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Brain tissue temperature is a dynamic balance between heat generation from
metabolism, passive loss of energy to the environment, and
thermoregulatory processes such as perfusion. Perinatal brain injuries,
particularly neonatal encephalopathy, and seizures, have a significant impact
on the metabolic and haemodynamic state of the developing brain, and
thereby likely induce changes in brain temperature. In healthy newborn
brains, brain temperature is higher than the core temperature. Magnetic
resonance spectroscopy (MRS) has been used as a viable, non-invasive tool
to measure temperature in the newborn brain with a reported accuracy of
up to 0.2 degrees Celcius and a precision of 0.3 degrees Celcius. This
measurement is based on the separation of chemical shifts between the
temperature-sensitive water peaks and temperature-insensitive singlet
metabolite peaks. MRS thermometry requires transport to an MRI scanner
and a lengthy single-point measurement. Optical monitoring, using near
infrared spectroscopy (NIRS), offers an alternative which overcomes this
limitation in its ability to monitor newborn brain tissue temperature
continuously at the cot side in real-time. Near infrared spectroscopy uses
linear temperature-dependent changes in water absorption spectra in the
near infrared range to estimate the tissue temperature. This review focuses
on the currently available methodologies and their viability for accurate
measurement, the potential benefits of monitoring newborn brain
temperature in the neonatal intensive care unit, and the important
challenges that still need to be addressed.
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Introduction

In term infants, neonatal encephalopathy (NE) is the most common form of
perinatal brain injury in both high-income countries (HIC) as well as low- and
middle-income countries (LMIC). Hypoxic-ischemic encephalopathy (HIE) affects 1-6
per 1,000 live births and remains a major cause of morbidity and mortality in term
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infants (1-3). Seizures are the most common presentation of
neonatal neurological emergencies with an incidence of 1.9 to
2.2 per 1,000 live births (3). They are associated with further
neuronal injury, poor neurological outcome, increased brain
injury on MRI (4), and increased risk of epilepsy (5). Current
research focuses on identifying optimal neuroprotective
both  these

neurodevelopmental outcomes. A detailed understanding of the

therapies  for conditions to  improve
pathophysiological changes relating to brain metabolism and
perfusion and their impact on brain tissue in real-time is a key
factor in the assessment of both injury severity and its evolution.

Brain temperature is determined by the balance of heat
production and heat removal, and it is influenced by multiple
factors including cerebral metabolism, brain tissue injury,
cerebral blood flow (CBF), body-brain temperature difference,
various medications and infection (6-9). The brain and/or
body temperature elevation is often associated with brain
injury as seen in traumatic brain injury, adult stroke, and NE
(10-13). The magnitude of temperature elevation has been
shown to correlate with infarct size and severity in adults and
is a risk factor for poor clinical outcomes (13-15). With
significant changes in cerebral metabolism and perfusion
following hypoxic-ischaemic injury and during neonatal
seizures, it is likely to have brain temperature perturbation
injury
temperature monitoring therefore might be an important

following perinatal ~brain and real-time brain

biomarker.

Changes in cerebral metabolism and
perfusion during neonatal
encephalopathy

The newborn brain suffers significant hemodynamic and
metabolic derangements following hypoxic-ischaemic brain
injury which causes a series of neurotoxic and neurochemical
cascades over a period of several hours, days, and weeks post-
injury (16). Early pre-clinical and clinical studies using
phosphorous (*'P) magnetic resonance spectroscopy (MRS)
described the evolution of primary and secondary energy
failure with a reduction in high energy phosphates and a rise
in cerebral lactate following injury (17, 18). During the initial
insult, a proportion of cells undergo primary cell death, and
the neuronal supply of high energy metabolites such as
adenosine triphosphate (ATP) is exhausted, also termed
“primary energy failure.” Following successful resuscitation,
the brain enters a latent phase lasting for ~6-24 h which is
characterized by the partial recovery of cerebral oxidative
metabolism and cerebral blood flow, (CBF) although a degree
of hypoperfusion continues (19, 20). The brain then enters a
period of “secondary energy failure” (SEF) characterized by
mitochondrial impairment and subsequent cell death with
associated cerebral autoregulatory disturbance and brain
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hyperperfusion (21). Hypoxia-ischaemia induces significant
with  the of
proinflammatory cytokines (22) and activation of complement

cerebral  inflammation production
(23) that can further potentially be related to increased brain
temperature. The concept of secondary energy failure (SEF) is
a hallmark of NE and the primary target of current
(TH)

autoregulatory control of cerebral haemodynamics with a

therapeutic ~ hypothermia treatment.  Abnormal
combination of vasodilatation and vasoparalysis (24) is

common after NE.

Changes in cerebral metabolism and
perfusion during neonatal seizures

NE remains the major etiological factor for the development
of neonatal seizures and TH reduces the seizure burden
following NE (25). Up to 75% of infants with NE can develop
seizures (26) which are defined as transient symptoms of
excessive or synchronous neuronal activity in the brain (27-
29). Mitochondrial metabolism is closely related to neuronal
activity. Studies using >'P MRS have revealed a drop in high-
by one-third
mitochondrial oxidative phosphorylation by 45% during

energy phosphates and an increase in
neonatal seizure (30), indicating a depleted cerebral energy
state. Electroclinical and electrographic seizures produce an
increase in cerebral blood flow velocity (CBFV) (31), likely to
be due to excessive demand for glucose and oxygen but may
still be insufficient to meet the pathological demands. A
prolonged increase in cerebral blood flow is also likely to
with
accompanying loss of autoregulatory mechanisms. Cerebral

contribute to cerebral oedema and vasoparesis
autoregulation has been noted to be absent both during the
seizures themselves and between seizures (32).

Previous studies with near-infrared spectroscopy (NIRS)
during neonatal seizures have also described changes in
(33-36). NIRS
measures concentration changes in oxygenated [A(HbO,)] and
deoxygenated haemoglobin [A(HHb)] which can then be used
to derive changes in total haemoglobin [A(HbT)]
haemoglobin difference [A(HbD)]. Changes in [A(HbT)]

[A(HbD)] represent changes in cerebral blood volume

cerebral hemodynamics and oxygenation

and
and
and
oxygenation respectively. In addition, cerebral oximeters can
also measure absolute brain tissue saturation (or cerebral
oxygenation) as an absolute percentage measurement of the
mixed arterial and venous saturation. A seizure typically
increases both cerebral blood flow and cerebral metabolic rate
(37). Any increase in cerebral blood flow may not always be
sufficient to match the cerebral metabolic demand during
prolonged seizures, indicating cerebral blood flow-metabolism
lead to
oxygenation. Previous studies in preterm infants suggested a

uncoupling (38) which can reduced cerebral

10% reduction in cerebral oxygenation to be of clinical
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concern (39), while animal studies using NIRS have found
mixed cerebral oxygenation of 40%-50% (40, 41) to be the
limits below which significant cerebral hypoxia with poor
neurologic outcome occurs. Our previous work showed a
rapid increase in the change in the oxidation state of
cytochrome-c-oxidase [A(oxCCO)], noted at the onset of a
seizure episode along with a rise in the baseline aEEG
indicating an increase in neuronal activation and energy
demand. Cytochrome-c-oxidase is the terminal electron
acceptor in the mitochondrial electron transfer chain and is
responsible for most of the ATP production during oxidative
metabolism. Progressive decline in the [A(0oxCCO)] baseline
during seizures suggests a progressive decrease in
mitochondrial oxidative metabolism (42). Neuronal energy
demand rapidly increases at the onset of seizures reflected by
a rapid increase in the mean aEEG activity coinciding with a

rise in A[oxCCO].

Methodologies for brain tissue
temperature measurement

Several different methodologies have been evaluated so far
for brain temperature measurements (Table 1). Proton MRS
(43-50), microwave radiometry (51-53) and ultrasound
(54).  Other still

experimental evaluation in animals, for example, non-invasive

thermometry approaches are under
wearable sensors to assess deep brain temperature based on
skin thermal conductivity (55), or invasive optical fibre-based
thermometry (56) Finally, there have been computationally
based approaches to estimate brain temperature changes from
traditional brain recordings such as MRI using mathematical
models of brain temperature (57, 58) that consider the brain’s
non-equilibrium thermodynamic nature between rest and
these

approaches remain to be tested. None of these methods is

functional activity. However, in clinical practice,
feasible for long-term ambulatory clinical use in newborn
infants and requires large cost-intensive equipment. Optical
methods for brain temperature measurement provide an
option for use in clinical settings, even in ambulatory settings,
given their ease of handling through their portability and
Optical
determine the efficacy of hypothermia, noninvasively and

cost-efficiency. thermometry can furthermore,

continuously throughout TH in HIE.

MRS brain thermometry

MRS thermometry has been used most for non-invasive and
in-vivo brain temperature measurement in the neonatal
population (47, 49, 59, 60). Clinical MRS reveals the
prominent peaks of N-acetyl-aspartate (NAA), Choline (Cho)
and Creatine (Cr). The much larger water peak is usually
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artificially suppressed as it obscures the visibility of the other
spectral peaks. The relative position of a peak in the spectrum
is described by its chemical shift. MRS thermometry is
possible because of the temperature dependence of the water
chemical shift relative to the temperature-insensitive chemical
shifts of NAA, Cho and Cr. Careful measurement of the
chemical shift separation between the water and reference-
metabolite peaks, along with suitable calibration, can yield
brain temperature estimation with an accuracy of +£0.5 °C and
precision of 0.3 °C (59, 61, 62).

Non-invasive local temperature measurement using proton
MRS has been demonstrated in vivo for many applications.
The chemical shift of water is approximately linearly
dependent on temperature in the physiological range
(Hindman). So, by measuring the chemical shift separation
between water and one or more reference metabolites, the
absolute temperature can be inferred. Figure 1 describes the
basic methodology. Spectra must first be obtained that show
the un-suppressed water peak and the reference peaks. This
can be done by acquiring a single un-suppressed spectrum
and removing the water signal in post-processing to reveal the
metabolite signals (50). Alternatively, this can be achieved by
acquiring a water spectrum and a water-suppressed metabolite
spectrum sequentially without changing the receiver frequency
(49). By fitting an assumed line shape function to the water
and metabolite peaks, the chemical shift separation in ppm
can be measured and converted into temperature using an

appropriate calibration.

Challenges for MRS temperature
measurement

The absolute change in the water peak chemical shift with
temperature is very small, about 0.01 ppm per degree Celcius.
Therefore, to measure temperature with a precision of 0.5 °C
it is necessary to be able to measure the chemical shift
separation to a precision of 0.005 pm. Compare this with a
typical water linewidth in vivo of about 0.05 ppm. Despite this
challenge, accuracies of 0.2-0.5°C have been

(59, 61-63).

reported

Choice of acquisition sequence

In-vivo MRS temperature measurement has been reported
using both single voxel methods (49, 50, 59, 63, 64) and
spectroscopic imaging (65-68). A challenge for both types of
methods is obtaining a good shim to make the magnetic field
as uniform as possible and thus minimise the water and
metabolite linewidths. The movement of the subject during
acquisition can make this even more challenging. Single voxel
methods may be easier to implement to obtain a high
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FIGURE 1
Brain temperature measurement using proton magnetic resonance spectroscopy. (A) Indicates the chemical shift separation between the water peak
and a reference metabolite (NAA), (B) represents the calculation of brain temperature using a calibration based on the water-NAA chemical shift
separation.

precision measurement. In order to obtain sufficient signal to which they were collected, and it is important to select an
make the measurement, many repeated data acquisitions are appropriate calibration for the desired application (73).

averaged together. These can be compared and corrected for More than one reference peak can be used to make the
artefacts due to subject motion, resulting in an improved final temperature measurement. This can increase the precision of
measurement (50). However, single voxel acquisitions are the measurement and the resilience of the measurement to
limited to reporting temperature from a single location. pathological changes to the spectrum composition (59). Care
Spectroscopic imaging methods allow the spatial variation of must be taken when combining data from more than one
temperature to be mapped, but it can be more challenging to reference peak so that the calibrations are internally consistent
obtain a high-quality shim over an extended spatial region. with each other (50). The choice of calibration will affect the

level of systematic error in the absolute temperature
measurement and so some care must be taken in interpreting
Choice of calibrations and reference MRS-derived temperature data. It is likely that temperature
metabolite variation over time or relative spatial temperature differences
are more reliable measurements than the absolute values
The link between the measured chemical shift separation themselves.
between the water and reference peaks, and temperature is the
calibration data. Numerous calibrations have been published
(59, 60, 69, 70). Changes in protein and ionic concentration NIRS brain thermometry

have been shown to alter temperature calibration curves (71,

72). The apparent measured temperature decreases with ionic Optical methods based on NIRS can also be used to monitor
concentration by about 1 degree C per 100 mmol and tissue temperature. These methods are promising as they are
increases with protein concentration (72). The calibration based on safe and portable instruments that can be used to
data, therefore, show a dependence on the conditions under monitor the temperature continuously at the cot side. In the
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near-infrared region (650-1000 nm), the major endogenous
tissue chromophores, responsible for the light's absorption of
the tissue, are water and oxy- and deoxy- haemoglobin. The
aim of NIRS is to quantify the concentrations, or change in
of these
chromophores in tissue and its focus is to quantify the

concentrations related to a specific event,
oxygenation of the tissues. However, the linear temperature-
dependent changes in NIR water absorption spectra make the
measurement of tissue temperature possible with NIRS, as the
tissues are mostly composed of water (more than 70% of the
brain tissue composition for example).

Indeed, the water absorption spectra and its temperature
dependency has been well established (74, 75). These spectra
can be seen in Figure 2A (left), where the water absorption
peaks shift to higher wavelengths and decrease in amplitude
by approximately 0.8% per degree Celsius around 740, 840,
(74). The

absorptivity temperature coefficients between 550 and 900 nm

and 970 nm with decreasing temperature
can also be seen in Figure 2B (right) (extracted from
reference 76), where the 2 peaks around 740 and 840 nm are
clearly visible. Using this property, the temperature of the
adult arm77 was measured using broadband continuous wave
NIRS (BNIRS). In that paper, Hollis et al. (77) used the
technique of principal component analysis (PCA) to calibrate
the temperature response of the absorption spectra of pure
water to predict the temperature response of the tissues. They
particularly focused on the bands at 740 and 840 nm and
reported a standard error of prediction of 1.2 °C. They noted
that the results could be improved if the scattering properties
of the tissues were accounted for, which was not the case in
that model to retrieve the changes in temperature. A similar
approach was then used by Holper et al. (78), focusing on the
840 band, in order to monitor the brain temperature of

10.3389/fped.2022.1008539

piglets and neonates. Using their methodologies, the authors
reported an overall mean error bias between NIRS predicted
brain temperature and body temperature of 0.436 +0.283 °C
(animal dataset) and 0.162 +0.149 °C (human dataset).

Other studies using broadband diffuse optical spectroscopy
(DOS) reported the measurement of the adult breas (79) and
forearm (80). In these studies, the water peak at 970 nm was
used to predict the temperature of tissues. The main
limitation of this technique is that the strong absorption of
the water at this wavelength limits its depth sensitivity, which
makes it difficult to use for the monitoring of brain
temperature in adults for example. However, the advantage of
the use of DOS is to be able to disentangle the absorption
and scattering properties of the tissues, thus reducing the
impact of the scattering on the temperature measurement.
Indeed, in NIRS measurements, as seen previously, it is often
assumed that the changes in the optical signal came from a
change in absorption only. However, in a clinical context,
significant physiological changes can induce significant
scattering changes which need to be considered to avoid
crosstalk between scattering and absorption (81). Indeed, the
scattering parameters of the tissue are mainly originating from
the subcellular structures (82) but also from the cerebrospinal
fluid layer in the subarachnoid space (83) and from the blood
flow (84). Clinically, it has been shown that the resting
scattering properties between the normal and affected areas in
patients with traumatic brain injury (TBI) (85) and stroke
(86) were significantly different. Moreover, dynamic changes
in scattering are also detected when a large variation of blood
flow is present (81). Thus, as blood flow variations are very
likely in NE, changes in scattering coefficient can be expected.
Therefore, one of the main challenges for NIRS instruments

aiming at measuring brain temperature in a clinical context is
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FIGURE 2
NIRS thermometry. Left (A) - NIR absorption spectra of pure water at various temperature. Extracted from Hollis et al. (74). Right (B) - Absorptivity
temperature coefficients (da/dT) for the 550—-900 nm. Extracted from Langford et al. (75).
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TABLE 1 Different methodologies for brain temperature monitoring.

10.3389/fped.2022.1008539

Non Continuous Monitoring option Portable Cost- Depth Ease of
invasive monitoring in NICU effective penetration handling
MRS thermometry Yes No No No No Excellent Poor
NIRS thermometry Yes Yes Yes Yes Yes Good Excellent
Ultrasound thermometry Yes No No Yes Yes Good Good
Microwave radiometry Yes No No No Yes Unknown Good
Zero-heat flux sensor Yes No No No Yes Unknown Poor
Invasive fibre-based No Yes No No Yes Good Poor

optical thermometry

to be able to measure both the absorption and scattering
properties of the tissue in order to give accurate thermometry
readings.

Finally, the brain temperature of piglets was measured using
a time-domain NIRS (TD-NIRS) (87). TD-NIRS is known to be
the most accurate of the NIRS techniques, can disentangle the
absorption and scattering properties of tissues, and has the
best depth sensitivity (88). Therefore, it makes it a great
candidate to measure brain temperature even in difficult cases.
Using this methodology, Bakhsheshi et al. used the bands at
740 and 840 nm in combination with the method of the PCA,
introduced by Hollis et al., to monitor brain temperature in
newborn piglets during cooling. The deep brain temperature
(DBT) was also measured continuously with a thermocouple
probe during this monitoring and the mean difference
between the optical and DBT was 0.5°C+1.6°C. This
methodology combined the two independent strengths of the
studies previously mentioned: a scattering-free method (like
DOS), increasing its accuracy, relying on the 740 and 840 nm
bands (like BNIRS), and increasing its depth sensitivity.

Looking to the future, broadband TD-NIRS systems could
further benefit brain temperature monitoring by NIRS
techniques, as in general, the accuracy of the temperature
prediction can be improved by acquiring a continuous
absorption spectrum. Indeed, it allows a more accurate
determination of chromophore concentrations compared to
discrete wavelengths, as more chromophores can be
quantified, and a more refined data analysis technique can be
used. Such systems have been reported in the literature (89,
90), however, temperature monitoring was out of the scope of
these studies. BNIRS is also able to monitor continuous
absorption and scattering properties of light when appropriate
algorithms and methodologies are used (91). Therefore, these
2 techniques appear to be good candidates in order to
develop robust optical brain thermometry tools for clinical use.

The recent technological developments, notably in terms of
electronics, enabled to reduce the footprint of TD-NIRS, which
facilitated its use for clinical applications (88) and compact TD-
NIRS systems are now available. Therefore, even though more

work remains to be done in order to develop an accurate and
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robust optical instrument to monitor the brain temperature at
the bedside, the recent technological developments make the
possibility to develop small footprint instrument able to
measure brain temperature now within reach. The next step
will be to test the current methodologies in the clinic, as it
has not been experimented so far.

Discussion

Brain temperature is determined by the balance of heat
production and heat removal, and it is influenced by multiple
factors including cerebral metabolism, brain tissue injury,
blood flow, body/brain temperature, drugs, sedation, seizures,
and infection (6-9). The brain and/or body temperature
elevation is often associated with brain injury as seen in
traumatic brain injury, adult stroke, and HIE (10-13). The
magnitude of temperature elevation correlates with infarct size
and severity and is a risk factor for poor clinical outcomes in
adults (13-15). MRS thermometry and mapping found the
lowest body temperature at the core of tissue injury in adults
with acute ischemic stroke and the highest brain temperature
in the penumbral region (11).

Hypothermia decreases the metabolic demand for glucose
and oxygen and attenuates secondary energy failure and
neuroapoptosis (92, 93). The efficacy of TH depends on the
target organ temperature and the neuroprotective effect
depends on achieving the correct target temperature range
(94, 95).

The current hypothermic strategy for NE uses rectal
temperature for servo-controlled feedback to maintain a
steady temperature profile. An in-vivo assessment of regional
brain temperature using proton MRS during whole-body TH
revealed heterogenicity of the brain temperature profile.
Hypothermia effectively lower deep grey matter structures,
whereas temperatures of more superficial structures in the
grey matter and white matter are significantly greater than
rectal temperatures (96). Findings also suggest that infants
with MRI evidence of injury had overall higher and more
homogenous brain temperature than those without injury
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(97). Non-homogenous patterns of brain temperature were also
shown in other studies (50-66). In infants developing brain
injury after NE, hypothermia decreased brain temperature
during the first days of life but did not prevent an early
Wu et al
significantly higher temperatures and brain-rectal temperature
gradients in neonates with NE during TH (49). The
application of using one specific baby temperature (33.5 °C)

increase of brain temperature (66). found

in NE for neuroprotection has improved the overall outcome
of HIE but a single core temperature may not provide equal
neuroprotective benefits to brain structures that have different
histology, metabolic needs, and blood supply distribution. The
threshold temperature to achieve neuroprotection may be
unique to different brain structures. The heterogenicity of
brain temperature while whole-body cooling raises the
the
methodology is the optimal way to cool. We need to explore

question of whether current cooling system or
whether there is a way to improve the homogeneity of white
matter or cortical cooling and whether will this lead to
improved neurological outcomes.

An animal study suggested that focal seizures produce an
increase in neuronal activity and led to an elevation of local
blood flow, cerebral metabolism and a significant rise in brain
temperature (96). Generally, physiologic brain temperature is
slightly warmer than core body temperature and subcortical
(7, 67).
However, injuries such as stroke can generate a brain-body

structures are warmer than cortical structures
temperature gradient, in which case core body temperature
becomes a poor surrogate of brain temperature (98, 99). In
adults with ischemic stroke, the temperature of the ipsilateral
hemisphere is greater than the contralateral hemisphere (11,
61). Indeed, temperature alterations after neurologic injury,
especially an increase in the brain or systemic temperature,
are related to poor clinical outcomes (13, 15, 100, 101).
During pathological processes such as neuroinflammation,
increase metabolic demands overwhelm the brain’s already
limited cooling mechanisms and drive temperature 1-2°C
higher than core body temperature (102).

In animal studies focal cooling rapidly terminates
experimental neocortical seizures and histological examination
of the cortex after cooling has shown no evidence of acute or
delayed neuronal injury, and blood pressure and temperature
remained stable (103). Animal experiments show that gentle
cooling is capable of markedly reducing subsequent seizure
frequency and intensity (104). The efficacy of TH in reducing
seizure burden following NE has also been described (25).

Confirming brain injury at the bedside and determining the
type and severity remains a challenge, as does bedside
identification and monitoring of injuries likely involving
of

inflammation, repair, and cell death, evolving over hours to

ongoing  processes oxidative stress, excitotoxicity,
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weeks. As novel treatment strategies for neonatal brain
injuries and seizures become available, the need for non-
invasive and continuous bedside monitoring of disease
severity and response to treatment becomes increasingly
apparent. Non-invasive and continuous measurements of
brain temperature in the neonatal neurocritical care set-up
may permit the selection of neonatal candidates who may
benefit from an adjustment in their hypothermia therapy or
for additional neuroprotective therapies. Further studies are
now urgently needed to establish whether optical brain
monitoring can be a useful neuromonitoring tool in neonatal
neurocritical care set-up. In view of the heterogeneous profile
of brain temperature during TH, an option of continuous
non-invasive monitoring of brain temperature at the bedside
might also provide an opportunity to review and improve the
current cooling methodologies in neonatal neurocritical care
following NE.
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