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Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the

diaphragm has not developed properly. It may occur either as an isolated anomaly or

with additional anomalies. It is thought to be a multifactorial disease in which genetic

factors could either substantially contribute to or directly result in the developmental

defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number

Variations (CNVs) impacting specific genes and loci develop CDH typically in the form

of a monogenetic syndrome. These patients often have other associated anatomical

malformations. In patients without a known monogenetic syndrome, an increased

genetic burden of de novo coding variants contributes to disease development. In early

years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes

are commonly analyzed with next generation sequencing (NGS) based approaches.

While more potential pathogenic variants are being detected, analysis of the data

presents a bottleneck—largely due to the lack of full appreciation of the functional

consequence and/or relevance of the detected variant. The exact heritability of CDH

is still unknown. Damaging de novo alterations are associated with the more severe

and complex phenotypes and worse clinical outcome. Phenotypic, genetic—and likely

mechanistic—variability hampers individual patient diagnosis, short and long-term

morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical

follow-up at regular intervals and detailed registries are needed to find associations

between long-term morbidity, genetic alterations, and clinical parameters. Since CDH

is a relatively rare disorder with only a few recurrent changes large cohorts of patients
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are needed to identify genetic associations. Retrospective whole genome sequencing

of historical patient cohorts using will yield valuable data from which today’s patients

and parents will profit Trio whole genome sequencing has an excellent potential for

future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis

and predict clinical prognosis. In this review, we explore the pitfalls and challenges in

the analysis and interpretation of genetic information, present what is currently known

and what still needs further study, and propose strategies to reap the benefits of

genetic screening.

Keywords: foregut, genetics, development, counseling, diaphragm, hernia, discordant monozygotic twin,

congenital

INTRODUCTION

Congenital diaphragmatic hernia (CDH) [OMIM: 142340] has
an estimated incidence of 1 in 1,750–5,880 live births (1–3) and
is characterized by a defect of the diaphragm. This defect allows
herniation of the abdominal organs into the thorax. CDH can be
detected prenatally during first or second trimester ultrasounds
in 50–68% of CDH pregnancies (4–7). Patients are often referred
to a center of expertise with a specialized multidisciplinary
team for prenatal assessment, prognostic and genetic counseling
and care. CDH prevalence has slightly increased in the past
years (3). Still, the mortality rates have decreased, probably
due to better treatment strategies (8), although this decline is
more pronounced in wealthier coutnries than in developing
countries (9).

Most of what we know of human diaphragm development
is based on descriptive and functional analyses of animal
models. The diaphragm muscle develops initially from transient
structures located at the top of the liver: the septum transversum,
the pleuroperitoneal folds, the posthepatic mesenchymal plate,
and the somites. Myoblast progenitors and other mesenchymal
cells (10) in the developing pleuroperitoneal folds expand
and migrate to the posthepatic mesenchymal plate. Vice
versa, cells from the posthepatic mesenchymal plate migrate
toward the pleuroperitoneal folds. Finally, the pleuroperitoneal
folds fuse with the posthepatic mesenchymal plate between
embryonic day (E) E12.5 and E13.5 (10, 11). When complete,
this membrane separates the thoracic and abdominal cavity
(E14.5). In CDH, this process is disrupted and the diaphragm
will not fully close (12, 13). A more detailed description of
diaphragm and CDHdevelopment can be found elsewhere in this
issue (14).

Patients with aneuploidies, pathogenic single nucleotide
variants, de novo Copy Number Variations (CNVs) (15–18)
develop CDH, often in the form of a monogenetic syndrome
and in combination with other anatomical malformations
(2, 19). Here, we discuss what is currently known and
inventoried what is necessary to provide optimal genetic
counseling for the individual patients and their parents.
We evaluate genetic outcome of a CDH cohort in the
Erasmus MC-Sophia Children’s Hospital, Rotterdam, the
Netherlands, and propose strategies to reap the benefits of
genetic screening.

CDH HAS SUBTYPES BASED ON DEFECT
SIZE, TYPE AND ANATOMICAL LOCATION

CDH is the most severe diaphragm defects compared to other,
less frequent defects such as incomplete muscularization of the
diaphragm (diaphragmatic eventration) or the presence of just
a thin layer of non-muscular tissue (sac hernia). Subtypes are
identified by the size and anatomical location of the herniation.
Most prevalent are Bochdalek hernias, which are mostly left-
sided (20). Prenatal predictors for survival include associated
malformations (21), defect size (7), lung volume (22), liver
herniation (23), stomach position (24, 25), and lung-to-head
ratio (26, 27). Other predictors include birth weight, Apgar
score, respiratory parameters, cardiac anomalies, chromosomal
changes, and pulmonary hypertension (28–30).

THE RELATION OF DEFECT SIZE AND
GENETIC ALTERATIONS

Larger diaphragms defects are associated with a higher mortality
rate, the prevalence of associated anatomical malformations as
well as the number of associated anatomical malformations
(21). We hypothesized that large continuous locus or gene
changes (e.g., 15q26 loss, 17q12 loss; see Table 1) can modify
multiple genes involved in diaphragm formation, and impact
the development of the embryo in general. In contrast, small
deletions or Single Nucleotide Variants (SNVs) as seen in for
instance FBN1, TGFB3, and SLC2A10 (see Table 2) will be
associated with smaller defects. Therefore, we evaluated whether
the size of the defect was associated with the finding of “a
pathogenic genomic variant” and/or “a genetic syndrome.” We
compared the genetic test results and the defect size classification
(n = 336). Statistical analysis did not indicate associations of the
defect size with an different, uncommon genetic test result. What
we did observed was that patients with no or little follow-up
revealed associations (P < 0.001). In this category patients are
present lacking a registered defect size or registered genetic test.
This category includes patients who have not been subjected to
an intervention due to intrauterine fetal demise or termination
of pregnancy. In the Netherlands, pregnancies in which severe
genetic anomalies (e.g., Edwards syndrome, Patau syndrome) or
structural malformations are observed that are incompatible with
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TABLE 1 | Pathogenic alterations in CDH patients of which the defect size was not registered.

Defect

size (n)

Syndrome (n) n Death Chromosome Type Inheritance Zygosity Genetic change

NR (n = 41) Microdeletion 1 NR 3p26.3-p25.3 Loss de novo het arr[hg18] 3p26.3-p25.3 (0–9398383)

x1

Microduplication NR 11q23.3-q25 Gain de novo het arr[hg18] 11q23.3-q25

(16192532–134452384) x3

Microdeletion 1 NR 5p15 Loss de novo het arr[hg19] 5p15 (0–37,299,510) x1,

Microduplication NR 12p13.3 Gain de novo het arr[hg19] 12p13.31

(9,909,002–10,021,222) x 3

Cornelia de lange 1 N 5p13.2 Missense de novo het NM_1334333 (NIPBL): c.3574G>A;

p. (Glu1192Lys)

Microduplication 1 T 7q11.23 Gain de novo het arr[hg18] 7q11.23

(72,701,018–74,143,000)

Microduplication 1 NR 8p23 Gain ut het 46, XY, der (8) t (3;8) (p23; p23.1)

Microduplication 1 D 9p24.3-p13.1 Gain de novo het arr[hg18] 9p24.3p13.1

(0–39,155,853) x4,

arr[hg18]9p13.1p11.2

(39,155,853–46,468,856) x3

Microdeletion 1 T 9q31.1q31.2 Loss de novo het arr[hg19] 9q31.1q31.2

(105,034,238–111,044,933) x1

Trisomy 9 1 I 9 Aneuploidy de novo het 47, XX, +9(20)/46, XX (4)

Mosaic MYRF gene 1 N 11q12.2 Splicing de novo het NM_001127392.2 (MYRF ):

c.46+2T>C(r.spl?)

Pallister Killian syndrome 3 T (1), NR (2) 12p10 Gain de novo het 47, XX/XY, +i (12) (p10)

Microduplication 1 D 12q24.3 Gain ut het 46, XY, der (12) t (11,12) (q23.3;

q24.3)

Microdeletion 1 T 13q12 Loss de novo het 46, XY, del (13) (q12?) (8)/46, XY (35)

Microdeletion 1 T 13q21.31q32.3 Loss de novo het arr[hg19]13q21.31q32.3

(64,535,372–98,354,979) x1

Patau syndrome 3 T (1), D (1),

NR (1)

13 Aneuploidy de novo het 47, XX +13

Isochromosome 14q 1 N 14q10 Gain de novo het 46, XX, i (14) (q10) (3)/46, XX (22)

Microduplication 1 NR 15 ut het 46, XX, der (15) t (2;15)

Microdeletion 1 D 15q26 Loss de novo het 46, XY, t (1;14) (p22; q13), inv (6)

(p25q22), del (15) (q26)

Edward’s syndrome 16 T (3), I (1), N

(2), D (3), NR

(9)

18 Aneuploidy de novo het 47 XX / XY + 18

Down syndrome 1 NR 21 Aneuploidy de novo het 47, XX +21

Cat eye syndrome 1 T 22q11.1q11.21 Gain de novo het arr [hg19] 22q11.1q11.21

(14,449,498–17,017,139) x4

XY reversal* 2 D (2) XY ? de novo het ?

Genetic tests included karyotyping, SNP array or Whole exome sequencing. AR, Autosomal recessive; XLR, X-linked recessive; CH, compound heterozygote; n, number of patients; ut,

unbalanced translocation.

life, are often terminated. The CDH defect size is not determined
in those cases (see Table 1). Therefore, a complete genetic and
phenotypic evaluation and subsequent association analysis in this
particular group is difficult and often not performed.

ISOLATED CDH AND COMPLEX CDH

CDH may present as an isolated anomaly (isolated-CDH) or
patients can have one or more additional anomalies (CDH-
complex) (1, 31). Anomalies can be found in all body sites;

cardiac anomalies, anomalies of the urogenital system, limb
malformations, nervous system anomalies, orofacial clefts, and
gastrointestinal anomalies including intestinal atresia (3, 32).
Zaiss et al. described syndromic clinical features such as
hypertelorism not assigned to a specific syndrome in 7.7% of
studied patients (32). Pathogenic genetic alterations—both in
complex and in isolated CDH—are associated with a worse
prognosis (33). Moreover, de novo pathogenic alterations are
seenmore often in complex CDH (34–36). Phenotypical complex
patients could be more likely to receive a genetic test. In
our cohort, genetic test results were described for patients
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TABLE 2 | Pathogenic alterations in CDH patients of which the defect size was registered.

Defect

size (n)

Syndrome (n) n Death Chromosome Type Inheritance Zygosity Genetic change

A (n = 10) Wolf Hirschshorn

Syndrome

1 NR 4p156.3 Loss de novo het 46, XY FISH: ish del (4) (p16.3p16.3)

(D4S96-)

Louys-Dietz

syndrome V

1 NR 14q24 Frameshift AD het NM_003239.4 (TGFB3): c.232del.G, p.

(Glu78fs)

Marfan syndrome 1 NR 15q21.1 Frameshift AD het NM_000138.5 (FBN1):c1301_1302del, p.

(Tyr434Serfs*17)

Microdeletion 1 NR 16p13.3 Loss de novo het 46, XY arr[hg18] 16p13.3

(154,014–174,381) x1

Arterial tortuosity

syndrome

1 NR 20q13 Missense AR hom NM_030777.4 (SLC2A10): c.127 6G>T, p.

(Gly426Trp)

Down syndrome 4 D (1), NR (3) 21 Aneuploidy de novo het 47, XX / 47, XY + 21

Down syndrome 1 NR 21 Aneuploidy ut het 46, XY, t (15;21) (p12; p12)

B (n = 4) Microduplication 1 NR 4p15.2p14 Gain de novo het arr [hg18] 4p15.2p14

(224,500,018–38,700,366) x3

Sotos syndrome 1 NR 5q35.2 Missense de novo het NM_022455.5 (NSD1): c.5685C>G, p.

(Cys1895Tyrp)

Microduplication 1 NR 7q31.33–36.3 Gain de novo het arr[hg19]7q31.33q36.3

(125839750_159124173)

x3[0.2]/arr[hg19]7q31.33q36.3

(125839750_159124173) x4[0.1]

Microdeletion 1 D 8p23.1 Loss de novo het arr[hg18] 8p23.1 (8,139,051–12,619,015)

x1

C (n = 5) Fraser syndrome 1 NR 9p22.3 Splicing de novo het NM_144966.7 (FREM1): c.5334 + 1G > A

(r.spl?)

Microdeletion 9p22.3 Loss Inherited het arr[hg18] 9p22.3 (14,871,409–14,938,830)

x1

Prader Willi 1 NR 15q11 Gain de novo het arr[hg18]15q11.2q13.1

(20,319,702–26,143,385) x3

Microdeletion 1 NR 17q12 Loss de novo het arr[hg19] 17q12 (34815551_36249430) x1

Congenital

disorder of

glycosylation

1 NR Xp11.23 Loss de novo het NM_001042498 (SLC35A2): c.753delG,

p.(Trp251fs)

XY reversal 1 D XY ? de novo ? –*

D (n = 2) Microdeletion 1 N 15q26 Loss de novo het arr[hg18] chr15:80,689,404–82,938,351 x

1 and

17p12 het arr[hg18] chr17:14049619–15497020 x1

Microdeletion 1 D 22q11.2 Gain ut het 47, XY, +der (22) t (11;22) (q23.3; q11.2)

mat

Genetic tests included karyotyping, SNP array or Whole exome sequencing. AR, Autosomal recessive; XLR, X-linked recessive; CH, compound heterozygote; n, number of patients; ut,

unbalanced translocation.

with associated anomalies (n = 207) and for patients without
associated anomalies (n = 311). Thus, there was not a priory
bias in this respect (p = 0.923). Twenty patients with associated
anomalies had pathogenic genetic alterations vs. one with isolated
CDH (P< 0.001).Main outcome parameters of the ErasmusMC-
Sophia Children’s Hospital, Rotterdam, the Netherlands CDH
cohort are depicted in Tables 3, 4. Full cohort descriptions and
analysis methods are described in Supplementary Tables S1, S2.

Comparing features of isolated CDH and complex CDH is
difficult, depending on how accurately these two groups can be
distinguished. Not all patients receive the same phenotypical
evaluation and registration is sometimes incomplete. For
instance, not all associated anatomical malformations are

detectable with ultrasound. Nevertheless, increased resolution
of prenatal ultrasound over time has improved the detection
of associated anatomical malformations. Neurological symptoms
could develop at later age and are not noticeable during the first
months or years of development. Furthermore, not all symptoms
observed during often organ specific evaluations of medical
subspecialities. For instance, postnatal monitoring is essential
to detect any associated neurological or ophthalmological
symptoms. CDH registries would benefit from regular re-
evaluation of these outcome measures. In short, there is a level
of uncertainty in registries regarding which patients have no
associated anomalies, have no associated anomalies detected, or
have no associated anomalies registered.

Frontiers in Pediatrics | www.frontiersin.org 4 February 2022 | Volume 9 | Article 800915

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Brosens et al. Genetics of Congenital Diaphragmatic Hernia

TABLE 3 | Cohort description of output measures and genetic evaluation.

Group Characteristic Genetic test

(n = 530)

No genetic

test

(n = 275)

Total (n) P Abnormal

genetic test

(n = 62)

No genetic

test

(n = 275)

No

pathogenic

changes

(n = 468)

Total (n) P

Sex F 238a (44.9%) 120a (43.6%) 358 (44.5%) 0.824 34a (54.8%) 120a (43.6%) 204a (43.6%) 358 (44.5%) 0.502

M 285a (53.8%) 150a (54.5%) 435 (54.0%) 27a (43.5%) 150a (54.5%) 258a (55.1%) 435 (54.0%)

O 7a (1.3%) 5a (1.8%) 12 (1.5%) 1a (1.6%) 5a (1.8%) 6a (1.3%) 12 (1.5%)

Associated

anomalies

CDH-C 207a (39.1%) 104a (37.8%) 311 (38.6%) 0.923 56a (90.3%) 104b (37.8%) 151b (32.3%) 311 (38.6%) 4.5658E-16

CDH-I 311a (58.7%) 164a (59.6%) 475 (59.0%) 6a (9.7%) 164b (59.6%) 305b (65.2%) 475 (59.0%)

CDH-MD 12a (2.3%) 7a (2.5%) 19 (2.4%) 0a (0.0%) 7a (2.5%) 12a (2.6%) 19 (2.4%)

Location of

defect

Bilateral 4a (0.8%) 6a (2.2%) 10 (1.2%) 0.005998 0a (0.0%) 6a (2.2%) 4a (0.9%) 10 (1.2%) 0.004092

Eventration 17a (3.2%) 1b (0.4%) 18 (2.2%) 1a,b (1.6%) 1b (0.4%) 16a (3.4%) 18 (2.2%)

Left 415a (78.3%) 199a (72.4%) 614 (76.3%) 48a (77.4%) 199a (72.4%) 367a (78.4%) 614 (76.3%)

POE 4a (0.8%) 2a (0.7%) 6 (0.7%) 2a (3.2%) 2a (0.7%) 2a (0.4%) 6 (0.7%)

Right 73a (13.8%) 58b (21.1%) 131 (16.3%) 7a,b (11.3%) 58b (21.1%) 66a (14.1%) 131 (16.3%)

MD 17a (3.2%) 9a (3.3%) 26 (3.2%) 4a (6.5%) 9a (3.3%) 13a (2.8%) 26 (3.2%)

Defect size A 97a (18.3%) 19b (6.9%) 116 (14.4%) 1.3023E-41 10a,b (16.1%) 19b (6.9%) 87a (18.6%) 116 (14.4%) 1.3224E-44

B 50a (9.4%) 2b (0.7%) 52 (6.5%) 4a (6.5%) 2b (0.7%) 46a (9.8%) 52 (6.5%)

C 157a (29.6%) 12b (4.4%) 169 (21.0%) 5a (8.1%) 12a (4.4%) 152b (32.5%) 169 (21.0%)

D 32a (6.0%) 0b (0.0%) 32 (4.0%) 2a (3.2%) 0b (0.0%) 30a (6.4%) 32 (4.0%)

NR 194a (36.6%) 242b (88.0%) 436 (54.2%) 41a (66.1%) 242b (88.0%) 153c (32.7%) 436 (54.2%)

Timing of test MD-genetic test – – – – 13a (21.0%) 0b (21.0%) 88a (18.8.0%) 101 (12.5%) 8.4554E-167

MD-no genetic test – – – 0a (0.0%) 127b (46.2%) 0a (0.0%) 127 (15.8%)

Postnatal-genetic

test

– – – 16a (25.8%) 0b (0%) 101a (21.6%) 117 (14.5%)

Postnatal-no genetic

test

– – – 0a (0.0%) 96b (34.9%) 0a (0.0%) 96 (11.9%)

Prenatal-genetic test – – – 33a (53.2%) 0b (0%) 279a (59.6%) 312 (38.8%)

Prenatal-no genetic

test

– – – 0a (0.0%) 52b (18.9%) 0a (0.0%) 52 (6.5%)

In total, 530 out of 805 patients received a genetic test. Defect size (A–D) was described in 369 patients. Defect sizes are classified from A to D as described in the method section. A

is the smallest defect size and D a (near) absence of the diaphragm. Within a column each characteristic that does not share a subscript letter (a−b) differs significantly from those with

different subscript letters (a−b) whose column proportions do not differ significantly from each other at the 0.05 level. For instance, more patients with associated anomalies have an

abnormal test and vice versa more patients with an isolated defect have no abnormal test (P < 0.001). Patients with defect size A stand apart from the other defect sizes in respect to the

number of abnormal genetic tests, C in having no genetic test and having no pathogenic alteration (P < 0.001). There are differences in having no genetic test, having an abnormal test

result and having a normal test result comparing post- and pre-natal subgroups (P < 0.001). Trisomy 13, 18, and 21 were evaluated in 530 patients and more than half of the patients

received at least karyotyping or SNP-array. A full cohort description is available in Supplementary Table S1. Complete statistical comparison of patients with a genetic test is depicted

in Supplementary Table S2. MD, Missing data; CDH-C, CDH patients with associated defects; CDH-I, CDH patients without other associated defects; CDH-MD, CDH patients in

which no additional information was registered; POE, Paraoesophageal hernia; EV, Eventration; BL, Bilateral hernia; AGT, abnormal genetic test; NPC, no pathogenic changes.

GENETIC ASSOCIATIONS AND
CO-MORBIDITY

Long-term complications in children born with CDH
include chronic lung disease, feeding difficulties, gastro-
esophageal reflux, growth failure, scoliosis, chest asymmetry,
neurodevelopmental delay, and sensorineural hearing loss
(37, 38). These co-morbidities can be either a direct or
indirect consequence of the CDH or be a consequence
of the treatment. Damaging de novo variations in both
isolated CDH and complex CDH-complex have been found
associated with pulmonary hypertension, higher mortality
rate, and worse neurodevelopmental outcome (33). There
is a large difference in survival rates between patients with
or without persistent pulmonary hypertension (39) and

bronchopulmonary sequestration (40). The genetic contribution
to bronchopulmonary sequestration etiology is unknown.
Mutations in BMPR2 (41, 42) and several SMAD signaling
molecule genes have been associated with the development
of pulmonary hypertension in adults and children (43–
45). A striking association between TGF-β/SMAD signaling
and pulmonary hypertension has been reported in CDH,
as the CDH lungs had increased miR-200b expression and
decreased TGF-β/SMAD signaling (46). Increasing miR-200b
decreases the TGF-β signaling and reduces lung hypoplasia in a
nitrofen induced congenital diaphragmatic hernia -pulmonary
hypertension rat model (46). Similarly, Pereira-Terra and
colleagues described a specific micro-RNA signature in tracheal
aspirate fluid, upregulation of miR-200b and miR-10a and
decreased TGFB signaling (47). Patients with mutations in genes

Frontiers in Pediatrics | www.frontiersin.org 5 February 2022 | Volume 9 | Article 800915

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Brosens et al. Genetics of Congenital Diaphragmatic Hernia

TABLE 4 | Significant differences in output measures of patients with a genetic

test.

Group Characteristic Abnormal

genetic test

(n = 62)

No

pathogenic

changes

(n = 468)

P

Associated

anomalies

CDH-complex

(n = 207)

56a (27.1%) 151a (72.9%) 1,432E-14

CDH-isolated

(n = 311)

6b (1.9%) 305b (98.1%)

CDH-unknown

(n = 12)

0a,b (0.0%) 12a,b (100.0%)

Defect size A (n = 97) 10a,b (10.3%) 87a,b (89.7%) 0.000006

B (n = 50) 4a,b (8.0%) 46a,b (92.0%)

C (n = 157) 5b (3.2%) 152b (96.8%)

D (n = 32) 2a,b (6.3%) 30a,b (93.8%)

NR (n = 194) 41a (21.1%) 153a (78.9%)

Type of

genetic

test

Karyotyping 297 (56.0%)

WES 51 (9.6%)

Array 362 (68.3%)

Trisomy 13, 18, 21* 530 (100%)

Significant differences when evaluating only patients with a genetic test. Trisomy 13,

18, and 21 were evaluated in 530 patients and more than half of the patients received

at least karyotyping or SNP-array. An abnormal genetic test is seen more often in

complex-CDH (P < 0.001) and defect size C differs from the missing data category

(P < 0.001) as substantially more abnormal genetic tests are described in the later.

Within a column each characteristic measure that does not share a subscript letter

(a−b) differs significantly from those with different subscript letters (a−b) whose column

proportions do not differ significantly from each other at the 0.05 level. WES, whole

exome sequencing; MD, Missing data; CDH-C, CDH patients with associated defects;

CDH-I, CDH patients without other associated defects; CDH-MD, CDH patients in which

no additional information was registered; POE, Paraoesophageal hernia; EV, Eventration;

BL, Bilateral hernia; AGT, abnormal genetic test; NPC, no pathogenic changes.

from this pathway have connective tissue disorders (48). In
patients and mice, several genetic factors have been associated
to lung and cardiac abnormalities (2, 49–52). CDH has been
found in patients with connective tissue disorders such as
Marfan syndrome (53), Loeys-Dietz Syndrome (54, 55) and
arterial tortuosity syndrome (56). Patients with these connective
tissue disorders are at increased risk of cardiovascular problems
(57, 58) later in life. Abnormal retinoic acid signaling can result
in a diaphragm defect (59). Patients with variants in STRA6
and RARB -receptors and deletions of RBP1 at chromosome
3q22 (60, 61) in the retinoic acid signaling pathway have
ophthalmic symptoms (62, 63). Patients with CDH may have
other eye defects as well (64, 65). These occurrences of direct
genotype-phenotype correlations stress the importance of
genetic diagnostic screening to inform parents and patients
about possible co-morbidities.

CDH IS A COMPLEX GENETIC DISORDER

CDH is a multifactorial disease but neither environmental
nor genetic contributions have been fully characterized.
Maternal morbidities during pregnancy such as pre-gestational
hypertension (66) and pre-existent maternal obesity (67–69)
are associated with an increased risk for development of CDH

in the fetus. Several other environmental factors have been
associated with an increased risk: antidepressant medication
(70), antibacterial medication (71), exposure to fungicides (72),
the immunosuppressant drug mycophenolate mofetil (73),
methotrexate use (74), exposure to cadmium (75), pesticides
(76), hairspray use (77), alcohol intake (69, 77–79), and smoking
(75, 78, 80). However, to what extent these associations impact
diaphragm development and the onset of CDH is not known.
The mother’s nutrient intake during pregnancy is associated
as well (81, 82); reduced vitamin A intake during pregnancy
has the strongest associations with CDH (83, 84). Vitamin A
shortage can be detected postnatally (85). It is hard to determine
whether environmental factors explain some of the non-genetic
contributions on a population level or to what extent the
environment interacts with the processes disturbed by genetic
anomalies. Epigenetic differences acquired during the life span
can be detected between monozygotic twin pairs (86–88).
Evaluating these differences—and the resulting gene expression
changes—is an interesting approach. There are methods to
overcome cellular heterogeneity and if epigenetic changes are
present in blood these can be compared between patient and
sibling (89–91).

The exact heritability—the contribution of genetic factors—
is difficult to determine, in light of the relatively low disease
incidence, the high mortality limiting vertical transmission and
the limited numbers of twin pregnancies (92, 93). Heritability
can be estimated using twin studies. For CDH, the concordance
rates in dizygotic and monozygotic twins are comparable.
Fifty-three monozygotic twins have been described, of whom
12 were concordant for CDH (2, 92). In our cohort, 24
twin pairs (15 dizygotic, 8 monozygotic, and one same sex
twin pair of whom no genetic material was available to
determine zygosity) are described. One dizygotic and one
monozygotic twin pair were concordant for CDH. To reduce
the effect of technical noise in twin comparisons, we used
different alignment techniques, variant callers and statistics (see
Supplementary Table S3). Neither the larger CNVs (94) nor
SNVs (see Supplementary Table S3) differed between these twin
siblings. Differences in phenotype can also be the result of twin-
to-twin perfusion differences. Furthermore, single nucleotide
changes could be located outside the coding sequence or at
very low frequency, and then could not be detected with
exome sequencing.

Somatic mosaicism is difficult to determine when the affected
tissue or cells are missing. The mutated diaphragmatic cells
might not have survived in sufficient quantities and, therefore,
be undetectable with sequencing technologies (95). In line with
this, whole genome sequencing did not find causative somatic
variants in diaphragm biopsies (96, 97). In contrast, germline de
novo variants are often present (33, 96–98). Females have a higher
burden of de novo variants (98), suggesting a female protective
model. Large cohort descriptions about sibling recurrence rate
(92) or familial CDH are not available. In our cohort, only a
few familial cases are known (<1%). Still, CDH is described to
segregate through families (1) and/or present as a monogenetic
disorder following autosomal dominant (53, 98–109), autosomal
recessive (62, 110), or X-linked (111–113) inheritance patterns.
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Depending on the specific family the monogenetic disorder
has CDH is either a common or a less prevalent feature.
More than 100 (candidate) genes have been described, mostly
identified from animal models or monogenetic syndromes
(2, 19). Monogenetic syndromes often have distinct phenotypical
features and have been reviewed by Longoni et al. and Yu
et al. (20, 114). Monogenetic syndromes in which CDH is a
frequent feature are, for instance, autosomal recessive Donnai
Barrow syndrome (OMIM: #22248, LRP2 gene), syndromic
microphthalmia (#601186, #615524, STRA6, RARB), and
autosomal dominant cardiac-urogenital syndrome (#3618280,
MYRF gene). Associated phenotypes in these syndromes
are congenital heart defects, sensorineural hearing loss,
microphthalmia, genitourinary malformations, craniosynostosis
and myopia with each of these syndromes its distinct features.
Detailed phenotyping might be crucial in diagnosing clusters
of CDH patients: either “phenotype first” and searching for an
overlapping gene or “genotype first” and searching if patients
with the same affected gene have an overlapping phenotype.
Interestingly, Fryns syndrome and also Pentalogy of Cantrell
have CDH as a defining feature; yet the gene or genes responsible
for these conditions are not yet known.

CNV studies reported overlapping deletions and duplications,
such as duplications of 11q23-qter (115), 16p11.2p duplications
(15, 18), 17q12 deletions (15, 18, 116, 117), and 5p15.2 deletions
(15). By prioritizing and sequencing the genes within these
CNVs in other patients, new disease genes have been discovered.
For example, in the 8p23.1 deletions (118–120), GATA4 (50)
and SOX7 (121) and in case of 8q23.1 deletions (18), ZFPM2
(122) are the genes likely contributing to CDH. 15q26 deletions
(120, 123) and subsequent sequencing implicate NR2F2 as a
disease gene (124). For 1q41–1q42 deletions, one duplication
disrupting the HLX gene and subsequent HLX gene variants
have been described (15, 18, 125–128). Constraint coding regions
are enriched for de novo variants (104), and using variant
evaluation guidelines of rare de novo changes in these types of
constraint genes (129) result in a likely pathogenic or pathogenic
classification, especially if variants result in reduced amounts
of protein.

Interpretation of genetic results can be hindered by reduced
penetrance (18, 122) and variable expressivity (2) that may
mask the causal culprit in segregation analysis (see Figure 1).
Polygenic inheritance (51), locus heterogeneity (33, 34, 130), and
contributions of different kinds of genetic variation (17, 114)
mask culprits from innocent bystanders. Therefore, large patient
and control samples sizes are required to have enough power to
classify variants into “benign,” “causal,” or “contributing.”

FROM PATHOGENIC ALTERATION TO CDH

Finding a genetic variant predicted to be deleterious is only the
first step in proving the functional effect of this DNA alteration.
This is especially true for missense changes, in-frame insertion-
deletions and copy number variations. Often there is only in-
silico evidence regarding the impact of a variant on gene function
and the way in which the disturbed gene function affects a

biological pathway or mechanism. What is lacking is proof
how a specific deleterious variant lead to defective diaphragm
formation. Unfortunately, for most likely pathogenic CNVs and
SNVs, the assumed functional consequence is based on the
genetic alteration itself: i.e., copy number loss or nonsense variant
is assumed to result in reduced amounts of mRNA expression
and protein. Deleterious de novo missense variants and in-frame
insertion-deletions in conserved coding regions aremore difficult
to relate to a likely functional consequence and is often on in-
silico surveys. Improving the in-vitro evaluation of candidate
variants is crucial in distinguishing causal variants from non-
causal variants. These experiments require tremendous effort
and can be complicated by the presence of more than one
candidate alteration.

Detecting a deleterious variant in a gene in multiple patients
helps prioritizing candidate genes for function evaluation and
studies using animal models. In a large cohort (n = 827), seven
syndromic and four recurrent CNVs were identified (104). Some
of these have already been associated with CDH; e.g., 17q12
deletions, 16p13.1 duplications, 22q11 deletions, and 21q22
duplications. Furthermore, 87 CNVs were de novo, of which 54
were large (>2Mb) deletions (104). Although non-recurrent, at
least a proportion of these large de novo deletions are likely to
be related to the patient’s phenotype. Ten genes were enriched
for de novo variants, of which mitochondrial lon peptidase 1
(LONP1) and Aly/REF export factor (ALYREF) were the most
promising candidate disease genes. LONP1, MYRF as well as
ZFPM2 reached or approached genome wide significance when a
variant burden test was performed for all deleterious changes (i.e.,
including inherited variants) (104). Combining multiple “omics”
and in-vitro translational approaches can potentially bridge the
gap between genetic findings and animal models.

In animal models, fewer progenitors reaching the PPF at the
proper developmental due to decreased proliferation, increased
apoptosis, migration defects or failure to differentiate in their
proper cell fates have been proposed as causes for CDH (131–
134). Disturbances in specific processes such as retinoic acid
signaling or muscle connective tissue formation were initially
discovered in animal experiments; genes associated with these
pathways or processes were subsequently found altered in
patients (132, 135–138). Additionally, disturbed processes can
be identified using gene enrichment strategies to find common
denominators in the affected genes and loci. Longoni and
colleagues described the enrichment of rare, likely deleterious
variants in CDH patients of genes derived from mouse PPF
embryonic transcriptomes (139), known human disease genes,
their protein interaction partners and candidate genes from
CNV hotspots (35). Often, these alterations were inherited and
implicate non-Mendelian inheritance patterns. On the individual
level, these changes can be regarded as risk factors. Combined,
these changes may affect a biological pathway to such an
extent that they result in CDH. Assigning such a pathway or
process—for instance how these gene variants disturb myoblast
progenitor cell proliferation or migration—is not easy. Animal
models are not perfect, although they provide evidence of
involvement of a gene when it is knocked-out and in which cases
the animals develop CDH at a certain frequency. However, this
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FIGURE 1 | Genetic models. Figure created with BioRender.com.

procedure hardly ever takes into account that genetic variation
is mostly not a complete loss-of-function of a gene. Missense
variants, copy number gains and heterozygous changes could—
and likely do—differ in impact or mechanism of action. Thus, in
these cases, knock-out models either over- or underestimate the
effect of a genetic variant.

In some cases, specific variants can be associated with the
causative mechanism; e.g., the association of FBN1 variants in
Marfan syndrome (53) and defects in the connective tissue.
Indeed, our cohort included patients with FBN1 and TGFB3
alterations. In other patients, the affected pathway is known;
e.g., patients with deletions of NR2F2 (123) have a defect in a
gene that codes for a receptor that is activated by retinoic acid
signaling (140). Of other genes, we know that they interact with
other disease genes, are expressed in the developing diaphragm
and are also associated with retinoic acid signaling (e.g., ZFPM2,
GATA4). A small difference in spatial and temporal binding
and organ-specific combination of transcription factors have
been suggested as links between the different syndromes with
CDH (141). Most of the deleterious CNVs and aneuploidies are
assumed pathogenic and the most likely cause of the diaphragm
defect. However, how these—often continuous gene deletions—
in patients impact diaphragm formation and subsequently result
in CDH remains unclear.

TEMPORAL SCREENING BIAS

Technologies have a different resolution to detect genomic
changes ranging from chromosome arms, several mega-bases

to single nucleotide level. Initially, patients were evaluated with
karyotyping, MLPA and QF-PCR, with which only aneuploidies
or chromosome (band) level changes could be detected. At
the Erasmus MC-Sophia Children’s Hospital, SNP-array was
introduced in 2010 and is standard practice in case of ultrasound
abnormalities since 2012. The use of SNP arrays increased the
detection resolution to gains and losses of several from mb to
kilobases. Many patients in our cohort have retrospectively been
re-evaluated with SNP-array. In 10.9% of patients a pathogenic
change was. Similarly, 10.4% of patients registered in the
EUROCAT registry (1980–2009) have a chromosomal anomaly,
genetic syndrome or microdeletion (3). This was before the
NGS era, and the findings mostly represent the larger genetic
changes with a large phenotypic effect. Whole exome sequencing
was introduced in our clinic more recently (2015), and initially
only used to evaluate the more complex patients. Restoring the
temporal screening bias by screening large historical cohorts
of patients and subsequent evaluating potential associations
between genetic factors and long-term morbidity can benefit the
future and today’s patients and parents.

COLLABORATION IS KEY

Combining disease cohorts revealed that damaging de novo
alterations are associated with the more severe and complex
phenotypes (33, 130). This strategy was pivotal in identifying
disease genes (98, 104, 130, 142). The success of this effort
stresses the importance of collaborations such as the DHREAMS
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consortium (http://www.cdhgenetics.com). Trio whole genome-
based approaches are recommended, as these enable to
simultaneously determine different types of genetic variation.
Additionally, this technique is suited for continuous re-analysis.
By combining and sequencing these cohorts, the CDH-EURO
consortium (143) and Congenital Diaphragmatic Hernia Study
Group (144) can add to endeavors of the DHREAMS consortium.
This will enable to identify genes that are more often affected
in patients than by chance alone, and will allow manageable
numbers of required functional tests and animal models. For
collaborations to work, samples need to be stored in well-
managed biobanks and data should be meticulously archived
for later re-analysis or re-evaluation. New challenges for these
biobanks and data archiving and sharing are privacy regulations
(145). Sharing of patient material and data should consider the
privacy of participants and their families but also acknowledge
the efforts of stakeholders such as researchers and clinicians
(146). An ethical and legal balance should be sought weighing the
privacy needs of individual patients against the medical benefits
of the patient population.

CONCLUSIONS

Diagnostic yields of up to 37% using next generation sequencing
have been proposed. These yields are reached when, in addition
to genes from known monogenetic syndromes, heterozygous de
novo variants in genes expressed at the proper time-point in
relevant tissue in animal models are classified as likely pathogenic
(105). Importantly, heritability and diagnostic yield are calculated
on a population level. From a patient’s or parents’ perspective it
matters the most to know (1) if they themselves or their children
have or do not have genetic changes in their genome explaining
the CDH, (2) if subsequent children or patients’ offspring are at
risk of CDH, and (3) what the consequences of these changes
are for the prognosis and/or the probability of complications.
CDH is now mostly detected prenatally; consequently, fast,
accurate, and predictive genetic diagnostics are increasingly

needed. As about a third of patients have a de novo variant in
the coding region (104). For parents to make informed choices,
it is vital to knowing if a genetic variant detected in their child
is causal or benign, and what the predicted consequences are of
this variant.
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