33(535,219-738,276)x3 or

Yp11.32 (485,219-688,276)x3,VOUS

Structural / TOP

46,XN arr[hg19]11p15.5(372,355-611,609)x1,VOUS Non-structural Maternal Born

46,XN arr[hg19] 11p15.5(461,372-677,638)x1,VOUS Non-structural Maternal Born

46,XN arr[hg19]16p13.12p13.11(14,780,640-

16,538,596)x1,VOUS

Non-structural / TOP

46,XN arr[hg19]17p13.1p12(7,549,150-

11,438,030)x3,VOUS

Isolated / Stillborn

46,XN arr[hg19]

19p13.2(8,096,719-8,497,269)x3,VOUS

Non-structural / TOP

46,XN arr[hg19]4q35.2(187,900,881-

188,943,890)x3,VOUS

Structural / Borna

46,XN arr[hg19]4q35.2(187,929,331-

188,943,890)x3,VOUS

Structural / Born

46,XN arr[hg19]6p25.3p24.1(203,877-12,217,263)x2

hmz, 6p12.3p11.1(47,247,899-58,726,706)x2

hmz,

6q16.3q24.2(105,137,251-144,038,185)x2

hmz, VOUS

Non-structural / Stillborn

46,XN arr[hg19]6p22.3p21.31(24,654,265-

35,934,695)x2hmz,VOUS

Structural / Stillborn

46,XN arr[hg19]Xp22.33(385,561-1,234,634)x3 or

Yp11.32 (335,561-1,184,634)x3,VOUS

Non-structural / Born

46,XN arr[hg19]1q43(237,843,614-

240,867,477)x3,VOUS

Isolated / Born

46,XN arr[hg19]2p12(78,631,709-

79,851,089)x4,VOUS

Isolated Paternal Born

46,XN arr[hg19]4p15.2(21,563,614-

22,631,787)x3,VOUS

Isolated Paternal Stillborn

46,XN arr[hg19]Xq28(152,171,288-

152,582,007)x1,VOUS

Structural / Bornb

46,XN arr[hg19]Xq27.1(138,553,702-

139,314,460)x2,VOUS

Non-structural Maternal TOP

TOP, termination of pregnancy; aBorn with kidney duplication and hydronephrosis in the left kidney; bLanguage and motor developmental delay occurred after birth.

chromosome karyotype analysis and further confirmed by CMA,
which was a pathogenic variant and derived from chromosome
13 (13q33.1q34 microduplication).

Comparison of the Detection Rates of
CNVs Among the Groups
In this study, we further analyzed the detection rate of pCNVs in
groups of FGR with different ultrasound phenotypes (Table 3).
A significant difference of pCNV detection rates was observed
among the groups (χ2

= 10.678, p = 0.005). Among them,
the FGR with structural anomalies group showed a higher

pCNV detection rate than that in the FGR with non-structural
anomalies group and isolated FGR group (χ2

= 8.310, p =

0.004; χ
2
= 9.460, p = 0.002). In addition, no significant

difference of pCNV detection rates was observed between the
FGR with non-structural anomalies group and isolated FGR
group (χ2

= 0.019, p= 0.889).

Follow-Ups of Pregnancy Outcome
In this study, 90.60% (135/149) were successfully followed
up. Among the cases with pCNVs, 13 of them chose to
terminate their pregnancy, four fetuses died in utero, and three
cases continued their pregnancy without obvious abnormality
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FIGURE 1 | Genetic diagnosis and ultrasound phenotype of derivative chromosome 6. (A) SNP array result indicated a 4q28.3q35.2 duplication associated with

6p25.3p25.2 deletion in the fetus. (B) Karyotype analysis indicated a derivative chromosome 6 in the fetus. (C–E) prenatal ultrasound detection indicated

atrioventricular septal defect, coronary sinus dilation, and persistent left superior vena cava in the fetus, respectively.

observed after birth (Table 1). Of the cases with VOUS, five
cases chose to terminate their pregnancy (two cases with
structural anomalies and three cases with soft index anomalies),
four cases encountered intrauterine death (three cases with
structural anomalies and 1 cases was isolated FGR), and
11 cases continued their pregnancy. The follow-up results
showed that one case (4q35.2 microduplication) exhibited
kidney duplication and hydronephrosis in the left kidney, and
one case (Xq28 microdeletion) exhibited language and motor
developmental delay. No obvious abnormalities were observed in
the remaining cases.

DISCUSSION

CMA technology can detect unbalanced CNVs effectively, which
has been recommended as a first-line detection technology for
the genetic etiology diagnosis in fetus with structural anomalies
(10). However, there are few studies available in the application
of CMA for FGR genetic etiology diagnosis. Research on the

application of CMA technology in FGR with normal karyotypes
showed a 10% incremental yield of CMA over karyotyping
in FGR with structural anomalies; and 4% pathogenic copy
number variation can also be detected in FGR with non-
structural anomalies (6). In our study, 12 cases with pCNVs
were detected by CMA, with an additional detection rate of
8.05% (12/149) over karyotyping. This study is similar to that
reported in the literature (2, 6, 11, 12), which showed a great
advantage of CMA technology in the prenatal diagnosis of FGR
over karyotyping.

In the present study, based on the ultrasound phenotypes,
three groups were divided; a significant difference of pCNV
detection rate was observed among the groups. Among them,
the detection rate of pCNVs in the FGR with structural
anomalies group showed higher pCNV detection rate. This
further strengthens the application value of CMA in fetuses with
structural anomalies. Moreover, we believe that FGR combined
with ultrasound soft indicator anomalies may not increase the
risk of chromosomal abnormality.
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FIGURE 2 | Genetic diagnosis and ultrasound phenotype of partial 5p deletion. (A) A detailed view from an SNP array analysis report for chromosomes involved. (B)

Karyotype analysis revealed a partial 5p deletion in the fetus. (C, D) Prenatal ultrasound elicited cystic hygroma colli in the fetus.

TABLE 3 | Detection rates of CNVs among FGR groups with different ultrasound anomalies.

Groups Cases pCNVs VOUS bCNVs pCNV detection rates

FGR with structure anomalies 30 10 7 0 33.33% (10/30)

FGR with non-structural anomalies 57 5 9 0 8.77% (5/57)

Isolated FGR 62 5 4 1 8.06% (5/62)

Chromosome aneuploidy can explain approximately 7% of
FGR, of which trisomy 18 was the most common etiologic
factor (13). Additionally, studies have shown that 90% of
trisomy 18 can express FGR, while it exists in 30% of
trisomy 21 (14). Three cases of chromosome aneuploidy
were identified in this study, including one case of trisomy
21, one case of trisomy 18, and one case of Turner
syndrome. Among them, two cases exhibited isolated FGR.
Thus, the genetic diagnosis and clinical consultation of isolated

FGR should also be given equal attention. In addition,
five cases of common pCNVs associated with FGR were
detected (6), including two cases of Xp22.31 microdeletion,
one case of 22q11.21 microdeletion syndrome, one case of
22q11.1q11.21 microduplication syndrome, and one case 4p16.3
microdeletion syndrome. Previous studies have shown that
Xp22.31 microdeletion in fetuses only exhibited isolated FGR
(12, 15). In this study, two cases of Xp22.31 microdeletion were
detected with isolated FGR, which is consistent with the previous
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reports. Studies have shown that 22q11.21 microdeletion was
detected in FGRwith structural malformations (16). In this study,
a 22q11.21 microdeletion in FGR without cardiac abnormality
was observed, which may relate to the non-penetrance in
22q11.21 microdeletion. Moreover, researchers indicated that
the 22q11.21 microduplication can also be observed in FGR
with oligohydramnios or isolated FGR (6, 17). The 4p16.3
microdeletion covering the “Wolf–Hirschhorn syndrome” region
would exhibit intellectual disability, developmental delay, and
hypotonia, and has been identified in FGR previously (16, 18).
In this study, the fetus with 4p16.3 microdeletion referred to
as Wolf–Hirschhorn syndrome exhibited FGR with multiple
structural anomalies.

VOUS is a great challenge in clinical consultation; because
of low ratio of parent verification and the incomplete localized
database, it is difficult to interpret the pathogenicity of the
subjects with VOUS. Thus, it is very important to apply fetal
ultrasound to further monitor the growth and development
of the fetuses. In the current study, 20 cases of VOUS were
detected in this study, whichmay be the etiology for FGR. Among
them, one case of Xq28 region involving 410.7kb deletion was
detected, including PNMA3, PNMA6A, and MAGEA1 genes. As
shown in the database, there are cases with similar and smaller
deletions than the fragment exhibiting developmental delay and
ventricular septal defect. Moreover, a previous study showed that
a patient who harbored a deletion of chromosome Xq28 exhibited
growth delay (19). Ultrasound in this case showed ventricular
septal defect and FGR, which was similar to the clinical
phenotypes reported in the database and literature. In addition,
an unknown significance of Xp22.33 microduplication was
detected, containing SHOX/SHOXY gene, which was related to
autosomal dominant diseases of Leri–Weill cartilage osteogenesis
disorder due to gene mutation or deletion. Previous studies
reported that duplication involving the SHOX gene would lead
to short stature, intellectual disability, and developmental delay
(20, 21). Thus, in the present study, we believe that Xq28
deletion and Xp22.33 duplication may be the genetic etiology
for FGR. It can be seen that prenatal ultrasound combined
with CMA detection technology would be helpful for the
clinical consultation of VOUS and the exploration of genotype–
phenotype relationship.

To date, more studies have shown that UPD will result
in FGR (22–24). Our study identified a loss of heterozygosity
in the 14q13.2q21.3 region who exhibit FGR combined with
ventricular septal defect, auricle abnormality and hypoxia.
Studies have shown that maternal UPD of chromosome 14 will
result in Temple syndrome, which have been reported to be
associate with short stature, intrauterine growth retardation,
abnormal facial appearance, and low birth weight (25), while
paternal UPD of chromosome 14 will leading to Kagami-
Ogata syndrome, with the clinical phenotypes including
abnormal bone development, joint contractures, abnormal facial
features, developmental delay, intellectual disability, etc (26, 27).
According to the phenotype, the maternal 14q13.2q21.3 loss
of heterozygosity may harbor. However, more work should

be done to determine the source of loss of heterozygosity in
this case.

CONCLUSIONS

In conclusion, the genetic etiology of FGR is complicated,
including chromosome aneuploidy, UPD, LOH, and copy
number variants. In this study, a 4.84% incremental yield of CMA
over karyotyping was observed in isolated FGR. Thus, we believe
that CMA should be recommended as a first-line detection
technology for prenatal diagnosis in FGR, in the presence of other
ultrasound anomalies or not. Moreover, our research indicated
that Xp28 microdeletion and Xp22.33 duplication may be the
genetic etiology for FGR.
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