
TYPE Original Research
PUBLISHED 01 December 2022| DOI 10.3389/fped.2022.1023539
EDITED BY

Tyler John Loftus,

University of Florida, United States

REVIEWED BY

Melissa Aczon,

Children’s Hospital of Los Angeles,

United States

Daniel Ehrmann,

Hospital for Sick Children, University of

Toronto, Canada

*CORRESPONDENCE

Anita K Patel

apatel4@childrensnational.org

†These authors have contributed equally to this

work

‡These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to Pediatric Critical

Care, a section of the journal Frontiers in

Pediatrics

RECEIVED 23 August 2022

ACCEPTED 26 October 2022

PUBLISHED 01 December 2022

CITATION

Patel AK, Trujillo-Rivera E, Morizono H and

Pollack MM (2022) The criticality Index-

mortality: A dynamic machine learning

prediction algorithm for mortality prediction in

children cared for in an ICU.

Front. Pediatr. 10:1023539.

doi: 10.3389/fped.2022.1023539

COPYRIGHT

© 2022 Patel, Trujillo-Rivera, Morizono and
Pollack. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.
Frontiers in Pediatrics
The criticality Index-mortality:
A dynamic machine learning
prediction algorithm for
mortality prediction in children
cared for in an ICU
Anita K Patel1*†‡, Eduardo Trujillo-Rivera2†, Hiroki Morizono3†‡

and Murray M. Pollack1†‡

1Department of Pediatrics, Division of Critical Care Medicine, Children’s National Health System,
George Washington University School of Medicine and Health Sciences, Washington, DC, United
States, 2Department of Bio-Informatics, Children’s National Health System, George Washington
University School of Medicine and Health Sciences, Washington, DC, United States, 3Department of
Pediatrics, Children’s National Research Institute, George Washington University School of Medicine
and Health Sciences, Washington, DC, United States

Background: The Criticality Index-Mortality uses physiology, therapy, and
intensity of care to compute mortality risk for pediatric ICU patients. If the
frequency of mortality risk computations were increased to every 3 h with
model performance that could improve the assessment of severity of illness,
it could be utilized to monitor patients for significant mortality risk change.
Objectives: To assess the performance of a dynamic method of updating
mortality risk every 3 h using the Criticality Index-Mortality methodology and
identify variables that are significant contributors to mortality risk predictions.
Population: There were 8,399 pediatric ICU admissions with 312 (3.7%) deaths
from January 1, 2018 to February 29, 2020. We randomly selected 75% of
patients for training, 13% for validation, and 12% for testing.
Model: A neural network was trained to predict hospital survival or death
during or following an ICU admission. Variables included age, gender,
laboratory tests, vital signs, medications categories, and mechanical
ventilation variables. The neural network was calibrated to mortality risk
using nonparametric logistic regression.
Results: Discrimination assessed across all time periods found an AUROC of
0.851 (0.841–0.862) and an AUPRC was 0.443 (0.417–0.467). When assessed
for performance every 3 h, the AUROCs had a minimum value of 0.778
(0.689–0.867) and a maximum value of 0.885 (0.841,0.862); the AUPRCs
had a minimum value 0.148 (0.058–0.328) and a maximum value of 0.499
(0.229–0.769). The calibration plot had an intercept of 0.011, a slope of
0.956, and the R2 was 0.814. Comparison of observed vs. expected
proportion of deaths revealed that 95.8% of the 543 risk intervals were not
statistically significantly different. Construct validity assessed by death and
survivor risk trajectories analyzed by mortality risk quartiles and 7 high and
low risk diseases confirmed a priori clinical expectations about the
trajectories of death and survivors.
Conclusions: The Criticality Index-Mortality computing mortality risk every 3 h
for pediatric ICU patients has model performance that could enhance the
clinical assessment of severity of illness. The overall Criticality Index-Mortality
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framework was effectively applied to develop an institutionally specific, and clinically
relevant model for dynamic risk assessment of pediatric ICU patients.
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Introduction

Models computing mortality risk have not been

traditionally used for individual patient risk assessment. Static

scores such as PRISM and PIM that utilize fixed time periods

for data collection at the beginning on the intensive care unit

stay (ICU) stay were developed and calibrated on populations

of interest primarily for hospital quality assessment and

benchmarking; they were not designed to aid in the

assessment of individual patients or to enhance clinical

decision making (1, 2). Since they are calibrated to produce a

risk score at a single time point, they fail to provide updated

assessments reflecting the changing clinical status of

individual patients; some have warned against their use for

individual patients (3–5). When the data are collected or risk

is computed at the bedside, there are data reliability issues as

well as an additional risk of human error. However, there is a

long-standing desire to have a frequently updated patient

assessment methodology as evidenced by investigations of

intermittently updated static scoring systems (6–10).

Physiologic patterns often precede acute deterioration of

patients and may go unrecognized (11–15). This is the foundation

of the recent emphasis on early warning systems (15). An

automated, frequently updated assessment of a patient’s severity of

illness could alert health care providers to a patient’s changing

status prior to clinical recognition (16). For ICU patients, serious

deteriorations often follow a sequence of both deteriorations and

improvements until there is overt decompensation, rather than a

linear progression to decompensation (14). Alerts that identify an

unrecognized problem or reinforce a provider’s suspicions could

result in monitoring or therapy changes that mitigate mortality

and morbidity risks.

Despite the increasing sophistication of monitoring and

therapeutic technologies, and the data-rich environment of the

ICU, current monitoring strategies in clinical use are still

challenged to accurately assess changing patient status. The aim

of this study was to assess the performance of a dynamic

method of updating mortality risk every 3 h using the Criticality

Index-Mortality (CI-M) neural network methodology.
Methods

The data came from Children’s National Hospital, a 323-

bed academic hospital with 48 bed Pediatric ICU beds and 24
02
Cardiac ICU beds. The patient sample included all admissions

to the Pediatric and Cardiac ICUs from January 1, 2018 to

February 29, 2020. The end date was chosen to reflect care

prior to the novel coronavirus pandemic since ICU admission

and discharge guidelines and isolation practices were in flux

for much of this time. Exclusions included patients over 21

years of age and those admitted to the neonatal ICU. This

study was approved by the Institutional Review Board

(protocol Pro00015931). Modeling was performed under the

direction of Eduardo Trujillo-Rivera PhD.
Dataset

The dataset was extracted from the electronic health record

(EHR). Descriptive data included age, gender, dates of hospital

and ICU admission, admission type (with elective, emergent,

and urgent), diagnoses, race, and hospital outcome (survival,

death) during or following an ICU admission. Only data from

the first ICU admission was included for patients with

multiple admissions. Modeling included all independent

variables from the original multi-institutional CI-M model

representing physiology, treatment, and care intensity.(Trujillo

Rivera et al., 2022)17 This included age, gender, 30 laboratory

tests, 6 vital signs, 1113 and medications classified into 143

categories. Positive pressure ventilation (invasive and non-

invasive) was identified by procedure codes, and specific times

with and without ventilation were identified. Variables

reflecting positive pressure ventilation included the number of

hours of mechanical ventilation at the time of risk assessment,

the number of hours since discontinuation at the time of risk

assessment, and the proportion of time that positive pressure

ventilation used. Medication data were extracted from the

medication administration record using start and end times.

Medication classes were categorized using the Multum™

system (18). A comprehensive list of independent variables

and details of medication classification have been published

and included in Supplementary Appendices S1, S2 (17).

Other data included diagnostic information categorized by the

International Classification of Diseases 10th Edition (ICD-10)

(19). Diagnoses were used for descriptive purposes, but not

for modelling, because they were determined at discharge. All

discharge diagnoses for each patient were categorized by

system of dysfunction (Table 1).
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TABLE 1 Population characteristics the mann whitney U test was used to compare the distribution of numerical quantities between survivors and
deaths. The Santner and Snell exact test was used to compare proportions (percentages) between survivors and deaths. A single encounter could
have diagnoses in multiple groups.

Characteristic All Survivors ICU Deaths P-valuesd

N 8,399 8,087 312

Age (Months)a 38 (12, 130) 37 (11,130) 50 (1,132) 0.034

Female (n (%) 3,789 (45.1) 3,650 (45.13) 139 (44.55) 0.841

Hospital LOS (hours)a 83.10 (52.33,151.79) 82.50 (51.88,147.06) 143.97 (65.78,323.60) <0.001

ICU LOS (hours)a 35 (20, 69) 34 (20, 67) 78 (43, 178) <0.001

Admission Typeb

Elective 2,450 (29.2) 2,399 (29.66%) 51 (16.35%) <0.001

Emergency 5,666 (67.5) 5,427 (67.11%) 239 (76.60%) <0.001

Urgent 282 (3.4) 261 (3.23%) 21 (6.73%) 0.225

Hospital Mortality 312 (3.7)

Positive Pressure Ventilation, n (%) 3,118 (37.1) 2,882 (35.64) 236 (75.64) <0.001

Congenital Disease n (%) 1,975 (23.5%) 1,891 (23.4%) 84 (26.8%) 0.243

Systems of Dysfunctionc n (%)

Respiratory 4,781 (56.9%) 4,563 (56.4%) 218 (69.4%) <0.001

Endocrine, Nutritional, Metabolic, and Immune 1,343 (16.0%) 1,249 (15.4%) 94 (29.9%) <0.001

Gastrointestinal 843 (10.0%) 770 (9.5%) 73 (23.2%) <0.001

Infectious 1,127 (13.4%) 1,052 (13.0%) 75 (23.9%) <0.001

Injury and Poisoning 971 (11.6%) 898 (11.1%) 73 (23.2%) <0.001

Neurological 2,177 (25.9%) 2,034 (25.2%) 143 (45.5%) <0.001

Neoplasms 434 (5.2%) 377 (4.7%) 57 (18.1%) <0.001

Hematologic 609 (7.3%) 541 (6.7%) 68 (21.7%) <0.001

Cardiovascular 1,235 (14.7%) 1,113 (13.8%) 122 (38.9%) <0.001

Musculoskeletal 663 (7.9%) 636 (7.9%) 27 (8.6%) 0.799

Dermatologic 359 (4.3%) 330 (4.1%) 29 (9.2%) 0.073

Genitourinary 516 (6.1%) 455 (5.6%) 61 (19.4%) <0.001

Ophthalmologic 238 (2.8%) 210 (2.6%) 28 (8.9%) 0.0286

ENT 182 (2.2%) 181 (2.2%) 1 (0.3%) 0.504

Psychiatric 568 (6.8%) 540 (6.7%) 28 (8.9%) 0.437

LOS, length of stay.
aMedian (25th percentile, 75th percentile).
bEmergency refers to all admissions/transfers that are classified as needing the ICU. Urgent refers to all patients who were intubated or actively decompensating that

required immediate transfer/admission to the ICU. These metrics were supplied for descriptive purposes, and not used for modeling.
cA single encounter could have diagnoses in multiple groups.
dSurvivors and deaths were compared using univariate analysis.
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The ICU course was discretized into consecutive 3-hour

time periods truncated at 11.4 days (273 h) when the sample

size was reduced to 97 survivors and 10 deaths to ensure an

appropriate sample for calibration testing. Deaths could have

occurred during or following the ICU admission; however,

they had to occur during the specific hospital admission to be

included as a death in the study population presented in

Table 1. We randomly selected 75% of patients for training,

13% for validation, and 12% for testing. The training set was

used for model development, the validation set was used to

fine-tune parameters and prevent over-fitting, and the test set

was used to evaluate model performance. Counts of survivors

and deaths per 3-hour time period in the training/validation
Frontiers in Pediatrics 03
and test set are provided in Supplementary Appendix S3 for

reference.

Vital signs, laboratory data, and medication data were

standardized to values from 0 to 1 using the maximum and

minimum values of the training set. Consistent with other

machine learning models, the data for each time period were

forward imputed using the last available data if new data were

not obtained (16, 17, 20–23) For the first time period, if vital

signs or laboratory data were not obtained, we used the

medians of the first time periods across all training patients

adjusted by 9 age groups. The imputed values by age groups

are reported in Supplementary Appendix S4. For modeling,

imputed values were identified by setting the count to zero.
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Vital signs and laboratory values for each time period were

summarized using the count, averages, standard deviations,

maximums, and minimums. Medication administration data

included the number of medications by class but not dose.

Medication history was summarized in each time period by

the number of medications in a class, the proportion of time

periods the medication class was previously administered, and

the number of administered medications within the class.
Machine learning methodology

A single neural network for classification of hospital

outcome as survival or death was developed. The model used

variables up to 6 h in the past for all patients if these data

were available. The objective of each training epoch was to

maximize the Mathew’s correlation coefficient at a cut point

of 0.5 while minimizing the binary cross entropy between the

predicted score and the patient’s outcome. The initial neural

network had a single hidden layer, and a logit output. We

consecutively increased the number of nodes while

monitoring the Mathew’s correlation coefficient, sensitivity,

specificity, precision, and negative predictive value at cut

points of 0.15, 0.5, and 0.9 in the training and validation sets.

If overfitting was detected, regularization included L2

regularization and layer node dropouts with parameters tuned

to maintain similar metrics on the training and validation

sets. We increased the number of nodes while monitoring for

overfitting. When there were no additional gains on the

performance metrics, we added another hidden layer and

repeated the process, increasing the number of hidden layers

until our regularization attempts were unsuccessful in

avoiding overfitting. The best model as measured by the

Mathew’s correlation coefficient without overfitting was kept.

We assessed models using up to four previous time periods

and found that performance was maximized with the current

time period and the change between the present and previous

time period.

The final model had three hidden layers with 32 nodes each,

bias and ReLU activation functions, L2 regularization with a

parameter 0.02, and drop out nodes of 0.05. The neural

network was calibrated to risk of mortality using a logistic

regression with covariates including the logit transformed

score of the neural network.
Statistics

The performance was assessed in the test sample and only

test sample data are reported. Discrimination was assessed by

the area under the receiver operating characteristic curve

(AUROC) and the area under the precision recall curve

(AUPRC) for all time periods combined and as function
Frontiers in Pediatrics 04
of time (24). AUPRC was computed with integral

approximation. The model was calibrated using the training

and validation datasets. Calibration was assessed on the test

dataset with calibration plots of the differences between the

observed and expected proportions of deaths in the risk

intervals. The composite calibration plot had 543 risk

intervals with a minimum of 49 patients in each risk interval.

We computed the regression line for observed vs. expected

proportions of deaths and tested the difference between

proportions in each interval with the Santner and Snell exact

test and report the percentage of intervals with no statistical

difference (25, 26). Optimal calibration plot performance

includes intercept = 0, slope = 1, R2 = 1, and ≤5.0% of risk

intervals with a statistically difference (p < 0.05) between the

observed and expected proportions. In addition, we computed

the additional performance metrics of precision, number

needed to evaluate, accuracy, and negative predictive value at

a cut point of 0.5 and performed a net benefit analysis (27)

for the proposed model of both treated and untreated patients.

Construct validity was assessed by plotting population

trajectories and mortality risk changes in consecutive time

periods for selected groups. First, we plotted the mortality risk

trajectories for survivors and deaths in the total sample for

specific mortality risk groups. Mortality risk groups were

determined from the first 3-hour time period using mortality

risk quartiles. A priori based on analyses of clinical

trajectories from the national Criticality Index-Mortality

model (28), we expected that the mortality risk of deaths in

the highest risk quartile would remain high and other death

groups would increase or remain relatively constant over time

and the mortality risk of survivors in the highest survivor risk

quartile group would decrease and the risk of other survivor

risk groups would decrease or remain relatively constant over

time. Second, we plotted the mortality risk trajectories using

diagnostic groups with traditionally low (diabetic ketoacidosis,

bronchiolitis) and high risk (congenital cardiovascular

conditions, traumatic brain injury, bone marrow transplant,

pediatric acute respiratory distress syndrome). We

hypothesized that deaths in the low-risk diagnoses would

follow a similar clinical trajectory to deaths in the low-risk

quartile – they would increase overtime, while survivors

would maintain relatively low and constant mortality risks.

Whereas, deaths in the high-risk diagnoses would rapidly

increase their mortality risks or begin at a high mortality risk

and remain high, while survivors’ mortality risk trajectories

would remain relatively constant or improve over time (28).
Variable importance

We explored the variable importance using a Local

Interpretable Model-Agnostic Explanation (LIME) approach

(LIME R package) (29). Briefly, the LIME approach assumes
frontiersin.org

https://doi.org/10.3389/fped.2022.1023539
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Patel et al. 10.3389/fped.2022.1023539
that every model performs like a linear prediction model for

each prediction and the hierarchy of covariate importance is

preserved. The collection of individual linear models provides

an interpretation of the covariate importance in the final

model. We ranked the most important variables across all

predictions by computing the percentage of times each

variable was among the 30 most important covariates.
Results

There were 8,399 pediatric ICU admissions with 312 (3.7%)

deaths (Table 1). Admissions to the ICU were 29.2% elective,

67.5% emergent, and 3.4% urgent. The most common systems

of dysfunction were respiratory, cardiovascular, neurologic,

infectious, and endocrine/nutrition/metabolic/immune.

Median age was 38.1 months (IQR 11.6–129.9), 45.1% were

female; median hospital length of stay (LOS) was 83.1 (IQR

52.3–151.8), ICU LOS was 35.3 (IQR 20.01–69.1), and 37.1%

of patients received positive pressure ventilation. Deaths were

more likely to be older, emergent admissions with longer

LOS’s, and receive positive pressure ventilation.

The composite assessment of discrimination across all time

periods found an AUROC of 0.851 (0.841–0.862) and a AUPRC

was 0.443 (0.417–0.467) (Figure 1A,B respectively). The

AUROCs and AUPRC (Figure 1C) were also calculated for

every 3-hour time period. The AUROCs had a minimum

value of 0.778 (0.689–0.867) at hour 3 and a maximum value

of 0.885 (0.841,0.862) at hour 81 and the individual AUPRCs

had a minimum value 0.148 (0.058–0.328) at hour 3 and a

maximum value of 0.499 (0.229–0.769) at hour 195.

Additional performance metrics are reported in Supplementary

Appendix S5, Table J. Most notable is the precision of the

model at 0.594, with a number needed to evaluate of 1.7,

accuracy of 94.7% and negative predictive value of 0.958. The

net benefit analysis also demonstrates the potential positive

impact (Supplementary Appendix S6: Net Benefit Analysis of

the Criticality Index-Mortality Models for both Treated and

Untreated Patients).The calibration plot had an intercept of

0.011, a slope of 0.956, and the R2 was 0.814 (Figure 2).

Comparison of the observed vs. expected proportion of deaths

in the risk intervals revealed that 95.8% of the 543 risk intervals

were not statistically significant (Figure 2).

Construct validity assessed by death and survivor risk

trajectories (Figure 3A) revealed the a priori expectations of

risk trajectories were correct (Methods). Risks for deaths in

the highest risk quartile were high and remained high and

risks for deaths in the other 3 risk quartiles increased over

time All survivor risk quartiles had mortality risks that

remained relatively constant over time. Construct validity

assessed by the mortality risk trajectories of different disease

pathologies (Figure 3B) followed the expected pattern of

deaths having higher mortality risks than survivors. Mortality
Frontiers in Pediatrics 05
risk trajectories exhibited different patterns across differing

pathologies that were consistent with clinical experience.

The 20 most frequently important covariates for risk

prediction using the LIME approach are shown in Figure 4.

The 10 most frequently important variables were the length of

time in the ICU prior to the risk prediction, duration since

mechanical ventilation was discontinued, hours on mechanical

ventilation, the maximum, minimum and average coma

scores, age, and the minimum, average, and maximum

neutrophil counts. Other variables of frequent importance

included medication classes (anti-infectives, anti-neoplastics,

general anesthetics, respiratory inhalants and nasal lubricants).

Overall, these variables reflect disease pathologies such as

neurologic conditions (coma scores), respiratory conditions

(mechanical ventilation, respiratory inhalants, and lubricants).
Discussion

The CI-M, a neural network which uses physiology, therapy,

and intensity of care to compute morality risk for pediatric ICU

patients, was effectively used to develop an institution-specific

and clinically relevant model for mortality risk assessment

every 3 h. Model performance, while it varied over time,

indicated potential to enhance clinical assessment of mortality

risk in the PICU. Discrimination assessed across all time

periods found an AUROC of 0.851 (0.841–0.862) and a

AUPRC was 0.443 (0.417–0.467). The calibration plot had an

intercept of 0.011, a slope of 0.956, and the R2 was 0.814.

Comparison of the observed vs. expected proportion of deaths

in 543 the risk intervals revealed that 95.8% were not

statistically significant. Construct validity assessed by death

and survivor risk trajectories analyzed by mortality risk

quartiles and by 7 high and low risk diseases confirmed risk

patterns consistent with clinical expectations. Importantly, the

worst performance was during the initial time intervals when

historical data was less available, and during the later times

when less data was available for modeling. These issues would

be amenable to improvement as more institutional data,

including patients and patient variables, are acquired.

Additionally, since the evaluation cohort is constantly

changing as patients leave the ICU, a larger data set would

also enable a more complete assessment of performance,

including the characteristics of patients remaining in the ICU

at different time points coupled with focused performance

metrics for those time points.

The approach taken to develop an institutional-specific

model was straightforward and applicable to institutions with

a range of data sciences expertise, including those without

research expertise. We used the core variable list and

modeling methodology used to develop the CI-M. Since the

original CI-M was developed from a national database with a

limited number of data elements, we were able to make minor
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FIGURE 1

Area under the receiver operating characteristic (AUROC) curves (A), area under the precision recall (AUPRC) curves (B), and AUROC and AUPRC
computed every 3 h. Outcomes were survival and death. (A) The AUROC for all time periods through 11.4 days. (B) The AUPRC for all time
periods through 11.4 days. (C) AUROC and AUPRC calculated every 3 h through 11.4 days. The shaded regions are pointwise 95% confidence
intervals. We applied boost strap techniques to the test set with 5,000 stratified bootstrap replicates to compute the confidence intervals.

Patel et al. 10.3389/fped.2022.1023539
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FIGURE 2

Calibration plot for the criticality Index-mortality (CI-M) model. The dashed line is the line of identity and the solid line is the regression line. A
statistical test for differences of proportion was computed for each dot in the calibration plot. Each dot is associated with two proportions in a
risk interval: 1) observed proportion of ICU mortality (observed count of deaths/total sample), and 2) expected proportion of ICU mortality
(predicted count of deaths/total sample). The expected proportion is computed using the risk predictions from the model to predict the count
of deaths, the observed proportion is an empirical count of the risk of mortality among the cases in each risk interval. The Santner and Snell test
were computed to assess the significance of the different proportions. The dot is grey if the test results in a p-value < 0.05.

Patel et al. 10.3389/fped.2022.1023539
enhancements to the dataset relevant to our institution.

Developing an institution specific model also enabled us to

fine-tune risk computations to outcomes that might have been

influenced by institution-specific clinical practice (30–32).

Developing institution-specific models has the further

potential advantage for “continuous improvement” by

adjusting variables and outcomes as institution-specific

practices change and adding variables to improve performance.

While neither current risk assessment nor prediction

methods have significantly enhanced the ability of bedside

caregivers to recognize early patterns of deterioration (33), the

methodology described in this article has the potential to

identify patients by their changing risk status who are

deteriorating, improving, or remaining stable. If successful, it

could improve clinical decision-making by supplementing the

limitations of cognitive processing and by reducing medical

errors (34). Medical errors are often based in heuristics and

are more likely to occur in high-pressure, high-stakes

decisions, particularly when dealing with incomplete

information, such as assessing a deteriorating patient (35–37).

The response to risk change will need to be individualized

based on the patient’s condition, clinical expectations, and the

magnitude of the change. For example, some patients will
Frontiers in Pediatrics 07
need immediate evaluation with a change in therapeutic plans

while others may be considered for ICU discharge because of

the documented improvement.

Health care personnel benefiting most from measures of

risk change are expected to be those with less experience or

training. Experienced intensivists are excellent at assessing

patients using clinical snapshots and their risk assessments for

discharge outcomes are generally accurate and reliable (38–40).

The wide-spread use of the multiple static models used to

estimate objective mortality risks (2, 41, 42) might have helped

to calibrate clinical assessments to objective risk predictions for

discharge outcomes. Unfortunately, even experienced physicians’

clinical judgements have not been calibrated to assess dynamic

risk changes that occur over short time intervals. The ability

and reliability of health care professions, no matter what their

training or experience, to assess these small changes is

unknown. Contiguous changes in risk for ICU patients are

generally small (17) and may be dependent on a small changes

in a large number of variables. The ability to successfully

integrate this large amount of changing information on a

frequent basis lies beyond the capabilities of most care givers,

especially those who are less experienced (38). Furthermore, the

model’s high precision of 0.594 resulting in a number needed to
frontiersin.org
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FIGURE 3

Trajectories for deaths and survivors by risk quartiles (A), and trajectories for deaths and survivors by diagnostic groups (B). (A) Death and survivor risk
trajectories. Risk was computed with the Criticality Index-Mortality (CI-M). Median risk for each quartile for survivors and deaths used CI-M
predictions. Patients were stratified using the first risk prediction at 3 h. The shaded areas are 95% confidence intervals (CIs). The trajectories
were constructed from the total sample with 314 deaths and 8,087 survivors. (B) Death and survivor risk trajectories for different conditions. Risk
was computed with the CI-M predictions and displayed for deaths and survivors. The numbers of survivors and deaths are shown in each panel.
ARDS = Acute Respiratory Distress Syndrome (ARDS), BMT = Bone Marrow Transplants, DKA =Diabetic Ketoacidosis (DKA).
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evaluate of 1.7 patients coupled with an accuracy of 94.7%

suggests that any potential burden of increased patient

assessments to an ICU care team is negligible with a high

benefit if a model-detected clinical deterioration can lead to

earlier clinical intervention. The potential benefit is confirmed

by the net benefit analysis (Supplementary Appendix S6: Net

Benefit Analysis of the Criticality Index-Mortality Models for

both Treated and Untreated Patients). Conversely, with a high

negative predictive value of 0.958, the model can potentially be

utilized to direct clinical reassessments away from low risk

patients, and towards those that need them most; this potential

model utilization is particularly important during periods of

high census. Therefore, the addition of frequently updated risk

assessments for children in ICUs could result in the detection

of clinical deterioration or improvement that might have been

unappreciated, providing an opportunity for earlier

interventions and the potential for improved outcomes.

Construct validity in this study and others was assessed using

clinical trajectories, overall and within clinical entities, which

were consistent with clinical expectations (17, 28). The validity

for the Criticality Index, however, has been further explored.

First, the variables based on therapy, physiology and intensity

used in the Criticality Index are fundamental to severity of

illness. In the 1960′s and 1970′s, The Clinical Classification
FIGURE 4

Variable importance for the Criticality Index-Mortality (CI-M) model. Percen
LIME methodology.
MV =mechanical ventilation, d/c = discontinued, max =maximum, avg = av
cholinergic, stim = stimulants.
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System was proposed as a measure of severity based on

intensity of care and the Therapeutic Intervention Scoring

System, a measure of severity based on therapies, was an early

quantitative assessment of severity of illness (43). In the 1980′s
and 1990′s, physiology-based systems were developed and are

the early iterations of the APACHE and PRISM systems (44,

45). Second, the Criticality Index is highly correlated with

patients’ care areas that are representative of severity of illness

(22). Third, clinical instability measured with the Criticality

Index demonstrates increased volatility in deaths compared to

survivors, consistent with the observations of Yoon et al. (14).

And fourth, changes in the Criticality Index over time periods

as short as 6 h strongly correlate with clinical deterioration and

clinical improvement (17).

There are limitations to this study. First, while there is value

in an institution specific algorithm, there is a limitation because

single site datasets will usually have a relatively small sample

size with the potential for overfitting the model. A larger

dataset could have improved our model performance,

especially during the time periods of prolonged ICU stays.

Second, we did not exhaust all issues and possible modeling

approaches available for machine learning. For example, data

missingness is a routine issue for many machines learning

approaches and, although we did not find any systematic bias,
tages of the most frequently important covariates determined by the

erage, min =minimum, prop = proportion, resp = respiratory, chol =
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it has the potential to introduce bias and could have influenced

the LIME analysis. Third, we were unable to explore the details

of the risk trajectories for the specific disease processes because

most high-risk conditions are infrequently represented in multi-

disciplinary pediatric ICUs. Fourth, we did not use diagnoses

for our risk assessments because these were not easily

available in the EHR for the individual time intervals.

However, the LIME assessment of important variables

demonstrated how inclusion of medications and therapies

provided proxies for this information. Fifth, this study, as well

as other pediatric ICU studies with mortality as the outcome,

will usually have relatively few deaths. The AUROC has

limited relevance with very unbalanced datasets and some

recommend using the AUPRC under these circumstances (24)

Sixth, the data set pre-dated the novel coronavirus pandemic

and, if used clinically, the algorithm should be re-evaluated

and potentially be retrained. This emphasizes the need to

frequently evaluate and re-calibrate predictive models,

especially if they used for clinical care. Finally, performance

metrics for models such as the CI-M that frequently update

risk should be assessed with the understanding that the

evaluation cohort is changing in time. For example, patients

dying early in their ICU stay during the resuscitation phase of

illness will generally have substantial physiologic instability

while those dying after long ICU stays may have an illness

profile of chronic dysfunction.

In conclusion, the Criticality Index-Mortality computing

mortality risk every 3 h for pediatric intensive care unit

patients has potential to enhance the clinical assessment of

severity of illness and clinical care. The methods are

applicable to other institutions.
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