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Bronchopulmonary dysplasia (BPD) is the most prevalent and clinically significant

complication of prematurity. Accurate identification of at-risk infants would enable

ongoing intervention to improve outcomes. Although postnatal exposures are known

to affect an infant’s likelihood of developing BPD, most existing BPD prediction models

do not allow risk to be evaluated at different time points, and/or are not suitable for use in

ethno-diverse populations. A comprehensive approach to developing clinical prediction

models avoids assumptions as to which method will yield the optimal results by testing

multiple algorithms/models. We compared the performance of machine learning and

logistic regression models in predicting BPD/death. Our main cohort included infants

<33 weeks’ gestational age (GA) admitted to a Canadian Neonatal Network site from

2016 to 2018 (n = 9,006) with all analyses repeated for the <29 weeks’ GA subcohort

(n = 4,246). Models were developed to predict, on days 1, 7, and 14 of admission

to neonatal intensive care, the composite outcome of BPD/death prior to discharge.

Ten-fold cross-validation and a 20% hold-out sample were used to measure area under

the curve (AUC). Calibration intercepts and slopes were estimated by regressing the

outcome on the log-odds of the predicted probabilities. The model AUCs ranged from

0.811 to 0.886. Model discrimination was lower in the <29 weeks’ GA subcohort (AUCs

0.699–0.790). Several machine learning models had a suboptimal calibration intercept

and/or slope (k-nearest neighbor, random forest, artificial neural network, stacking neural

network ensemble). The top-performing algorithms will be used to develop multinomial

models and an online risk estimator for predicting BPD severity and death that does not

require information on ethnicity.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD), a form of chronic lung
disease, is the most common morbidity among very preterm
neonates (i.e., those born before 33 weeks of gestation)
(1). Studies have demonstrated long-term respiratory (2–4),
neurodevelopmental (5–7), and cardiovascular sequelae among
survivors (8, 9). Although the pathways leading to BPD are not
fully understood (10), both prenatal and postnatal exposures are
associated with its development (1).

BPD is commonly defined as the need for oxygen and/or
respiratory support at 36 weeks’ postmenstrual age (11). The
interval between very preterm delivery and the establishment
of a diagnosis provides an opportunity for initiating disease
modification interventions. Clinical prediction models can
support the identification of at-risk patients in order to
appropriately target such interventions. The Eunice Kennedy
Shriver National Institute of Child Health and Human
Development (NICHD) hosts an online BPD risk estimator
that allows users to predict the probability of mild, moderate
and severe BPD, and death, on postnatal days 1, 3, 7, 14, 21,
and 28 (12). This risk estimator has not been validated in the
Canadian population and was developed using data from 2000
to 2004 (13). The clinical management of very preterm infants,
including ventilation support, has evolved markedly since that
time (14, 15). Moreover, the estimator’s functionality is limited in
ethno-diverse populations: ethnicity is a required input and the
only response options are White, Black or Hispanic. Most other
BPD prediction models only allow an infant’s risk to be estimated
at one point in time [reviewed in (16, 17)] and therefore have
limited clinical utility, given that postnatal exposures are known
to affect the likelihood of developing BPD (1).

While regression-basedmethods have traditionally dominated
the field of predictive modeling—with existing BPD prediction
models being no exception (16)—machine learning algorithms
are also available for this purpose. Leo Breiman, in a seminal
article titled “Statistical Modeling: The Two Cultures,” outlines
a rationale for adopting a more diverse set of tools (specifically,
machine learning) when using data in research applications,
including predictive modeling (18). Boulesteix and Schmid
further note, “It is not easy to foresee which method will
perform better on a particular dataset (. . . ) In this perspective,
there is no reason to restrict to a single prediction method
if the goal is to achieve good prediction accuracy” [(19), p.
589]. It is prudent, therefore, to adopt a more comprehensive
approach when developing clinical prediction models, one in
which multiple algorithms/models are compared to identify the
top-performing one(s).

We are aware of only one published report that compared
a range of machine learning algorithms with regression-based
methods for predicting BPD (20). The investigators focused
exclusively on discrimination performance (i.e., howwell amodel
differentiates between those who do and do not experience the
outcome) and did not examine howwell their models’ predictions
matched the observed outcome (known as calibration) (21).
Both measures are critical when assessing performance, as the
predicted risks may be unreliable if a model exhibits good

discrimination but poor calibration (22). As such, their report
provides an incomplete comparison of machine learning and
regression-based methods for predicting BPD.

Our objectives were to compare the performance of machine
learning and logistic regression models in predicting the
composite outcome of BPD/death on days 1, 7, and 14 of an
infant’s stay in the neonatal intensive care unit (NICU) and to
identify the top-performing algorithms/models. These will be
used in future work to develop an online tool for predicting
BPD severity and death that does not require information on the
infant’s ethnicity, using data from a Canadian cohort exposed to
contemporary respiratory support practices.

MATERIALS AND METHODS

The study protocol was reviewed for ethical compliance by
the Queen’s University Health Sciences and Affiliated Teaching
Hospitals Research Ethics Board and the Mount Sinai Hospital
Research Ethics Board. We followed the Transparent Reporting
of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) recommendations (23).

Data Source and Cohort
We used a database maintained by the Canadian Neonatal
Network (CNN) that captures >90% of admissions to tertiary
NICUs across Canada (n = 31 at the time of this study)
and includes information on maternal characteristics, infant
demographics, delivery room interventions, daily interventions,
and infant outcomes (24). Trained personnel abstract data from
patient charts into an electronic database with built-in error
checking. An internal audit revealed high levels of agreement
(>95%) between the original and the re-abstracted data (25).

We included infants born before 33 weeks of gestation who
were admitted between January 1, 2016 and December 31, 2018.
Infants were excluded if they were transferred to a lower level
of care or discharged home within 24 h of admission; were
moribund on admission or died on their first day in the NICU;
had a severe congenital anomaly; were admitted on postnatal day
3 or later (where the day of delivery was considered postnatal
day 1); were discharged within 14 days of admission for reasons
other than death, or if the discharge date was missing; or if their
outcome status could not otherwise be determined. Infants who
died on or before days 7 and 14 of their NICU stay were further
excluded from the Day 7 andDay 14models, respectively.We did
not perform sample size calculations.

Outcome and Predictors
We examined the composite outcome of BPD/death prior to
discharge from the tertiary care unit. BPD was defined as receipt
of any of the following supports at 36 weeks’ postmenstrual
age or at discharge from the NICU, whichever occurred earlier:
>21% oxygen, high-frequency ventilation, intermittent positive
pressure ventilation, non-invasive ventilation, continuous
positive airway pressure, or high flow air/oxygen at flow rate
>1.5 liters/minute. All other eligible infants were classified
as “Survived to NICU discharge without BPD.” An initial list
of predictors was created by reviewing the literature on risk
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TABLE 1 | Variables entered in models to predict bronchopulmonary dysplasia or death prior to NICU discharge among very preterm infants on Days 1, 7, and 14 of

admission to Canadian NICUs, 2016–2018.

Predictor Possible valuesa Day 1

models

Day 7

models

Day 14

models

Inborn Yes (born in hospital where NICU located)

No (transferred in)

Missing

Y Y Y

Sex Boy

Girl

Missing

Y Y Y

Gestational age (weeks and days) <33.0 weeks Y Y Y

Small for gestational age (birthweight <10th percentile for

gestational age and sex)

Yes

No

Missing

Y Y Y

SNAPPE-II score (31) (Score for Neonatal Acute Physiology

with Perinatal Extension-II; newborn illness severity score

based on 9 vital signs and laboratory test results measured in

first 12 h of admission to NICU, where higher scores indicate

higher illness severity)

0–162

Missing

Y Y Y

Hypertension Pre-existing

Gestational

Yes, timing unknown

No

Missing

Y Y Y

Complete course of antenatal steroids in week preceding

delivery

Yes

No (partial course, or none)

Missing

Y Y Y

Preterm premature rupture of membranes Yes (≥24 h between rupture of membranes and birth)

No (<24 h)

Missing

Y Y Y

Mode of delivery Caesarean

Vaginal

Missing

Y Y Y

Delivery room resuscitation requiring intubation Yes (intubation, chest compression, and/or

epinephrine administered in delivery room)

No

Missing

Y Y Y

Surfactant administered on or before day of prediction (e.g.,

for Day 1 models, “Yes” if surfactant administered on day

admitted to NICU; for Day 7 models, “Yes” if administered on

or before day 7 of NICU stay)

Yes

No

Y Y Y

Nitric oxide administered on first day of NICU stay Yes

No

Y N N

Number of days on nitric oxide up to and including day of

prediction

0–7 (Day 7 models)

0–14 (Day 14 models)

N Y Y

Inotropes administered on first day of NICU stay Yes

No

Y N N

Number of days on inotropes up to and including day of

prediction

0–7 (Day 7 models)

0–14 (Day 14 models)

N Y Y

HFV or IPPV on first day of NICU stay Yes

No

Y N N

Number of days of HFV or IPPV up to and including day of

prediction

0–7 (Day 7 models)

0–14 (Day 14 models)

N Y Y

NIV or CPAP on first day of NICU stay Yes

No

Y N N

Number of days of NIV or CPAP up to and including day of

prediction

0–7 (Day 7 models)

0–14 (Day 14 models)

N Y Y

Culture-confirmed sepsis on or before Day 7 of NICU stay Yes

No

N Y N

Culture-confirmed sepsis on or before Day 14 of NICU stay Yes

No

N N Y

CPAP, Continuous positive airway pressure.

HFV, High-frequency ventilation.

IPPV, Intermittent positive pressure ventilation.

NICU, Neonatal intensive care unit.

NIV, Non-invasive ventilation.
a Prior to one-hot encoding, categorizing continuous variables where violations of assumption of linearity with respect to logit of outcome detected, and imputing missing values.
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factors for BPD (26–30) and existing BPD prediction models
[reviewed in (16, 17)]. The final predictors were chosen based on
availability in the CNN database and are listed in Table 1.

Data Preprocessing
The study dataset was imported into Python version 3.6 (Python
Software Foundation, https://www.python.org/).

Managing Continuous Variables
In logistic regression, the continuous predictors are assumed to
be linearly related to the logit of the outcome (32). Preliminary
analyses revealed that two continuous predictors—gestational
age (GA) and the Score for Neonatal Acute Physiology with
Perinatal Extension-II (SNAPPE-II) score [a newborn illness
severity score (31)]—were two of the strongest predictors of
BPD/death. We verified whether the assumption of linearity was
violated for these variables by first entering all the predictors into
a logistic regression model. The same set of predictors, as well as
a product term for GA and its natural logarithm, were entered
into a second model. Because the product term was statistically
significant (32), separate categories for each GA in completed
weeks were created. We repeated this process for the SNAPPE-II
score. The product term was not significant, and so SNAPPE-II
score was modeled as a continuous variable. For simplicity, and
because the current aim was not to develop clinical prediction
models per se but rather to compare the performance of models
trained using different approaches, linearity was assumed for all
other non-categorical variables. The continuous predictors were
then standardized so that their values ranged between 0 and
1. Each predictor was thus given equal consideration by the k-
nearest neighbor algorithm during the model training phase; this
algorithm calculates the distance between data points to make its
predictions and thus is sensitive to variable scaling (33).

One-Hot Encoding
All non-binary categorical predictors (e.g., hypertension; see
Table 1) were transformed intomultiple binary variables through
one-hot encoding [a process similar to creating dummy variables
in regular statistical modeling, except that in the case of n
categories one-hot encoding will create n variables, each of whose
values are coded as “0” or “1” (34)].

Algorithms/Ensembles and Prediction
Time Points
There is no consensus as to whether logistic regression should be
considered a machine learning algorithm (35). For our purposes,
we refer to unpenalized logistic regression as “standard logistic
regression” and consider penalized logistic regression to be a
machine learning algorithm. In penalized regression, a penalty
term is added to the model to reduce overfitting (36).

In addition to penalized logistic regression, we examined three
other commonly used machine learning algorithms [support
vector machine (37), k-nearest neighbor (38), artificial neural
network (39)] and three ensemble methods [random forest (40),
soft voting ensemble, stacking neural network ensemble]. A
description of the models is provided in Supplementary Table 1.

Model Training and Internal Validation
We used two methods to train and internally validate the
models: 10-fold cross-validation and a training-test split (41). For
each set of models (Days 1, 7, 14), stratified random sampling
was used to select 80% of records within each outcome class
(BPD/death, survived to NICU discharge without BPD) to form
the training/cross-validation dataset. The remaining 20% of
records formed the test dataset.

With each method, missing values were imputed separately
for the training and test/validation data (i.e., in the training-test
split procedure, missing values were imputed separately for a)
the 80% of records forming the training dataset and b) the 20%
of records forming the test dataset; and in the 10-fold cross-
validation procedure, the missing values in the training dataset
were imputed at the beginning of each cycle separately for a)
the nine folds comprising the training data and b) the tenth
fold comprising the validation data) using the IterativeImputer
procedure from Python’s Sklearn library (42). This procedure
sequentially treats each variable with missing values as the
dependent variable and regresses it on all the other variables to
impute values for the missing data. “Iterative” refers to the fact
that the procedure is repeatedmultiple times (in our case, we used
the default value of 10), under the assumption that this will result
in increasingly more accurate and stable estimates of the missing
values (43). Only the values imputed in the final iteration are used
to fit the models, and therefore IterativeImputer is considered a
single imputation procedure (42).

Discrimination performance was assessed by the area under
the curve (AUC) of the receiver operating characteristic curve
(44) for the models developed using the 10-fold cross-validation
and the training-test split procedures. Model calibration
was evaluated in the test dataset using methods that are
described further on in the section outlining the training-test
split procedure.

10-Fold Cross-Validation
Stratified random sampling was again used to divide the
training/cross-validation dataset (i.e., the dataset containing 80%
of the total records) into ten folds. K-fold cross-validation (in
our case, k = 10) is a procedure whereby multiple models are
generated and validated in multiple subsets of the data, with
each record used k-1 times for training and exactly once for
validation (45). In each cycle of our procedure (where 10 cycles
= 1 iteration), the models were trained on nine of the folds. All
the predictors were included, i.e., no variable selection techniques
were used. Interactions were not explicitly tested. {Note, however,
that certain algorithms automatically model interactions between
predictors. These include tree-based methods [e.g., random
forests (46)] and artificial neural networks (47).} Each cycle
generated an AUC when the model was validated in the holdout
fold. One iteration of the procedure thus generated 10 AUCs.

Machine learning algorithms use hyperparameters to search
for the optimal solution during model training (48). An example
of a hyperparameter is the “k” in k-nearest neighbor, which
specifies the number of data points that are used in the training
dataset to classify new observations (38). Unlike the parameters
of a logistic regressionmodel, hyperparameters are not estimated.
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FIGURE 1 | Selection of study cohort.

Instead, software packages offer default values. The analyst can
also manually set the values or use a tuning procedure to
configure them (49). The optimal hyperparameter values for
our models (see Supplementary Table 1) were determined in the
initial iterations of the 10-fold cross-validation procedure. The
default settings were used during the first iteration. In subsequent
iterations, the parameters were “tweaked” to examine the effect
on the AUC. This process was repeated until the hyperparameters
were tuned to yield the highest AUCs. No hyperparameters
were tuned for the standard logistic regression models, with the
“penalty” hyperparameter set to “none.”

Once the hyperparameters were tuned, a final iteration of the
10-fold cross-validation procedure was performed. The AUCs
from those final ten cycles were averaged.

Training-Test Split
The algorithms were then run on the full training/cross-
validation dataset using the optimized hyperparameter settings.
The discrimination performance of the resulting models
was evaluated in the test dataset and we generated 95%
confidence intervals for those AUCs using the formula provided
by Hanley and McNeil (44). We also calculated sensitivity,
specificity, as well as positive and negative predictive values
and 95% confidence intervals by entering the number of true
positives and negatives and false positive and negatives in
the test dataset—using the default threshold of probability
of BPD/death ≥0.5 to denote “test positive”—into an online
calculator (https://www.medcalc.org/calc/diagnostic_test.php).
The predicted probabilities of BPD/death for records in the
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test dataset were saved. Model calibration was examined by
comparing the mean predicted probabilities to the observed
proportion of BPD/death. Calibration intercepts and slopes
were also estimated (50, 51). The calibration intercept has a
target value of 0 and indicates whether a model systematically
overestimates (negative intercept) or underestimates (positive
intercept) the risk (22, 52, 53). It was obtained by fitting
a univariate logistic regression model with BPD/death as
the dependent variable and the log-odds of the predicted
probability as an offset variable (51). The calibration slope has
a target value of 1. A slope <1 indicates that the predicted
probabilities are too extreme (i.e., too high for those at high
risk and too low for those at low risk), whereas a slope >1
indicates a model’s predictions are too high for those at low
risk and too low for those at high risk (22, 53). The calibration
slope was estimated by fitting a second logistic regression
model with BPD/death as the dependent variable and the
log odds of the predicted probability as the independent
variable, with the intercept set to the value estimated in the
previous step (50, 51, 54). The predicted probabilities and
observed outcomes were then imported into SAS Enterprise
Guide v. 7.13 (SAS Institute Inc., Cary, NC). We used the
SGPLOT procedure to fit loess curves for the observed and
predicted probabilities.

Machine learning includes methods for assigning scores to
indicate the relative importance of each variable in predicting the
outcome of interest.We used random forests to generate these so-
called feature importance scores (55), which were decimal figures
that summed to 1.

Sensitivity/Subgroup Analyses
To examine whether the decision to categorize GA had any
impact on the discrimination performance of the machine
learning models, GA was retained in continuous form and the
10-fold cross-validation procedure was repeated.

A 2019 commentary observed that “the critical user of
prediction models should look for evidence that the reported
overall accuracy of models still applies for subgroups of patients
with very different input or outcome prevalence.” (56). The
incidence of BPD is much higher in younger GA groups,
particularly among those born prior to 29 weeks of gestation (57).
Accordingly, we also trained and validated models using data
from this subgroup of infants.

RESULTS

A total of 12,990 neonates born prior to 33 weeks of gestation
were admitted to a tertiary-care NICU in Canada between
January 1, 2016 and December 31, 2018. After the exclusion
criteria were applied, the main study cohort numbered 9,006,
approximately one-third [n = 3,188 (35%)] of whom developed
BPD or died during their NICU stay (see Figure 1). These
infants formed the cohort for the Day 1 models. Their
characteristics are shown in Table 2. After excluding deaths
on or prior to days 7 and 14 of admission, the cohorts for
the Day 7 and Day 14 models numbered 8,715 (n = 2,897
(33%) BPD/death) and 8,601 (n = 2,783 (32%) BPD/death),

respectively. The corresponding numbers for the <29 weeks’
GA subcohort were 4,246 (n = 2,510 (59%) BPD/death);
4,000 (n = 2,264 (57%) BPD/death); and 3,899 (n = 2,163
(55%) BPD/death).

Table 3 provides the AUCs from the 10-fold cross-validation
and the training-test split procedures. In the main cohort, the
AUCs ranged from 0.811 to 0.862 for the Day 1 models, 0.812
to 0.886 for the Day 7 models, and 0.815 to 0.884 for the Day
14 models. Discrimination performance was lower in the <29
weeks’ GA subcohort: 0.699–0.782 for the Day 1 models, 0.706–
0.783 for the Day 7 models, and 0.708–0.790 for the Day 14
models. The average AUCs from the 10-fold cross-validation
procedure and the AUCs obtained when the models were run
on the test dataset were generally similar (e.g., 0.861 and 0.860
for the Day 1 standard logistic regression models, <33 weeks’
GA cohort).

For infants born prior to 33 weeks of gestation, the AUCs
when GA was modeled as a categorical (Table 3) and continuous
variable (Supplementary Table 2) were also generally similar.
The differences were more pronounced in the <29 weeks’ GA
subcohort, with the biggest difference in favor of categorizing
GA observed for the Day 1 k-nearest neighbor model (average
AUC= 0.692 when modeled as a continuous variable vs. average
AUC = 0.724 when categorized) and the biggest difference in
favor of modeling it as a continuous variable observed in the
Day 7 support vector machine model (average AUC = 0.777
when modeled as a continuous variable vs. average AUC= 0.737
when categorized).

Tables 4, 5 provide the model calibration statistics. The
calibration slopes for the k-nearest neighbor and random forest
models were significantly lower than the target value of 1,
indicating that their predictions were too extreme (note that
the models to determine the calibration intercepts and slopes
for the Day 7 and Day 14 k-nearest neighbor models did
not converge for the main cohort, and so those data are not
provided). In contrast, the calibration slopes for the artificial
neural network and stacking neural network ensemble models
were often significantly higher than 1, meaning that their
predictions tended to be too high for those at low risk and too
low for those at high risk.

We compared the summary performance statistics detailed
above (AUC, calibration intercept and slope) to select the models
that will be further explored when we develop an online tool for
estimating BPD severity and death (as noted in the introduction).
However, we have also provided data on additional performance
measures (sensitivity, specificity, positive and negative
predictive values, and loess-smoothed calibration curves)
in Supplementary Tables 3, 4 and Supplementary Figure 1 for
readers who are interested in a more detailed comparison of
the models.

The feature importance plots (Figure 2) illustrate that GA
was the most important predictor of BPD/death at all three
time points in both cohorts. The SNAPPE-II score (Day 1,
both cohorts; Day 7, <29 weeks’ GA) and duration of high-
frequency or intermittent positive pressure ventilation (Day 7,
<33 weeks’ GA; Day 14, both cohorts) were the second most
influential predictors.
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TABLE 2 | Characteristics of infants born at <33 weeks of gestation who were admitted to a Canadian tertiary-care NICU from 2016 to 2018 and whose data were

included in models to predict bronchopulmonary dysplasia (BPD) or death prior to NICU discharge.

Missing values BPD or death

(n = 3,188)

Survived to NICU discharge without BPD

(n = 5,818)

n (%a) n (Valid %b) or

Mean (SD)

Median (range; IQR)

n (Valid %b) or

Mean (SD)

Median (range; IQR)

Inborn <5 (<0.05) 2,757 (86) 5,180 (89)

Male 8 (0.09) 1,785 (56) 3,143 (54)

Gestational age, completed weeks 0 26.5 (2.4)

26 (21–32; 25–28)

29.5 (2.1)

30 (23–32; 28–31)

Small for gestational age 9 (0.10) 441 (14) 487 (8.4)

SNAPPE-II score (31) 115 (1.3) 16.6 (14.1)

14 (0–84; 7–24)

6.1 (8.3)

0 (0–59; 0–9)

Hypertension 217 (2.4)

Pre-existing 116 (3.7) 198 (3.5)

Gestational 430 (14) 935 (16)

Yes, timing unknown 10 (0.32) 16 (0.28)

Complete case of antenatal steroids in week preceding

delivery

97 (1.1) 1,233 (39) 2,219 (39)

Preterm premature rupture of membranes 399 (4.4) 768 (25) 1,271 (23)

Caesarean delivery 18 (0.20) 2,007 (63) 3,639 (62)

Delivery room resuscitation requiring intubation 79 (0.88) 1,556 (49) 853 (15)

Surfactant 0

First day of NICU stay 1,961 (62) 1,485 (26)

On or before day 7 of NICU stay 2,384 (75) 1,940 (33)

On or before day 14 of NICU stay 2,393 (75) 1,943 (33)

Nitric oxide 0

First day of NICU stay 192 (6.0) 43 (0.74)

Frequency up to and including day 7 of NICU stay, days 0.33 (1.1)

0c (0–7)

0.07 (0.50)

0c (0–7)

Frequency up to and including day 14 of NICU stay, days 0.51 (1.7)

0c (0–14)

0.07 (0.53)

0c (0–9)

Inotropes 0

First day of NICU stay 325 (10) 108 (1.9)

Frequency up to and including day 7 of NICU stay, days 0.6 (1.4)

0c (0–7)

0.18 (0.73)

0c (0–7)

Frequency up to and including day 14 of NICU stay, days 0.9 (2.1)

0c (0–14)

0.22 (0.94)

0c (0–9)

High-frequency ventilation or intermittent positive pressure

ventilation

0

First day of NICU stay 2,060 (65) 1,441 (25)

Frequency up to and including day 7 of NICU stay, days 4.4 (2.8)

6 (0–7; 2–7)

2.0 (2.4)

1 (0–7; 0–3)

Frequency up to and including day 14 of NICU stay, days 8.0 (5.6)

9 (0–14; 2–14)

2.9 (4.1)

1 (0–14; 0–4)

Non-invasive ventilation or continuous positive airway

pressure

0

First day of NICU stay 984 (31) 3,496 (60)

Frequency up to and including day 7 of NICU stay, days 2.5 (2.8)

1 (0–7; 0–5)

4.6 (2.5)

5.0 (0–7; 3–7)

Frequency up to and including day 14 of NICU stay, days 5.8 (5.5)

5 (0–14; 0–12)

9.3 (4.6)

11 (0–14; 6–14)

Culture-confirmed sepsis 0

On or before day 7 of NICU stay 228 (7.2) 132 (2.3)

On or before day 14 of NICU stay 483 (15) 255 (4.4)

The data in this table describe the cohort used to develop the Day 1 prediction models.

IQR, Interquartile range.

NICU, Neonatal intensive care unit.

SD, Standard deviation.
a Calculated using denominator of n = 9,006.
b Denominator excludes missing values.
c IQR could not be calculated.
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TABLE 3 | Area under the curve (AUC) for models predicting bronchopulmonary dysplasia or death prior to NICU discharge at three time points (Days 1, 7, and 14 of NICU stay) among infants born at <33 weeks and

<29 weeks of gestation who were admitted to Canadian tertiary-care NICUs, 2016–2018.

<33 weeks <29 weeks

Day 1 Day 7 Day 14 Day 1 Day 7 Day 14

Model 10-fold cross-

validation

Test dataset

(95% CI)

10-fold cross-

validation

Test dataset

(95% CI)

10-fold cross-

validation

Test dataset

(95% CI)

10-fold cross-

validation

Test dataset

(95% CI)

10-fold cross-

validation

Test dataset

(95% CI)

10-fold cross-

validation

Test dataset

(95% CI)

Standard

Logistic

Regression (LR)

0.861 0.860

(0.840–0.880)

0.884 0.884

(0.865–0.903)

0.877 0.878

(0.858–0.898)

0.779 0.782

(0.752–0.812)

0.776 0.783

(0.752–0.814)

0.776 0.790

(0.759–0.821)

Penalized LR 0.861 0.861

(0.841–0.881)

0.884 0.884

(0.865–0.903)

0.878 0.879

(0.859–0.899)

0.781 0.780

(0.750–0.810)

0.777 0.782

(0.751–0.813)

0.775 0.790

(0.759–0.821)

Support Vector

Machine

0.830 0.837

(0.816–0.858)

0.859 0.861

(0.841–0.881)

0.853 0.858

(0.837–0.879)

0.758 0.750

(0.718–0.782)

0.737 0.756

(0.723–0.789)

0.768 0.772

(0.740–0.804)

K-Nearest

Neighbor

0.814 0.811

(0.789–0.833)

0.812 0.822

(0.799–0.845)

0.815 0.817

(0.794–0.840)

0.724 0.719

(0.685–0.753)

0.707 0.706

(0.671–0.741)

0.708 0.716

(0.681–0.751)

Artificial Neural

Network

0.862 0.859

(0.839–0.879)

0.871 0.881

(0.862–0.900)

0.877 0.872

(0.852–0.892)

0.772 0.780

(0.750–0.810)

0.758 0.774

(0.742–0.806)

0.752 0.769

(0.737–0.801)

Random Forest 0.817 0.819

(0.797–0.841)

0.851 0.854

(0.833–0.875)

0.863 0.857

(0.836–0.878)

0.721 0.699

(0.664–0.734)

0.737 0.725

(0.691–0.759)

0.753 0.760

(0.727–0.793)

Soft Voting

Ensemble

0.861 0.860

(0.840–0.880)

0.880 0.882

(0.863–0.901)

0.881 0.879

(0.859–0.899)

0.777 0.774

(0.743–0.805)

0.772 0.775

(0.743–0.807)

0.775 0.787

(0.756–0.818)

Stacking Neural

Network

Ensemble

0.862 0.862

(0.843–0.881)

0.886 0.885

(0.866–0.904)

0.884 0.878

(0.858–0.898)

0.758 0.775

(0.744–0.806)

0.770 0.772

(0.740–0.804)

0.766 0.772

(0.740–0.804)

NICU, Neonatal intensive care unit.
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TABLE 4 | Calibration of models predicting bronchopulmonary dysplasia or death prior to NICU discharge at three time points (Days 1, 7, and 14 of NICU stay) among infants born at <33 weeks of gestation who

were admitted to Canadian tertiary-care NICUs in 2016–2018, as assessed in test dataset.

Day 1 n = 1,802 Day 7 n = 1,743 Day 14 n = 1,721

Observed

proportion

BPD/death

(n = 638)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Observed

proportion

BPD/death

(n = 579)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Observed

proportion

BPD/death

(n = 557)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Standard

Logistic

Regression (LR)

0.354 0.343 0.08

(−0.04, 0.20)

1.05

(0.96, 1.13)

0.332 0.331 0.006

(−0.12, 0.13)

1.08

(0.98, 1.18)

0.324 0.315 0.07

(−0.06, 0.20)

1.04

(0.94, 1.14)

Penalized LR 0.354 0.343 0.08

(−0.04, 0.20)

1.07

(0.98, 1.16)

0.332 0.331 0.007

(−0.12, 0.13)

1.10

(1.00, 1.20)

0.324 0.315 0.07

(−0.06, 0.20)

1.06

(0.97, 1.16)

Support Vector

Machine

0.354 0.347 0.04

(−0.07, 0.16)

1.07

(0.98, 1.16)

0.332 0.331 0.008

(−0.11, 0.13)

1.10

(1.01, 1.19)

0.324 0.316 0.05

(−0.07, 0.18)

1.04

(0.96, 1.13)

K-Nearest

Neighbor

0.354 0.337 7.61

(5.71, 9.51)

0.36

(0.35–0.37)

0.332 0.329 —a —b 0.324 0.309 —a —b

Artificial Neural

Network

0.354 0.346 0.05

(−0.07, 0.16)

1.16

(1.06, 1.27)

0.332 0.338 −0.04

(−0.16, 0.09)

1.25

(1.13, 1.37)

0.324 0.319 0.04

(−0.09, 0.16)

1.08

(0.98, 1.18)

Random Forest 0.354 0.348 0.05

(−0.08, 0.18)

0.35

(0.30, 0.40)

0.332 0.333 −0.006

(−0.14, 0.13)

0.46

(0.40, 0.52)

0.324 0.319 0.04

(−0.09, 0.18)

0.60

(0.53, 0.67)

Soft Voting

Ensemble

0.354 0.346 0.05

(−0.07, 0.17)

1.10

(1.01, 1.20)

0.332 0.327 0.04

(−0.09, 0.16)

1.15

(1.05–1.25)

0.324 0.319 0.04

(−0.09, 0.16)

1.11

(1.01, 1.21)

Stacking Neural

Network

Ensemble

0.354 0.365 −0.07

(−0.19, 0.04)

1.10

(1.00, 1.19)

0.332 0.333 −0.003

(−0.13, 0.12)

1.16

(1.06–1.26)

0.324 0.327 −0.02

(−0.15, 0.10)

1.17

(1.07, 1.28)

NICU, Neonatal intensive care unit.
a Model did not converge.
b Calibration slope could not be estimated (see preceding footnote).
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TABLE 5 | Calibration of models predicting bronchopulmonary dysplasia or death prior to NICU discharge at three time points (Days 1, 7, and 14 of NICU stay) among infants born at <29 weeks of gestation who

were admitted to Canadian tertiary-care NICUs in 2016–2018, as assessed in test dataset.

Day 1 n = 850 Day 7 n = 800 Day 14 n = 780

Observed

proportion

BPD/death

(n = 502)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Observed

proportion

BPD/death

(n = 453)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Observed

proportion

BPD/death

(n = 433)

Mean

predicted

probability

BPD/death

Calibration

intercept

(95% CI)

Calibration

slope

(95% CI)

Standard

Logistic

Regression (LR)

0.591 0.588 0.01

(−0.14, 0.17)

1.08

(0.92, 1.25)

0.566 0.564 0.01

(−0.15, 0.17)

1.05

(0.89, 1.22)

0.555 0.546 0.05

(−0.11, 0.21)

1.00

(0.84, 1.16)

Penalized LR 0.591 0.588 0.01

(−0.14, 0.16)

1.11

(0.93, 1.28)

0.566 0.564 0.01

(−0.15, 0.17)

1.07

(0.90, 1.24)

0.555 0.547 0.05

(−0.12, 0.21)

1.05

(0.89, 1.22)

Support Vector

Machine

0.591 0.594 −0.02

(−0.17, 0.13)

1.02

(0.86, 1.18)

0.566 0.563 0.01

(−0.14, 0.17)

0.99

(0.83, 1.15)

0.555 0.550 0.02

(−0.13, 0.18)

1.00

(0.85, 1.16)

K-Nearest

Neighbor

0.591 0.582 0.05

(−0.11, 0.22)

0.07

(0.05, 0.09)

0.566 0.567 −0.003

(−0.18, 0.17)

0.07

(0.05, 0.09)

0.555 0.552 0.02

(−0.16, 0.19)

0.09

(0.07, 0.11)

Artificial Neural

Network

0.591 0.678 −0.46

(−0.61, −0.31)

0.98

(0.86, 1.11)

0.566 0.621 −0.28

(−0.44, −0.13)

1.00

(0.84, 1.15)

0.555 0.569 −0.07

(−0.22, 0.09)

1.20

(1.00, 1.39)

Random Forest 0.591 0.584 0.04

(−0.13, 0.21)

0.39

(0.30, 0.47)

0.566 0.558 0.05

(−0.12, 0.22)

0.53

(0.42, 0.63)

0.555 0.544 0.06

(−0.11, 0.23)

0.69

(0.57, 0.81)

Soft Voting

Ensemble

0.591 0.599 −0.04

(−0.19, 0.11)

1.06

(0.90, 1.23)

0.566 0.564 0.01

(−0.15, 0.17)

1.06

(0.89, 1.23)

0.555 0.554 0.003

(−0.16, 0.16)

1.09

(0.92, 1.26)

Stacking Neural

Network

Ensemble

0.591 0.569 0.10

(−0.05, 0.24)

1.49

(1.26, 1.73)

0.566 0.630 −0.29

(−0.44, −0.15)

1.40

(1.20, 1.60)

0.555 0.594 −0.19

(−0.34, −0.03)

1.21

(1.02, 1.39)

NICU, Neonatal intensive care unit.
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FIGURE 2 | Feature importance plots illustrating relative importance of each variable in predicting the outcome of bronchopulmonary dysplasia or death prior to NICU

discharge among infants born at <33 and <29 weeks of gestation in Canada, 2016–2018. HFV, High-frequency ventilation; IPPV, Intermittent positive pressure

ventilation; NIV, Non-invasive ventilation; CPAP, Continuous positive airway pressure.

DISCUSSION

In our comparison of standard logistic regression and
machine learning methods for predicting BPD/death, no
one method/model clearly outperformed all the others. However,
certain models performed less well: the AUCs for the random
forest and k-nearest neighbor models were often the lowest, and
their predictions were consistently too extreme (calibration slope
<1). The AUCs for the artificial neural network and stacking
neural network ensemble models were generally similar to
those reported for the logistic regression models in the main
cohort, but they were consistently lower in the <29 weeks’
GA subcohort.

Moreover, the calibration performance of those models
(artificial neural network, stacking neural network ensembles)
was often suboptimal. A 2019 systematic review of 71 studies
that compared machine learning and logistic regression models
for predicting a variety of clinical outcomes highlighted the

frequent failure on the part of investigators to report calibration
performance (35). Models that exhibit good discrimination may
still yield unreliable predicted risks (22), which could lead
to systematic errors in decision-making (58). Assessing model
calibration is particularly important with machine learning
approaches: while logistic regression models can be recalibrated
by reestimating the intercept (22) and updating the regression
coefficients (51), methods for improving the calibration of
machine learning models are “unclear” (59).

Machine learning is often touted for its superior ability to
model complex, non-linear relationships (48, 60). It is possible
that the relationship between the predictors we examined and
the outcome of BPD/death is adequately captured by fitting
standard logistic regression models, even without the inclusion
of interaction terms. The ensemble models, which are designed to
boost predictive accuracy (61), also failed to outperform logistic
regression. While we did not empirically explore the reasons for
this, the algorithms we tested may not have provided sufficient
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“diversity of opinion”— in other words, all the models may have
tended to make similar predictions for the same individuals—
for the ensemble methods to have been effective (61, 62). It is
worth noting, however, that in Jaskari et al.’s comparison of nine
machine learning and regression-based algorithms for predicting
BPD, the random forest ensemble model had one of the best
discrimination performances with an AUC of 0.884, compared
to 0.856 for the logistic regression model (20).

As noted in the results section, we used the AUC and
calibration intercept and slope to select the top-performing
models, rather than comparing sensitivity, specificity or
predictive values. Additionally, we did not, at this stage, consider
how well the predicted probabilities aligned with the observed
outcomes across the full predictive range. These decisions were
made in consideration of the current aim, which was to select
candidate algorithms by comparing summary performance
measures for binary BPD prediction models. In the next phase of
our work, we plan to use these algorithms to developmultinomial
models for predicting BPD severity and death, and to translate
those top-performing models into an online risk assessment
tool. A comprehensive evaluation of model performance will be
undertaken at that time that considers clinical relevance. For
example, sensitivity may be the metric of choice for the Day 1
model, as the goal may be to provide minimal-risk therapies to
as many at-risk infants as possible. In contrast, a high positive
predictive value for the Day 14 model would help to ensure that
more aggressive therapies are appropriately targeted at those
who are truly at high risk.

While our study used population-based data from a cohort
managed using contemporary respiratory support practices, our
selection of variables was limited to those collected by the existing
CNN database and we were unable to include some potentially
important predictors in our models [e.g., FiO2 (13), diagnosis
of patent ductus arteriosus on or before 7 days of age (63)].
Nevertheless, the logistic regression, support vector machine,
and soft voting ensemble models demonstrated acceptable
discrimination (≥0.83 at all prediction time points for infants
born prior to 33 weeks of gestation; ≥0.74 for infants born
prior to 29 weeks of gestation) and calibration (as determined by
examining the calibration intercept and slope).

CONCLUSION

Although none of the machine learning models in this
study consistently outperformed standard logistic regression in
predicting the binary outcome of BPD/death, we cannot assume
this will be the case for the multinomial outcome of BPD severity
(mild/moderate/severe) and death. Accordingly, we plan to apply
a similar approach in the next phase of our work—developing
multinomial models to predict BPD severity and death—by
testing the most promising algorithms identified in this study,
i.e., standard and penalized logistic regression, support vector
machine, and soft voting ensemble.

While the comprehensive approach described in this paper
may seem laborious, it avoids implicit assumptions about the

optimal prediction algorithm and allows investigators to directly
compare the predictive performance of multiple models fit using
different algorithms. As such, this approach provides more
confidence in the clinical prediction tools ultimately developed
to inform clinical decision-making.
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