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Objective: Fluid administration is the initial step of treatment of unstable
pediatric patients. Evaluation of fluid responsiveness is crucial in
mechanically ventilated children to avoid fluid overload, which increases
mortality. We aim to review and compare the diagnostic performance of
dynamically hemodynamic parameters for predicting fluid responsiveness in
mechanically ventilated children.
Design: A systematic review was performed using four electronic databases,
including PubMed, EMBASE, Scopus, and Central, for published articles from
1 January 2010 to 31 December 2020. Studies were included if they
described diagnostic performance of dynamic parameters after fluid
challenge was performed in mechanically ventilated children.
Settings: Pediatric intensive and cardiac intensive care unit, and operative
room.
Patients: Children aged 1 month to 18 years old who were under mechanical
ventilation and required an intravenous fluid challenge.
Measurements and Main Results: Twenty-seven studies were included in the
systematic review, which included 1,005 participants and 1,138 fluid
challenges. Respiratory variation in aortic peak velocity was reliable among
dynamic parameters for predicting fluid responsiveness in mechanically
ventilated children. All studies of respiratory variation in aortic peak velocity
showed that the area under the receiver operating characteristic curve
ranged from 0.71 to 1.00, and the cutoff value for determining fluid
responsiveness ranged from 7% to 20%. Dynamic parameters based on
arterial blood pressure (pulse pressure variation and stroke volume variation)
were also used in children undergoing congenital heart surgery. The
plethysmography variability index was used in children undergoing
neurological and general surgery, including the pediatric intensive care
patients.
Conclusions: The respiratory variation in aortic peak velocity exhibited a
promising diagnostic performance across all populations in predicting fluid
01 frontiersin.org
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responsiveness in mechanically ventilated children. High sensitivity is advantageous in
non-cardiac surgical patients and the pediatric intensive care unit because early fluid
resuscitation improves survival in these patients. Furthermore, high specificity is
beneficial in congenital heart surgery because fluid overload is particularly detrimental
in this group of patients.
Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.
php?RecordID=206400

KEYWORDS

fluid therapy, cardiac output, predict, pediatric, hemodynamic
Introduction

Fluid administration is the first line of treatment for

critically ill children who are admitted to the pediatric

intensive care unit (PICU) with unstable hemodynamics.

However, only 40% to 69% of these children show a response

to fluid administration (1). Fluid responsiveness is defined as

an increase in cardiac output of more than 10% to 15% after

an intravenous fluid challenge (1–3). Early administration of

fluid in patients who are responsive improves survival.

However, fluid administration to those who are unresponsive

may cause fluid overload, leading to longer ventilator days

and higher morbidity and mortality rates (4–6).

Many hemodynamic parameters have been used to predict

fluid responsiveness in critically ill children. These parameters

can be divided into static and dynamic parameters

(Supplementary Table S1). Static parameters are measured at a

specific time point during observation. Dynamic parameters are

measured by monitoring changes in physiological responses

based on cardiopulmonary interaction (e.g., variability change

in preload during mechanical ventilation). Most studies have

suggested that dynamic parameters are more accurate than

static parameters for predicting fluid responsiveness (1, 7–9).

Dynamic parameters can be measured in an invasive or

non-invasive manner. Ultrasonic cardiac output monitoring

and electrical cardiometry are non-invasive methods that are

commonly used to assess dynamic parameters in the intensive

care unit (ICU) setting.

Previous studies of dynamic parameters were conducted in

different circumstances and populations (10–36). To date, there

are no standard parameters that can be used across all critically

ill children, especially in mechanically ventilated children, who

are prone to fluid overload. This systematic review aimed to

compare the diagnostic performance of dynamic parameters for

predicting fluid responsiveness in mechanically ventilated children.
Materials and methods

This study followed the Preferred Reporting Items for

Systematic Reviews and Meta-Analysis (PRISMA) reporting
02
guideline (37). The protocol was registered and approved by the

international prospective register of systematic reviews

PROSPERO (CRD42020206400) on 1 October 2020. Inclusion

criteria included the following: (i) children aged 1 month to 18

years old who were under mechanical ventilation and required

an intravenous fluid challenge; (ii) diagnostic accuracy studies of

dynamic parameters for predicting fluid responsiveness compared

with the gold standard definition of fluid responsiveness (10%–

15% increase in cardiac output after a fluid challenge as

measured by the pressure recording analytic method, an

echocardiogram, or non-invasive cardiac output monitoring), and

the measurements needed to be performed before and after a

fluid challenge; and (iii) the diagnostic performance included the

cutoff value, sensitivity, specificity, and area under the receiver

operating characteristic (ROC) curve. Meta-analyses, systematic

reviews, narrative reviews, clinical practice guidelines, conference

proceedings, case series and case reports with a sample size < 10,

and non-English articles were excluded.
Outcome

Theprimaryoutcomewas to study thediagnosticperformanceof

dynamic hemodynamic parameters, including sensitivity, specificity,

and the area under ROC curve, for the prediction of fluid

responsiveness in mechanically ventilated children. The secondary

outcome was to identify the reliable dynamic parameters among

mechanically ventilated children in different clinical circumstances.
Search strategy

A systematic review was performed using four electronic

databases, including PubMed, EMBASE, Scopus, and Central,

for published articles from 1 January 2010 to 31 December

2020. The last search was conducted on 15 January 2021. The

search terms were fluid, volume, response, challenge, bolus,

and guided. These words were combined with the medical

subject heading (MeSH) terms hemodynamics, hemodynamic

monitoring, fluid therapy, cardiac output, infant, child,

adolescent, and pediatrics. An additional search for potentially
frontiersin.org
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eligible articles was carried out using references of selected

retrieved articles.
Study selection and risk of bias
assessment

Two authors (P.Y. and W.K.) independently reviewed

abstracts of the retrieved articles for their eligibility. Articles

that clearly did not fulfill the inclusion criteria were excluded

at this stage. The remaining articles underwent a full-text

review for final determination of their eligibility Any

disagreements were resolved by conference with a third

author (R.L.). The risk of bias was assessed using the Quality

Assessment of Studies of Diagnostic Accuracy tool (38, 39),

which is composed of the following 4 domains: patient

selection, index test, reference standard, and flow-timing,

while the applicability concern was assessed through 3

domains: patient selection, index test, and reference standard.

The risk of bias and applicability concern was judged as

“low”, “high”, or “unclear.” If a study was judged as “low” in

all domains relating to bias or applicability, then the overall

judgment of a “low risk of bias” was assigned for that study.

If a study was judged as “high” in one or more domains, it

was judged as a “high risk of bias”. The term “unclear” was

assigned only when there were missing data that could not be

retrieved.
Data extraction and data synthesis

Two authors (P.Y. and R.L.) independently extracted data

from the included articles using a standardized data extraction

form derived from the Cochrane Public Health Group Data

Extraction and Assessment Template. We contacted the

corresponding author of the included articles for missing data.

However, only 2 of 10 corresponding authors replied. Those

missing data were labeled as not reported.

The following data were collected for systematic review:

sample size, age, specific circumstance of participants,

definition and percentage of fluid responsiveness, cutoff value,

and diagnostic performance of dynamic parameters.
Results

The identification and selection of studies are shown in

Figure 1. A total of 27 studies were included in the final

systematic review (10–36), which comprised 1,005 participants

and 1,138 intravenous fluid challenges. A total of 77% (21/27)

of studies were published after the last systematic review (1).

Twenty-five studies were conducted as prospective

observational cohorts (10–16, 18–36), and only 1 study was
Frontiers in Pediatrics 03
retrospective cohort study (17). There were 4 major groups of

patients in different clinical settings as follows: (i) the

congenital heart surgery group in 14 studies; (ii) the general

surgery group in 5 studies; (iii) the neurological surgery group

in 4 studies; and (iv) the general PICU group in 4 studies.

Among the subgroups of participants, different fluid types

and volumes were administered. Patients with congenital heart

surgery mostly received colloid or blood components; only 2

of 14 studies used isotonic crystalloids. The other 3 groups of

participants mostly received crystalloids with larger bolus

volumes.

Table 1 shows the diagnostic performance of dynamic

parameters compared with the gold standard measurement of

fluid responsiveness. The gold standard measurement was an

increase in cardiac output of 10%–15% after fluid

administration, which was represented by multiple parameters

as follows: the stroke volume index in 15 studies, stroke

volume in 5 studies, the cardiac index in 4 studies, and the

velocity–time integral in 2 studies. Eleven dynamic parameters

(see Supplementary Table S2 with equations) were

investigated in the 27 included studies.

The respiratory variation in aortic peak velocity (ΔVpeak)

was the most common dynamic parameter examined (12/27

studies). Moreover, ΔVpeak provided a reliable diagnostic

performance. All studies of ΔVpeak showed that the area

under the ROC curve ranged from 0.71 to 1.00, and the

cutoff value of ΔVpeak for determining fluid responsiveness

ranged from 7% to 20%.

Because patients with congenital heart surgery were

included in approximately half of all studies, we allocated

participants to 2 new subgroups as follows: the congenital

heart surgery subgroup (10–23) and the non-cardiac surgery

subgroup (general surgery, neurological surgery, and general

PICU patients) (24–36). In congenital heart surgery subgroup,

ΔVpeak showed the best sensitivity of 100% at the cutoff

value of 7% when performed by transesophageal

echocardiogram (TEE) (11). The best specificity of ΔVpeak

was 92% at the cutoff values 13%–14% by TEE (13, 21).

Another reliable dynamic was the pulse pressure variation

(PPV), with the sensitivity of 94% (at the cutoff value of 18%)

and the specificity of 100% (at the cutoff value of 30%) (17).

In the non-cardiac surgery subgroup, ΔVpeak performed by

transthoracic echocardiogram (TTE) showed the best

sensitivity of 100% (at the cutoff values 10% and 12.2%) (25,

29) with the best specificity of of 100% (at the cutoff value

10%) (29). Note that plethysmographic variability index (PVI)

measured by the transflectance adhesive forehead sensor

exhibited the second-best sensitivity of 94.1% (at the cutoff

value of 6%) (26), while stroke volume variation (SVV)

provided the second-best specificity of 93.3% (at cutoff values

16.5%) (33).

The risk of bias assessment of all included studies is

shown in Table 2. The reference standard domain was
frontiersin.org
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FIGURE 1

Flowchart of a literature search and study selection.
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judged to have a high risk of bias in 9 studies because the

interpretation of the reference standard test was made with

knowledge of index test results. The flow and timing

domain were also judged to have a high risk of bias in 15

studies because all included patients were not in the final

analysis (per-protocol analysis).
Frontiers in Pediatrics 04
Discussion

In 2013, Gan et al. (1) studied static and dynamic

parameters, and found that dynamic parameters were more

reliable in predicting fluid responsiveness in children. Several
frontiersin.org
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TABLE 2 Risk of bias assessment.

Study Risk of bias Applicability concern

Patient
selection

Index
test

Reference
standard

Flow and
timing

Patient
selection

Index
test

Reference
standard

Choi et al., 2010 (14)

Renner et al., 2011 (15)

Renner et al., 2012 (16)

Lee et al., 2014 (17)

Saxena et al., 2015 (18)

Lee et al., 2015 (19)

Han et al., 2017 (20)

Favia et al., 2017 (21)

Lee et al., 2017 (22)

Han et al., 2017 (23)

Cheng et al., 2018 (24)

Kim et al., 2019 (25)

Park et al., 2019 (26)

Song et al., 2020 (27)

Pereira de Souza Neto et al., 2011 (33)

Byon et al., 2013 (34)

Vergnaud et al., 2015 (35)

Morparia et al., 2018 (36)

Julien et al., 2013 (28)

Achar et al., 2016 (29)

Kim et al., 2020 (30)

Chen et al., 2020 (31)

Zorio et al., 2020 (32)

McLean et al., 2014 (37)

Weber et al., 2015 (38)

Chaiyaphruk et al., 2018 (39)

Sun et al., 2020 (40)

, low risk of bias, , high risk of bias; , unclear.
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new dynamic parameters have since been introduced and

studied in the pediatric population during the last 10 years.

Therefore, we conducted this review to extend the work of

Gan et al. (1) on dynamic parameters and to provide an

update with newly examined parameters.

New dynamic parameters from non-invasive ultrasonic

cardiac output monitoring, electrical cardiometry, and

ultrasound are easily accessible and widely used in the PICU.

These new parameters are reliable and can be measured by

non-experienced physicians in a few minutes (40, 41).

Therefore, they could be useful tools for clinicians to

determine whether patients should undergo a fluid challenge.

This systematic review showed that ΔVpeak had a

promising diagnostic performance across all populations. The

ΔVpeak was studied as a single parameter or together with

other dynamic parameters. The cutoff values for predicting

fluid responsiveness ranged from 7% to 20%, while the

average values ranged from 12% to 14%. In group of

congenital heart surgery, the echocardiogram performed by

transesophageal technique but in other groups, mostly

performed by transthoracic technique. A major disadvantage

of ΔVpeak is that this parameter requires an experienced

operator of echocardiography.

The highest sensitivity of ΔVpeak in patients who had

congenital heart surgery is advantage because fluid overload

can increase the risk of acute kidney injury and poor

postoperative outcomes in patients with congenital heart

disease (42, 43). Therefore, a parameter with high specificity,

such as ΔVpeak, could reduce such adverse events and

complications by decreasing an unnecessary fluid challenge in

this patient subgroup. When ΔVpeak is not accessible, new

dynamic parameters from non-invasive methods such as

ultrasonic cardiac output monitoring, electrical cardiometry,

and arterial line variable parameters should be considered,

because of easy accessibility and mostly non-operator

dependent methods. Pulse pressure variation could be used as

alternative because it also had a high specificity. Patients in

the non-cardiac subgroup are most likely to benefit from early

fluid resuscitation. The ΔVpeak and PVI should be considered

in this context because they have a high sensitivity.

Each study with patients in the congenital heart surgery

group reported inotropic and vasopressor administration in

various forms, including the percentage of inotrope use in the

population and the Vasoactive Inotropic Score, and some

studies did not report inotropic or vasopressor data.

Therefore, we did not perform analysis for specific dynamic

parameters based on inotropic status.

There are some limitations to our study. First, our search

strategy was limited to the last 10 years. The reason for his

limitation was to focus on new dynamic parameters that

appeared after the systematic review in 2013 by Gan et al. (1)

Second, there was heterogeneity of the study design, including

multiple participant groups in different clinical settings,
Frontiers in Pediatrics 09
different fluid types, varying amounts of volume (5–20 ml/kg),

and the definition of fluid responsiveness using different

parameters across the studies.

The findings from this systematic review suggest some future

research opportunities. The ΔVpeak, which is the most reliable

parameter for predicting fluid responsiveness in mechanically

ventilated children, has not been investigated in children with

spontaneous breathing. Preload challenge maneuvers (e.g.,

calibrated abdominal compression, mini-fluid bolus, the passive

leg raising test, and the end-expiratory occlusion test) have been

extensively studied in the adult population for predicting fluid

responsiveness (44). However, these maneuvers have not been

well investigated in pediatric population.
Conclusions

The ΔVpeak exhibited a promising diagnostic performance

in predicting fluid responsiveness in mechanically ventilated

children. The sensitivity of ΔVpeak is advantageous in non-

cardiac surgical patients and the PICU setting because early

fluid resuscitation improves survival in these patients.

Furthermore, the specificity of ΔVpeak is beneficial in

congenital heart surgery because fluid overload is particularly

detrimental in this group of patients.
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