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Cerebrovascular pressure autoregulation promotes stable cerebral blood flow (CBF)

across a range of arterial blood pressures. Cerebral autoregulation (CA) is a

developmental process that reaches maturity around term gestation and can be

monitored prenatally with both Doppler ultrasound and magnetic resonance imaging

(MRI) techniques. Postnatally, there are key advantages and limitations to assessing CA

with Doppler ultrasound, MRI, and near-infrared spectroscopy. Here we review these CBF

monitoring techniques as well as their application to both fetal and neonatal populations

at risk of perturbations in CBF. Specifically, we discuss CBF monitoring in fetuses with

intrauterine growth restriction, anemia, congenital heart disease, neonates born preterm

and those with hypoxic-ischemic encephalopathy. We conclude the review with insights

into the future directions in this field with an emphasis on collaborative science and

precision medicine approaches.

Keywords: cerebral autoregulation, cerebroplacental Doppler, fetal MRI, congenital heart disease, hypoxic
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HIGHLIGHTS

- Cerebral autoregulation is a developmental process that can be disrupted in neonates with
congenital heart disease, hypoxic-ischemic encephalopathy, and those born preterm.

- Novel methods to assess cerebral autoregulation in these populations can be used to target
patient-specific hemodynamic parameters.

INTRODUCTION

Cerebral autoregulation (CA) is the physiologic adaptation in cerebrovascular resistance across a
range of cerebral perfusion pressure (CPP; typically estimated using mean arterial pressure, MAP)
in order to promote stable cerebral blood flow (CBF). The maturation and differences in these
response mechanisms in fetuses and neonates, particularly those at highest risk for cerebrovascular
abnormalities, is poorly understood. Early studies in the chronically instrumented fetal sheep
helped shape our current understanding of cerebral hemodynamics in the fetus (1–6). Many of
these findings have not yet been confirmed in the human fetus owing to the lack of non-invasive
methods other than Doppler ultrasound, which has key limitations, until recent innovations in
advanced fetal MRI. This review will explore data on both traditional and novel methods for
monitoring CBF and CA in the fetus and neonates with a specific focus on those with pathology
that makes them vulnerable to perturbations in CBF (Figure 1).
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FIGURE 1 | The key questions regarding cerebral autoregulation (CA) are unique to each neonatal pathophysiology. In the preterm neonate, due to immature

mechanisms of cerebrovascular adaptation, there is a limited plateau of stable cerebral blood flow (CBF) and there is no strong evidence to guide the optimal lower

limit of cerebral perfusion pressure (CPP) by gestational age. In the neonate with congenital heart disease (CHD), postnatal hypoxia and stabilization of CBF before,

during, and after cardiac surgery are the prominent challenges. For neonates with hypoxic ischemic encephalopathy (HIE), avoidance of reperfusion injury plays a key

role in limiting neurologic damage.

PHYSIOLOGY OF CEREBRAL BLOOD
FLOW

CBF is highly related to cerebral metabolism and arterial blood
gases. Cerebral vasculature is particularly sensitive to the partial
pressure of carbon dioxide (PaCO2), and this reactivity is present
in the late-gestation fetus and neonate as well (7). Vascular
sensitivity to PaCO2 occurs throughout the cerebrovasculature,
from the major feeding vessels in the neck to the parenchymal
and pial arterioles (8). Hypercapnia has the well-known effect
of vasodilation while hypocapnia results in cerebrovascular
constriction, both of which occur through changes in the local
extracellular pH surrounding smooth muscle cells of vessels
(9). The sensitivity of the cerebrovasculature to hypoxia is
less pronounced and is mediated through adenosine and nitric
oxide synthase. Nitric oxide (NO) is a potent vasodilator
of cerebrovasculature and is produced by a variety of cell
types within the central nervous system, with many studies
showing NO-mediated fluctuations in cerebrovascular tone
result from not only hypoxia, but multiple stimuli including
hypercapnia, cytokines, and activation of the parasympathetic
fibers surrounding vessels (10).

Fetal cerebral arteries differ in both structure and function
from their adult counterparts (11). The development of the
vascular smooth muscle cell layers form around 20–24 weeks
gestation and are first evident in vessels that later become
the pial arteries (11). The appearance of the muscularis
layer of cerebral arteries progresses from pial vessels inwards
and concludes around term gestation (12). Pial vessels are
traditionally considered the primary site of CBF autoregulation.

Capillary-level regulation of CBF may also occur through poorly
understood mechanisms involving pericytes (13, 14), which are
the cells that make up the blood-brain barrier. Evidence of their
potential ability to act as regulators of CBF is mounting. They
are known to be contractile, are in direct contact with vascular
endothelial cells, and have been shown to migrate alongside the
vascular endothelial cells in the developing brain (15).

CBF is known to increase as gestation progresses owing to
the increasing metabolic demands (16) and by the third trimester
accounts for approximately 25% of combined ventricular output
(17). Fetuses have wide minute to minute fluctuations in
CBF (4, 18) with a progressive increase in cerebrovascular
diastolic flow as pregnancy advances (19). This increase in
diastolic flow comes with a slight but steady decline in
cerebrovascular resistance that coincides with rapid fetal brain
development, but in normal pregnancy remains at a higher
resistance than that found in the umbilical arteries throughout
gestation (20).

CBF during the transition from fetal to neonatal life is a
topic of active investigation, particularly for vulnerable neonatal
populations. In the healthy neonate, intact mechanisms of CBF
autoregulation ensure steady cerebral oxygenation and glucose
delivery at transition. At birth, the low-resistance vascular bed
of the placenta is disconnected from systemic circulation while
pulmonary vascular resistance falls precipitously with initiation
of ventilation. When these events happen concurrently, as
expected, the net change in MAP and CBF is minimal. Problems
inmaintenance of CBF arise when the normal drop in pulmonary
vascular resistance does not occur or other factors lead to
hemodynamic instability.
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Postnatal CBF continues to increase throughout the first
3 years of life with a higher contribution from the posterior
circulation compared to adults that peaks in toddlerhood (21).
In healthy term infants, CBF is greatest in the brainstem, insula,
thalamus and basal ganglia (22). Global CBF estimates in the
postnatal period depend greatly on the method used and vary
significantly with measurements of 13 ml/100 g/min reported by
arterial spin labeling MRI (22), an average of 18 ml/100 g/min
by sonographic flowmetry (16), as much as 23 ml/100 g/min
by positron emission tomography (23), and approximately 18
ml/100 g/min by near-infrared spectroscopy (NIRS) (24).

FETAL AND NEONATAL CBF MONITORING
TECHNIQUES

CBF is a complex physiologic system with multiple factors that
influence its assessment in the evolving maturation from fetal
to neonatal life. The techniques used to monitor CBF have also
evolved significantly, but each has key benefits and limitations.
These techniques are described in detail in the following section
and summarized in Table 1.

Prenatal Doppler Ultrasound
This relationship between cerebrovascular resistance and
resistance in the umbilical arteries provides the basis for fetalCBF
monitoring using Doppler ultrasound. The cerebral/placental
ratio (CPR) is also known as the cerebral/umbilical ratio and
is a primary indicator of fetal blood flow distribution (25–30).
This metric is a ratio of the relative pulsatility indices (PI) in the
cerebral and placental circulations (as measured in the umbilical
artery, UmA) defined by the equations,

CPR =
MCA PI

UmA PI
where

PI =
(peak systolic velocity−minimal diastolic velocity)

mean velocity

However, limitations to this method of CA monitoring exist.
In the third trimester, low fetal CPR is associated with high
uterine artery Doppler indices and is thought to be a consequence
of impaired placental perfusion that increases the risk for
stillbirth (31). However, it may also result from cerebrovascular
vasodilation, which is common in fetuses growing poorly and is
discussed further in the section on intrauterine growth restriction
(IUGR). The use of CPR as a screening tool in otherwise healthy
pregnancies has been shown to only weakly predict adverse
outcomes and there is concern that overuse of this metric may
expose women and neonates to unnecessary interventions such
as earlier gestational age delivery (32).

Postnatal Doppler Ultrasound
Similar to prenatal Doppler ultrasound monitoring of
CBF, postnatal measurements can be useful to determine
cerebrovascular dilatation as well. The primary metric used
postnatally is the resistive index (RI), which is derived from

the systolic and diastolic velocities in the cerebral arteries
as described,

RI =
(peak systolic velocity− end diastolic velocity)

peak systolic velocity

Normative values for newborn cerebral artery RI are well defined
and typically fall between 0.55 and 0.8 (33, 34). Although RI is
not sensitive to the angle of insonation, there are limitations to its
use including variations based on location of measurement (e.g.,
anterior fontanelle or transtemporal) (33), and differences based
on technique (35). As such, a recent systematic review concluded
that there is no clear evidence to support following RI in preterm
infants (36), although RI may still have utility in neonates with
hypoxic-ischemic encephalopathy (HIE) (37).

MRI Techniques
Advanced magnetic resonance imaging (MRI) technologies
that contribute to adult research and care are now finding
utility in pregnant people and the fetus. Using advanced MR
imaging techniques that combine fetal cardiac MRI with T2
mapping to determine tissue oxygen saturations have enhanced
our understanding of fetal circulation (38). These experiments
effectively replicate in the human fetus, those classic studies in
the chronically instrumented pregnant ewe that form the basis for
our current understanding of fetal and placental hemodynamics
(39–42). Several key differences in the human fetus have been
described by Seed and colleagues, who are pioneering the
application of these new technologies (43–46).

T2 mapping is an MRI method that allows identification
of small blood vessels within tissue. When combined with
phase contrast MRI, which quantifies velocity of moving fluids,
accurate measurements of fetal blood flow are possible. One
major obstacle to this imaging is the necessity of timing image
acquisition with the cardiac cycle (47–51). Cardiac gating is
used to time data acquisition with specific phases of the cardiac
cycle, and MRI-compatible fetal ECG devices are now available
(48, 51–55). This technology has now been applied to fetal disease
states including IUGR (54) as well as the fetus with cardiac
malformations (38).

Near-Infrared Spectroscopy
Modern NIRS is based on the pioneering work of Professor
Frans F. Jöbsis, and since his landmark study in 1977 (56),
its use has expanded exponentially. NIRS has the advantage
of being non-invasive, inexpensive, and continuous, therefore
it is the most commonly used technique to measure regional
cerebral saturation (ScO2) in neonates despite the lack of large
randomized clinical trials to support its clinical impact. The
NIRS signal represents the oxygen saturation of Hg in the
underlying brain tissue and is derived from the difference
in absorption of near-infrared light by the oxygenated and
deoxygenated heme groups (57). However, the depth of tissue
interrogation can be relatively low and likely only provides
information on the cortex (58, 59). Using NIRS to estimate CBF
relies on the assumptions that the overwhelming majority of
oxygen in blood is bound to hemoglobin, total hemoglobin is
proportional to cerebral blood volume, and there is uniform
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TABLE 1 | A brief description, indication for use, clinical significance, and limitations of key diagnostic studies in newborns at risk for cerebral injury.

Technique Description/metrics Indication for use Clinical value and

characteristics

Limitations

Fetal assessment tools

Doppler

ultrasound

MCA PI PI

= (PSV–EDV)/TAV

Assess fetal brain blood flow MCA PI normally has a

high value

The mean value slowly

decreases through gestation

(after 28 weeks). A low PI

reflects the redistribution of

cardiac output to the brain

(brain sparing theory)

Low MCA PI in CHD could

associate with placental

abnormalities and/or cerebral

vasodilation (CPR might be

better to differentiate this)

Cerebral/placental ratio

(CPR) = MCA PI/UmA

PI

Assess fetal blood flow

distribution.

Last trimester: High CPR,

might relate with impaired

placental perfusion and high

risk for stillbirth

In patients with CHD: CPR <

1 was associated with EEG

abnormalities and low

cognitive scores

Values are not affected by

fetal heart rate variability.

Values assume that the

diameter of the vessels remain

stable (not dynamic)

In healthy pregnancies, poor

prediction of adverse

outcomes.

Falsely low CPR could result

in efforts for early delivery

Values affected by variation on

technique (e.g., angle of the

probe),

High Interobserver variability

MRI Fetal MRI

Descriptive brain

technique,

widely available

Assessment of architecture

and volume of brain in CHD.

Delay of brain maturation for

fetuses with severe CHD can

associate with lower

developmental scores.

Moving artifact, not quite

standardized for

prognostication.

Advanced MRI

techniques Combined

cardiac MRI with

T2 mapping.

MRI-coordinated

with ECG

Assess tissue oxygen

saturations.

Valuable in assessment of

IUGR or Monitoring of infants

with cardiac malformation

Allows identification of small

blood vessels within tissue,

quantifies velocity of moving

fluids and fetal blood flow

Requires timing of image

acquisition with the cardiac

cycle (difficult to acquire)

Heart Rate HR Variability Autonomic nervous system

control of CBF

Lack of HR variability

indicative of hypoxia

Traditionally used in clinical

obstetric assessment during

labor

New analytics of HR Variability

under investigation in

postnatal assessment

Non-specific in the fetus

Requires continuous

monitoring and can be difficult

to interpret

Research use only in the

neonate

Neonatal assessment tools

NIRS Cerebral tissue

saturations, ScO2, (by

NIRS) are assessed in

comparison with MAP,

and oxygen and CO2

blood content

Assess CBF and

autoregulation

(when coupled with cerebral

perfusion metric such as BP)

ScO2: Increases immediately

after birth, stabilizes, and

slightly decreases in the first

72 h and increases afterwards

Use of NIRS, in preterm

newborns has been used (as

investigation tool) in

combination with BP, CO2

data for prevention of IVH, etc

Clinical significance is

questionable and under

investigation (e.g., SafeBoosC

II trial)

Normal values are not

standardized, with wide range

(65-90%), which are difficult to

interpret

Assesses only superficial

tissues (cortex in term, cortex

and possibly higher white

matter layers in preterm)

Assumes that oxygen

consumption in brain is

homogenous

For autoregulation

assessment need data

synchronization software (not

widely available)

(Continued)
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TABLE 1 | Continued

Technique Description/metrics Indication for use Clinical value and

characteristics

Limitations

Wavelets transform

coherence analysis

Dynamic coherence

assessment between CBF

(cerebral NIRS) and brain

electrical activity using aEEG

over time using mathematical

models (wavelet transform) to

assess neurovascular

coupling (NVC).

In the normal brain at term,

there is temporal and spatial

coupling between neuronal

activation and blood flow (i.e.,

NVC)

In HIE, there is a well

described uncoupling (lack of

significant coherence)

Not widely available,

experimental.

Difficult to interpret routinely.

Hemoglobin volume

phase index

Assesses total Hg values (by

NIRS) correlated with BP data.

Correlates with pressure

reactivity index (typically

requires invasive cerebral

monitor), a modality validated

in children after TBI

Has been used to assess

ideal BP after cardiac surgery

High Hg Volume index in the

first 24 h of life after HIE has

been associated with poor

long-term outcomes and

severe injury by MRI

Although has some

prognostic validity, remains

experimental

Not widely used (only small

studies in newborns)

Doppler

ultrasound

RI Assess degree of vasodilation

of cerebral arteries

Normative values in healthy

term infants established

Can be used to predict some

outcomes in neonatal HIE

Few studies provide

information on normative

values in other populations

such as those born preterm

and neonates with CHD

Highly affected by other

hemodynamic influences such

as presence of PDA, other

cardiac shunts, hypotension,

etc

Influenced by location of

assessment (transfontanelle

versus transtemporal)

Loses predictive validity in HIE

during therapeutic

hypothermia

SVC Flow Indirectly assess CBF by

measuring cerebral venous

return which comprises

70–80% of SVC flow

Primarily used in preterm

populations

Predictive of some adverse

outcomes such as IVH in

preterm neonates

Correlates weakly with

cerebral NIRS complicating

interpretation

Affected by multiple clinical

factors—gestational age,

hours after birth, PDA

diameter, mean airway

pressure, etc—thus

preventing strong correlation

with outcomes in

heterogenous patient

populations

PET Xenon-133 clearance CBF assessment Detailed data on CBF and

fluctuations can be provided

Experimental, not widely

available. Invasive

Of note several of these studies are experimental and not widely used in clinical practices. aEEG, amplitude-integrated electro encephalogram; BP, blood pressure; CBF, cerebral blood

flow; EDV, end-diastolic velocity; HIE, hypoxic ischemic encephalopathy; MAP, Mean arterial pressure; MCA, middle cerebral artery; MRI, magnetic resonance imaging; NIRS, Near

infrared spectroscopy; PDA, patent ductus arteriosus; PI, pulsatility index; PSV, peak systolic velocity; RI, resistive index; ScO2, regional cerebral saturations; SVC, superior vena cava;

TAV, time-averaged (mean) velocity.

oxygen consumption within the brain. The NIRS ScO2 value
represents a “weighted average” of arterial, venous, and capillary
oxygenation with approximately 75–80% of the signal originating
from the venous measurement (60). In general, ScO2 values
between 65 and 90% are considered normal in healthy term
neonates (61, 62).

Only when coupled with a measure of CPP can NIRS impart
information about CA. Using NIRS to determine periods of intact
and impaired CA requires additional data as well as careful
interpretation. Systems that provide time-synchronization of the

continuous signals from invasive blood pressure monitors, NIRS,
peripheral oxygen saturation, heart rate, and respiratory rate are
enhancing the utility of NIRS as a monitor for CA.

Wavelet transform coherence analysis was developed as an
alternative tool to Fourier transform to analyze non-stationary
signals. Its application to our understanding of neonatal CBF
has evolved over the past 10 years (63–65). Due to the non-
stationary ScO2 signal provided by NIRS, traditional Fourier
transform is inadequate to create a unified analysis across
the time-frequency domain without dividing the data into
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arbitrary “bins” or frequency intervals that require an artificial
simplification of the signal into a pseudo-stationary form for
analysis. The use of wavelet transform coherence analysis does
not require such simplification, but instead allows analysis
of signal coherence across a spectrum of the time-frequency
domain. The application of wavelet transform coherence analysis
has been used extensively for neonates with HIE and is further
discussed in that section.

Multiple other analytic techniques utilize NIRS or its
component values to determine the correlation between CBF
and MAP. The cerebral oximetry index uses the regional cortical
oxygen saturation and has been validated in animal models
of hypotension (66, 67) followed by clinical trials in pediatric
cardiac surgery (68, 69). The pressure reactivity index has
been used extensively in traumatic brain injury patients and
requires invasive intracranial pressure monitoring, thus, it is not
suited for neonates. The hemoglobin volume phase index was
developed by Lee et al. using the regional hemoglobin from
the NIRS calculation to estimate CBF, and is a non-invasive
correlate of the pressure reactivity index (70–72). This method
has been used to establish an individualized optimal MAP and
time spent below this optimal MAP correlated with adverse
outcomes (73). The significant differences in the calculated
limits of autoregulation based on each of these methodologies
complicates their use in clinical practice and necessitates
validation of each methodology in specific populations and
disease states.

Methodologic Limitations of NIRS in the
Neonate
Despite their widespread use, no randomized studies to date have
systematically investigated potential benefits or risks associated
with specific ScO2 target ranges or provided validation of these
analytical tools in any neonatal population. Normative NIRS
signals vary considerably by commercial sensor and by individual
patient physiology. Only recently investigators have reported
on the mathematical conversions to allow comparison of NIRS
data between devices (74, 75). Due to these limitations, the
European Society of Paediatric and Neonatal Intensive Care
recommends against routine clinical use of NIRS in all children
with hemodynamic instability and there is no agreement from the
group on the significance of a decline in ScO2 from baseline or a
lower limit of normal (76).

Other Monitoring Techniques
Early studies on CBF in neonates used a modified xenon-
133 clearance method that relied on external scintillation
detectors (77–79). These earlier discoveries related to the
influence of Hg, hypoglycemia, and blood pressure on
neonatal CBF have informed much of the contemporary
investigations into neonatal CBF homeostasis. Recently
developed methods to estimate CBF based on heart rate
variability show promise since invasive monitoring of MAP
is not always possible or desirable in all neonates (80). Heart
rate variability refers to the variation in time intervals between
each heartbeat and is controlled by the autonomic nervous
system. This variability is affected by hypoxia and other

conditions that compromise CBF, thus making the metric
a possible predictor of disturbed CBF (81, 82). One key
limitation to using heart rate variability as a clinical tool is
correlating it with other physiologic parameters of cerebral
oxygenation and the real-time data analysis required for it to be
useful (83).

Another method of CBF monitoring is superior vena cava
(SVC) flow which is based on the physiologic principle that
cerebral venous return contributes as much as 70–80% to
total SVC flow. This technique has been applied in preterm
populations and may correlate with adverse outcomes (84),
although it is subject to influence by multiple factors. In one
study, low SVC flow was associated with lower gestational
age, higher upper body vascular resistance, larger diameter
patent ductus arteriosus (PDA) shunts, and higher mean airway
pressure (85). Together, these variables can make interpretation
of SVC flow difficult. In addition, SVC flow only correlates
weakly with estimations of CBF by cerebral NIRS (86),
adding complexity to its use. With further refinement this
technique may contribute to the overall assessment of CBF,
and is the subject of ongoing investigations to determine
its predictive validity on long-term outcomes in preterm
neonates (87).

CEREBRAL BLOOD FLOW IN
VULNERABLE FETAL AND NEONATAL
POPULATIONS

Intrauterine Growth Restriction
CPR is used in pregnancies complicated by IUGR to quantify
the redistribution of cardiac output with increased flow to the
fetal brain (traditionally called a “brain-sparing” effect) (88,
89). However, this term may be a misnomer. In a secondary
analysis of the large multicenter Prospective Observational
Trial to Optimize Pediatric Health in IUGR (PORTO) Study,
investigators showed that this redistribution of blood flow to the
brain is associated with adverse perinatal outcomes including
intraventricular hemorrhage, periventricular leukomalacia, HIE,
necrotizing enterocolitis, bronchopulmonary dysplasia, sepsis,
and death (90). In fact, fetuses with IUGR and CPR < 1 had
poorer neurodevelopmental outcomes at 3 years compared to
pregnancies with abnormal umbilical artery Doppler alone in the
follow up report of 375 patients from the PORTO Study (91).
These studies clearly demonstrate that cerebral vasodilation does
not result in normalization of brain development.

The cause of this hemodynamic disturbance ismost frequently
related to placental insufficiency and can lead to deleterious
alterations in vasoreactivity of cerebral vasculature when
prolonged (92). In fact, IUGR fetuses with normalization of
MCA-PI after prolonged vasodilation are at increased risk
for fetal demise (93). Postnatally, neonates who experienced
IUGR have persistent vasodilation of cerebral vasculature (94).
This can result in higher ScO2 values by NIRS likely due to
a combination of increased cerebral oxygen delivery and a
decreased cerebral tissue oxygen consumption (95). The key
factor in using this technique is to not rely soley on the single
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timepoint measurement; rather, a trend in CPR is required to
determine where on the trajectory a fetus is in regard to CA.

Fetal Anemia
A fetus is typically evaluated for fetal anemia (defined as Hg
levels less than mean for gestational age (GA) (96) or multiples
of the median (MoM) for GA) (97–99) when it is noted to
have abnormal fluid collections (ascites, pericardial effusion,
hydrothorax, and/or skin edema) or reduced movements. The
gold standard for the diagnosis of fetal anemia is fetal blood
sampling (FBS), a procedure that imparts a high risk for fetal loss,
particularly in hydropic fetuses (100). Doppler ultrasonography
can detect fetal anemia based on an increase in the peak velocity
of systolic blood flow in the MCA (MCA-PSV), mitigating the
risk of fetal loss (97, 100). This non-invasive metric relies on
the fetal cerebral autoregulatory capacity to increase CBF in the
setting of hypoxia, similar to that seen in fetal IUGR.

The basic principle used by Doppler for the diagnosis of fetal
anemia, relates to the observed increase in blood velocity which
stems from the increased fetal cardiac output. Due to relative
maintenance of cardiac output for small changes in Hg, there
is no strong correlation between MCA-PSV and fetal Hg within
the normal range. If significant Hg decreases occur, however, the
MCA-PSV increases and can be used to determine the Hg value
with a fair degree of accuracy (100). An MCA-PSV > 1.5 MoM
is used as a cut-off for severely anemic fetuses. In non-hydropic
fetuses, sensitivity of a single measurement of MCA-PSV varies
between 75 and 95%, with about 10% of false-positive results,
and this increases if the study is performed after 35 weeks GA
(101). Use of the multiple time points of MCA-PSV can decrease
the false positive values (101). As such, for high-risk fetuses,
MCA-PSV are typically performed at regular intervals depending
on risk assessment. Fetuses with anemia are at risk for multiple
complications and may benefit from intrauterine transfusions,
underscoring the importance of assessment at regular intervals
in those deemed high-risk.

Infants Born Preterm
Althoughmuch has been learned about CBF in preterm neonates,
many questions remain including how variations in CBF are
related to neurologic pathologies, and the role of various CBF
monitoring techniques, particularly in the setting of disturbed
hemodynamics such as hypotension, PDA, anemia, and changes
in respiratory status. In all neonates, immediately following birth
there is an initial increase in CBF followed by a slight downward
trend until around 72 h of life. This rise in CBF after birth is
more pronounced in preterm infants (102, 103). Immaturity of
the autonomic nervous system, especially the parasympathetic
control of CBF is particularly underdeveloped in preterm infants
and is the presumed cause of these differences between term
and preterm infants (104–106). Loss of this autonomic regulation
dampens the adaptive cerebral reactivity, making preterm infants
susceptible to passive cerebral circulation and putting them at
risk for low CBF in the setting of hypotension (107, 108). When
accompanied by PDA, this further compromises CBF and the
ability to maintain intact CA (109, 110).

Respiratory status changes also affect CBF more acutely in the
preterm neonate as they are prone to rapid fluctuations in PaCO2

after birth due to respiratory distress syndrome and surfactant
administration. In addition, fluctuations in MAP acutely impact
cerebrovascular responsiveness to PaCO2 (111). Together, these
circumstances put preterm infants at increased risk of impaired
CA. Dysfunction of CA has been proposed as the mechanism
for preterm brain injuries such as IVH and leukomalacia (112–
115). The correlation betweenNIRSmetrics of intact vs. impaired
CA and subsequent IVH was recently demonstrated in a cohort
of preterm infants studied in the first 4 days of life (116).
Infants who developed IVH or died showed a loss of cerebral
reactivity with fluctuation in blood pressures, resulting in both
hypoperfusion and reperfusion brain injury (116).

Several studies to date have asked the question of whether
routine NIRS monitoring in preterm neonates improves
outcomes. There is no consensus as researchers from several
centers have reported opposing results (117–120). Comparisons
between such studies are difficult, however, and differences
are likely due to contrasting approaches in the management
of preterm neonates based on ScO2 measures. Initial results
in the SafeBoosC II randomized controlled trial of NIRS in
neonates born extremely preterm did not show an impact on EEG
outcomes (121) or neurodevelopmental outcome at age 2 years
(119), but an additional Phase III randomized-controlled trial is
underway (122). A practical guide to the use of NIRS in neonates
was recently published by Vesoulis et al. and the authors conclude
that there is a need for large studies of comparative approaches
(123), which the SafeBoosC III trial will be a strong contributor.
These studies must occur while equipoise still exists.

Congenital Heart Disease
Fetal CHD
In fetuses with CHD, there is mounting evidence that brain
development is disrupted prenatally with lagging brain growth
(38, 124, 125) and estimated growth delay of ∼1 month (126–
128). This observation has spurred significant interest in CBF
monitoring in this population. The use of CPR presents unique
challenges to interpretation in fetal CHD. In many forms of
CHD, there is adaptive cerebral vasodilation attributable in some
cardiac lesions to a relative fetal cerebral hypoxia. In a small
study of fetuses with hypoplastic left heart syndrome (HLHS),
dextro-transposition of the great arteries (D-TGA), and tetralogy
of Fallot (TOF), CPR < 1 was associated with reduced neural
synchrony as measured by EEG (129). In addition, in those with
CHD andCPR< 1, cognitive scores on the Bayley Scales of Infant
Development were lower at 18-months of age. The adaptive
cerebral vasodilation in the fetus with CHD results in a lower
MCA PI, which may or may not be accompanied by placental
insufficiency (130–134). Higher rates of placental pathologies are
known to occur in pregnancies complicated by fetal CHD (135–
139), therefore CPR requires careful interpretation in fetuses
with CHD.

Postnatal CBF in CHD—Early Adoption of NIRS
NIRS is now commonplace in most pediatric cardiac intensive
care units despite the lack of specific normative parameters in
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neonatal CHD or randomized controlled trials to support its use.
Small studies showing improved metrics of care with NIRS use,
such as reduction in days on the ventilator in post-operative
neonates with CHD (140) have contributed to widespread
adoption of the technology. The interpretation of the NIRS
signal in the setting of altered CBF in specific CHD physiologies
presents unique challenges. In neonates with single-ventricle
CHD, ScO2 is lower than healthy term infants at baseline [68.0±
9.7 (n = 28) compared to 80.6 ± 7.9, n = 16 in healthy controls;
p < 0.001] (141), but depending on whether there is right or left-
sided obstruction, ScO2 values can vary (142). Definitive data
on whether NIRS monitoring improves patient care is a topic
of active investigation (143–147), although the optimal time to
answer this question has likely passed given the near-universal
use of NIRS in neonates with operative CHD in the United States.

Hypoxic-Ischemic Encephalopathy
There is a sense of urgency to improve our understanding of
CA in neonates with HIE as their fluctuations in CBF and
maintenance of adequate CPP have been shown to correlate
with secondary injury (148–154). Avoidance of post-hypoxic
reperfusion injury is a key area of concern in these infants (155).
Doppler assessment of cerebral RI with measurements < 0.55
indicate loss of CA and correlate with worse outcomes (156, 157).
However, in the setting of active therapeutic hypothermia, RI
is somewhat less predictive (positive predictive outcome 60%,
negative predictive outcome, NPV 78%) (158), but in late cooling
RI < 0.55 has a NPV of 86%, which increases to 89% after
rewarming (159).

Many studies underway are using NIRS coupled with invasive
MAP monitoring to determine the upper limits of CA in
asphyxiated neonates in order to develop individualized optimal
MAP parameters and improve long-term prognostication (151,
160). With adjuvant therapies on the horizon, this will
enhance the impact of therapeutic hypothermia (or replace its
use in those patients in whom it is contraindicated) (161–
165). Wavelet transform coherence analysis is being used
to differentiate those neonates labeled as mild HIE who
may benefit from therapeutic hypothermia based on their
inability to maintain intact CA (Figure 2). Chalak et al. has
further developed the wavelet coherence analysis to quantify
neurovascular coupling by analyzing the relation between
regional changes in aEEG signals and MAP. This analysis may
provide new avenues for classification of HIE injury that will
promote a more targeted therapeutic approach, particularly
due to the heterogeneity of the HIE diagnosis. Currently,
these techniques are limited by the time and computationally
intensive analysis required. Therefore, further development of
these bedside time-synchronized hemodynamicmonitoring tools
to include real-time analytics for neonates with HIE is of
utmost importance.

Hemoglobin volume phase index, which relies on an estimated
relative total hemoglobin from NIRS along with continuous
MAP to assess CA, was recently used in a cohort of neonates
with HIE. Those with higher hemoglobin volume phase values
at 24 h of life (indicating impaired CA) had a higher rate
of death or severe brain injury by MRI (166). The author’s

proposed cutoff of hemoglobin volume phase index had a
sensitivity of 86% and specificity of 74% for death or severe
brain injury by MRI. This type of early prognostication tools
may facilitate the use of adjuvant therapies in specific HIE sub-
populations and/or allow for improved decision-making about
goal-directed care at a much earlier timepoint than standard
treatments currently allow. Next steps should include larger
scale multicenter prospective clinical trials to determine the
generalizability of this metric.

FUTURE DIRECTIONS IN CBF
MONITORING

In the Fetus
CBF monitoring of the fetus will be improved significantly
through advances in MRI technologies. Currently, the research
scans that show the most promise for fetal and placental
perfusion are limited to specific institutions that have the
expertise required for these customized sequences and their
interpretation. Image data sharing between institutions and
countries is a major barrier. Commercialization of these MRI
scanning sequences would improve their accessibility and data
sharing capabilities. The development of artificial intelligence
for automated region of interest assignment will be key
to improve the pipeline of discovery as will user-friendly
interfaces for analysis. These technologies will not replace the
inexpensive and readily-available method of Doppler ultrasound
for CBF monitoring anytime soon, thus studies to maximize our
knowledge and utilization of this tool are also warranted. The
CEPRA study (Dutch Trial Registry NTR trial NL7557) is an
example of how the fetal Doppler CBFmonitoring field is moving
forward, the goal of which is to determine the utility of CPR as
an indicator for immediate delivery in pregnant people reporting
loss of fetal movement (167). These types of multicenter studies
are essential to have an impact on clinical practice of fetal
monitoring technologies that have already been studied for many
years. In contrast, studies of CBF using fetal MRI are in their
infancy and require robust sharing of data and technical expertise
between centers to move the field forward.

In the Neonate
For postnatal CBF monitoring, NIRS dominates most recent
research and will likely continue to be a favored technology in the
neonate. However, in order to move forward with the widespread
use of NIRS and its real-time analysis with other hemodynamic
monitoring signals to estimate CA, significant investment is
required to perform multicenter randomized controlled trials
validating its ability to improve outcomes in specific neonatal
populations. In neonates with CHD, equipoise is likely lost for
clinical studies of NIRS since it is already widely used in these
patients in cardiac intensive care units and its benefit in that
population has been demonstrated in small studies. Clinical
trials of NIRS and time-synchronized analytical tools are being
studied in other populations, however, such as neonates with HIE
(64, 65, 168) and those born preterm (121, 122, 169).

In addition, the use of NIRS to estimate the upper and
lower limits of CA in vulnerable neonatal populations requires
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FIGURE 2 | Wavelet transform coherence analysis can be used to characterize cross-correlations between mean arterial pressure and ScO2 as a function of a wide

range of both time and frequencies. The coherence depicted by color mapping represents the correlations across the time-frequency axis and can be translated into

percent coherence from 0 (least coherent, blue) to 1 (most coherent, red). In-phase coherence indicates impaired cerebral autoregulation.

additional study and a focus on a precision-medicine approach,
which is underway in ongoing clinical trials (170). The optimal
MAP to maintain stable CBF are unique to individuals and
highly related to their specific pathology and their hemodynamic
adaptations (160). In the fetal and preterm neonatal populations
the ability to autoregulate CBF is not yet fully mature. For
those with CHD, the limits of CA are highly related to the
degree of somatic and cerebral hypoxia that drives minute
to minute changes in CBF. In each of these cases, uniform
thresholds of what is considered adequate MAP are not able to
provide the type of precision medicine that is needed to improve
patient outcomes. Instead, new tools to analyze and integrate
the multitude of data points that clinicians are tasked with
interpreting are essential to allow a precision-medicine approach
and move the field forward.

Technologies that integrate multiple monitoring modalities
into a time synchronized visual representation will allow a new
level of interpretation and improve our individualized approach
to care. Specifically, in terms of CA, an accurate assessment of
upper and lower limits of CA must be made for each patient
in order to precisely titrate medications and interventions.
Next-level monitoring tools are required to facilitate the rapid
recognition of impending hemodynamic instability. Likewise,
these predictive analytics will be useful to encourage faster
weaning from vasoactive medications, mechanical ventilators,
and other treatments. As with all technologic advances in patient
monitoring, the question of whether these analytics of the future
make a positive impact on patient care must be asked and
carefully investigated.

CONCLUSIONS

Traditional methods of CBF monitoring facilitated our
foundational understanding of the maturational process of
these complex mechanisms and their behavior in the setting of
perturbed hemodynamics. However, the use of animal models
and reliance on technologies with significant limitations led
to a period of stalled progress in the field. Recently developed
techniques including those involving advanced MRI, NIRS,
and novel statistical methods have sparked renewed progress.
These technologies have led to a new understanding of CA as
a dynamic process with limitations that are unique to not only
a specific pathology, but also unique to individual patients.
Progress in this field will hinge upon our ability to integrate the
continuously acquired plethora of patient data into clinically
useful and actionable decision-making algorithms.
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