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clinical practice

o Near Infrared Spectroscopy (NIRS) is a non-invasive method of measuring regional
tissue oxygenation

« Changes in splanchnic oxygenation could suggest the onset of gut tissue injury

What is new?

o Near Infra-Red Spectroscopy (NIRS) could detect perfusion changes prior to
development of NEC allowing opportunity for timely intervention, but further
research is needed to examine if early intervention aided by gut NIRS
measurements can improve outcomes

o Potentially a machine learning algorithm encompassing routine clinical, haematological,
and biochemical parameters, in conjunction with gut related biomarkers and gut
regional NIRS would be able to detect NEC prior to clinical manifestations
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Introduction

Necrotising Enterocolitis (NEC) occurs in 14% infants
under 26 weeks gestation and 10% of babies born before 31
weeks gestation (1). Despite advances in neonatal care NEC
continues to have a significant mortality and morbidity and
with increasing survival of those more immature infants the
population at risk of NEC is ever increasing. Although there
has been a plethora of research studies examining the various
blood and tissue biomarkers and their effectiveness in
diagnosing gut tissue injury, none of the current biomarkers
are in regular clinical use and most have some inherent
difficulty with their measurement. Due to these difficulties,
recent interest has turned to non-biochemical markers of gut
hypoxia and ischaemia. This article reviews Near Infrared
Spectroscopy (NIRS)—its current clinical use in Neonatology,
its potential use in the identification and management of
NEC, as well as exploring how effectively it could be
implemented into routine clinical practice.

Background and introduction to NIRS

Currently tissue perfusion and oxygenation of patients in
Neonatal Intensive Care Units (NICU) is indirectly monitored
using systemic blood pressure, heart rate, capillary refill time
and evidence of end organ perfusion including lactate level,
renal function, and urine output, which are often late signs of
any disease process causing impaired perfusion. NIRS is a
method  of
regional tissue oxygenation (rSO,) at the bedside. Changes in

non-invasive contemporaneously measuring
SO, measured by NIRS may reflect the balance between
oxygen delivery and consumption (2).

Principles of use

NIRS exploits the differential absorption of light of different
biological compounds (e.g., haemoglobin) in the near-infrared
region of the electromagnetic spectrum. The principle of how
NIRS works in humans is best described by Cohn (3). NIRS
monitors use near infrared light at wavelengths of relatively
low optical absorption for oxyhemoglobin (HbO,) and
(HHDb), 700-850 nm, thus
allowing near infrared light to penetrate and probe deeper

deoxyhemoglobin generally
into the tissue. The near infrared range is also where the
spectra of HbO,
separated with minimal overlap with that of water (980 nm)
(4). NIRS can measure the ratio of HbO, to HHb and the
rSO, can be derived using the equation: rSO,=HbO,/
(HbO,+ HHb).

absorption and HHb are maximally
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Measurements using NIRS are specific to the region where
the sensors are placed, and the rSO, reflects perfusion and
metabolism. They are not temperature or pulsatility
dependent and because they are measured in “real-time” they
could allow earlier detection of changes in oxygenation, blood
flow and perfusion of the tissue. Tissue oxygenation
measurements using NIRS are irrespective of systole or
diastole; and as only 20% of blood volume is intra-arterial,
of the

oxygenation. The tissue microcirculation contains arteries,

measurements are primarily indicative venous
veins and capillaries meaning that the rSO, represents a
“weighted average” of SO, in these compartments, with
approximately 75%-85% of the signal originating from
venules. As opposed to pulse-oximeters which subtract out
non-pulsatile flow, NIRS monitors focus on the total light
signal and the measured rSO, reflects the balance of local
tissue oxygen supply and demand meaning it is considered
complementary to pulse oximetry (5).

Although regional tissue oxygenation measurements are
venous weighted, by using peripheral pulse oximetry as a
measure of arterial oxygenation, Fractional tissue oxygen
extraction (FTOE) can be calculated. FTOE allows the
estimation of the balance between oxygen delivery and
consumption, at the site that the NIRS device is placed, can
be calculated from the rSO, and arterial oxygen saturation
(Sa0,) by the equation (6): FTOE = [(Sa0,—rS0,)/Sa0,] x
100. In addition, if cerebral and splanchnic oxygenation are
measured simultaneously then the Cerebral Splanchnic
(CSOR—which
oxygenation with cerebral oxygenation) can be calculated (6).

There NIRS monitors

manufacturers which use different algorithms to measure

Oxygenation Ratio compares splanchnic

are various from different
tissue oxygenation. Different machines measure either the
regional oxygen saturation (rSO,) or tissue oxygenation index
(TOI), but both essentially reflect the ratio of HbO, to total

Hb (HbO, + HHb).

Current neonatal applications of NIRS

During the unique neonatal period following birth, the
infant undergoes dramatic physiological changes during
life,
significant changes in their haemodynamics which affect

transition from intra- to extra-uterine involving
tissue oxygenation and would be reflected in rSO,. NIRS
could be valuable in neonates; small size and thin layers
covering tissues mean that NIRS measurements at depths of
<5cm can easily reach organs including the brain, kidney,
and gut. This means that NIRS monitoring of these organs
could yield invaluable physiological information not available
in adults as these organs are comparatively less superficial (7).
The additional of NIRS is the ability of

simultaneous oxygenation measurements of multiple sites (8, 9).

advantage
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Studies involving cerebral oxygenation are outside the scope
of this article but most research on the clinical application of
NIRS focuses
researchers

on cerebral measurements with many
the effect of

measurements on clinical outcomes (10-14). However, there

having examined cerebral
is now increasing interest in its use for measuring splanchnic
oxygenation. Although the number of studies available
examining splanchnic oxygenation, especially over the last ten
years, is large, they involve only a small number of infants
(very large NIRS studies are still those involving less than 100
infants). The length of time the NIRS measurements were
recorded also varies amongst studies and a lot of the studies
only involve spot samples. Another issue with the current
body of evidence is that the studies in the literature use
different NIRS machines. The two most used machines are
INVOS (rSO,) and the NIRO-300 (TOI); these measurements
are different and therefore non-comparable between studies.
Both these machines use different algorithms leading to
intrinsically different oxygenation values. Furthermore, the
sample volumes between the different machines also differ—
the probe design is different meaning that the light source
and detector spacing will be slightly different and, therefore,
the tissue volumes that the probes sample will be different.
Because the regional oxygenation is a weighted average of the
arterial oxygenation and the venous oxygenation; if the
sample volume is different the ratio of arterial to venous
compartment volume could be slightly different, giving
different NIRS machines.
Consequently, when examining the literature surrounding

different results between the

NIRS it is important to identify which device was used and
not to compare values between different monitors. To
overcome this problem, it is more useful to compare
percentage change from the baseline rather than the absolute
value.

Use of NIRS to identify splanchnic
oxygenation and gut injury

In Neonatology NIRS more recently has been used to
monitor splanchnic oxygenation (srSO,) to predict NEC and
guide decisions regarding initiating feeds. Table 1 summarises
the available neonatal studies on the use of NIRS to measure
splanchnic oxygenation in neonates (9, 15-28). Table 2
summarises the literature available specifically for the use of
NIRS for predicting or diagnosing NEC (15, 27, 29-39).

It is important to highlight that to date this has only been
on limited numbers and there is an inherent problem with
measuring srSO, non-invasively using NIRS, in that the
amount of gas (abdominal distension) and faecal content
effects the measurement (27). In preterm infants these factors
are constantly changing; respiratory support commonly given
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to preterm infants such as continuous positive airway pressure
(CPAP) frequently causes abdominal distension, and in the
first few days of life, they are known to not open their bowels
regularly when they are on limited enteral feeds.

The validity of NIRS-derived srSO, measurements for
examining splanchnic perfusion and oxygenation has already
been confirmed as srSO, strongly correlates with gastric pH,
serum lactate and systemic mixed venous saturations (2). In a
clinical validation study of 59 preterm infants receiving blood
12
demonstrated that splanchnic NIRS is a reliable technique to

transfusion compared with control infants it was
inform changes in srSO, following blood transfusion (40). A
recent small study by Gillam-Krakauer et al. using Doppler
confirmed that splanchnic NIRS reflects blood flow to the
small intestine (22). In their study srSO, was continuously
measured for 3 days in stable infants born at 25-31 weeks
gestation (n=18) and they then compared changes in
Superior Mesenteric Artery (SMA) velocity from immediately
before to 10 min and 60-120 min after feeding with change in
abdominal rSO, over the same time. They reported that a
change in abdominal rSO, was significantly associated with
change in systolic, diastolic and mean SMA velocity from
fasting to 60-120 min after feeding (p =0.016, 0.021, 0.010)
and from 10 min after a feed to 60-120 min after feeding (p
=0.009, 0.035, 0.032).

Several studies have looked at the potential of NIRS in
identifying gut injury with varying levels of success as we
have summarised in Table 2 (15, 29-31, 34-39). There are a
few studies to particularly highlight; a recent prospective
cohort observational study (31) in appropriately grown
preterm infants born at less than 30 weeks of gestational age
demonstrated that cerebral oxygenation was significantly lower
and FTOE significantly higher in infants who developed NEC
across the first 10 weeks of life even when adjusted for
potential confounding factors. This may suggest an underlying
NEC their
neurodevelopmental outcome. The same study also found that

mechanistic relation between and worse
splanchnic oxygenation was significantly lower and FTOE
significantly higher in those infants who developed NEC
compared to those without NEC (41, 42). NIRS continuous
monitoring could therefore potentially help to identify infants
with low cerebral or splanchnic oxygenation allowing earlier
treatment and targeted neurodevelopmental interventions.
Studies using NIRS have shown that neonates with an acute
abdomen, suggesting mesenteric ischaemia, have a lower
Cerebral Splanchnic Oxygenation Ratio (CSOR), suggesting
the CSOR could be used to identify gut injury (29). Fortune
et al. (29) specifically looked at 40 neonates; 10 with acute
abdomens (4 of these had NEC), 29 with normal abdomens
and 1 with cerebral HIE. They found that the acute abdomen
group had a significantly lower median CSOR value of 0.66
(0.45-0.69), p<0.001 and that the CSOR had a 90% (56%-—

100%) sensitivity to detect splanchnic ischaemia in neonates;
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specifically, they reported that a CSOR of <0.75 was highly
predictive of intestinal ischaemia and the need for surgical
intervention. If continuous cerebral and splanchnic NIRS were
being measured in an individual neonate, then should the
CSOR drop this could alert clinicians to an increased severity
of NEC and likely need for surgical intervention. However, a
complicating factor in preterm infants is that the CSOR may
be unreliable in the presence of intraventricular haemorrhage
(IVH), which is a common complication of preterm birth.
Infants with IVH would be expected to have impaired
cerebral autoregulation which could affect the cerebral
regional oxygenation (crSO,) and consequently the CSOR (15).

Schat et al. (36) examined 33 infants and compared the
mean 8 h cerebral, liver and infraumbilical rSO, and FTOE
divided into infants with no NEC (n = 13), definite NEC (n =
20) and infants with uncomplicated (n=10) and complicated
NEC (n=10) in the first 48 h after onset of symptoms that
were felt to be suspicious for NEC. They found no significant
differences in the first 24 h after onset of symptoms in rSO,
and FTOE between infants with no NEC and definite NEC.
In preterm infants with complicated NEC, they demonstrated
significantly lower cerebral, liver, and infraumbilical rSO, and
higher FTOE within 24 h after onset of symptoms compared
with infants with uncomplicated NEC. Their results showed
that crSO, <71% and liver rSO, <59% in the first 8 h after
onset of symptoms predicted the onset of complicated NEC
with a sensitivity of 1.0 and specificity of 0.8, and a sensitivity
of 1.0 and specificity of 1.0, respectively. This suggests that
NIRS NEC
uncomplicated NEC, but it did not differentiate between

could differentiate  complicated from
definite NEC and no NEC in preterm infants with clinical
signs suspicious of NEC.

In addition to absolute changes in regional oxygenation
more subtle changes have been identified in infants with
NEGC; in preterm neonates, a pattern of low srSO, as well as
high fluctuations in mesenteric oxygenation patterns were
more pronounced in infants with NEC, especially before NEC
onset (15, 27, 34). Cortez et al. (15) looked at 21 preterm
infants born at less than 30 weeks gestation (2 excluded due
to artifacts); who had abdominal NIRS placed from within
48 h of birth for the first 14 days of life. They demonstrated
that daily mean srSO, values decreased over the first 9 days of
life (p <0.0001), followed by increase from day 10-14 (p=
0.0061). The srSO, was lower and FTOE higher in infants
with feeding intolerance compared to those without (p=
0.0043). A higher srSO, and variability was associated with a
healthy gut (n=17) and low srSO, and decreased variability
was noted in neonates with NEC (n=2). NIRS has also been
used to examine the relationship between red blood cell
transfusion (RBCT) and gut injury to try and resolve the
debate as to whether RBCT cause gut injury and NEC (27,
34) (Table 2). A recent case control study (n=72) by
Kalteren et al. (32) reported that RBCT were associated with
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concomitant signs of oxidative stress and intestinal injury as
measured by raised levels of urinary 8-isoprostane and I-
FABP respectively, along with lower variability in splanchnic
oxygenation. The authors therefore postulated that this may
represent the early pathogenetic process of transfusion-
associated NEC. However, larger prospective trials are needed
to substantiate conclusions as to whether this accurately
reflects the onset of gut injury, as nearly all the current
evidence is from non-randomised trials with only small study
numbers.

Practical issues with using NIRS as a
potential biomarker for NEC onset

While there is some promising evidence in the literature, it
is not conclusive and there are several issues that we must
address first before we can consider NIRS as a potential
biomarker for NEC onset and these include:

Lack of normal ranges

Most importantly, there is currently no large population-
based normative data for regional saturation of various organs
in infants which therefore subsequently limits its use in
identifying gut injury, until we have established normal
splanchnic oxygenation for infants of various gestation and
postnatal ages (2). There have been numerous studies looking
into establishing normal ranges using the two most common
NIRS monitors and there is an impact of gestational and
postnatal age, but these studies were all relatively small (9, 15,
43-47) (Table 1). Furthermore, most studies, do not include
the micropremies between 22 and 24 weeks gestation, and it
is this subgroup that are the highest risk of the associated
morbidity and mortality with NEC and potentially will benefit
the most from new technologies such as NIRS in monitoring
their first
establishing normal detecting

haemodynamic  status. However, without

ranges for such infants,
deviations from the norm and onset of possible NEC is
problematic. Therefore, research should focus on the use of
routine NIRS in extreme preterm infants and micropremies,
so we can start constructing normative ranges. A recent study
by van der Heid et al. (16) has brought us one step further as
they conducted a relatively large NIRS study on preterm
infants (n =220, <32 w and/or <1,500 g BW) and showed that
gestational age, postnatal age, and small-for-gestational age
status affect regional splanchnic oxygen saturation and need
to be taken into account when interpreting regional
splanchnic oxygen saturations using NIRS. In their study they
provided a model so that reference values for infant regional
splanchnic oxygen saturation can be computed with their
formula based on those factors.

A further issue that hinders the availability of normal ranges

is that there are differing locations used for “abdominal” NIRS
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measurements; all of these locations have been used in the
available studies and there is no consistent placement; some
use liver, some infra-umbilical and some supra-umbilical. At
present no one has conclusively confirmed which is the more
reliable for detecting changes in abdominal regional
oxygenation, although the infra-umbilical region is the most
used (Table 1). Perhaps more importantly when trying to
establish normal ranges the measurement location used
significantly influences the regional saturation measurement
obtained and there is no correlation between the three
locations (48). Therefore, in addition to having to review the

Primary outcomes/findings

data from studies in relation to the device used, clinicians
must also be aware of the measurement location that was
used for the measurements.

Cost and training implications
To consider NIRS as a possible NEC biomarker we must

higher variability in sRSO,, post RBCT reduction in sRSO, and lower

cFTOE post-RBCT compared to RBCTs not associated with diagnosis
CSOR values post RBCT compared to pre RBCT

of NEC
- infants received RBCT who then developed NEC were characterised by

- RBCT, followed by a diagnosis of NEC, were characterised by lower heart
rates pre-, during and post-RBCT, decline in sRSO, and increase in

- in group 3 rSO, decreased over RBCT periods

remember that for this to work NIRS monitors would need to
be wused routinely, which would require a significant
expenditure for each neonatal unit as well as the need for
training medical and nursing staff on how to use it and
interpret the readings. However, it is not inconceivable that
with the ever-increasing body of evidence regarding the

NEC within 7 days after

usefulness and clinical application of NIRS in predicting

changes in gut blood flow and gut injury that it may be cost

effective to use NIRS. By allowing earlier detection of NEC
and initiation of treatment the impact of this disease could be
reduced by decreasing the inevitable neonatal intensive care
cot days and, more importantly, the long-term health burden
for affected infants.

Study design (including measurement location)
NEC within 7 days prior and 3

RBCT—24 h after RBCT) and 3 groups (1 =no NEC within 7 days of

&
0
Q —~
D:D I T Safety of NIRS
[} o
E ) 6 = NIRS is transcutaneous, non-invasive and does not cause
(3] =}
g 22 .05 harm to patients, therefore it is appropriate to continue to

- monitored cerebral and splanchnic (infraumbilical) rSO, in preterm infants - in group 1 and 2 rSO, increased over RBCT periods

- defined 3 time points (pre RBCT—12 h prior, during RBCT and post
- the 57 infants received 147 RBCTs (Group 1 =120, Group 2 =19, and

explore its usefulness in predicting NEC. The light intensities
used are not harmful to the tissue, particularly when only
used for short periods; furthermore NIRS is not known to

tissue oxygen extraction; GA, gestational age; Hb, Haemoglobin; HbF, Haemoglobin F; NEC, Necrotising Enterocolitis; NIRS, Near Infrared Spectroscopy; PDA, patent ductus arteriosus; RBCT, red blood cell transfusion; rSO,,

BW, birthweight; CGA, corrected gestational age; crSO,, cerebral oxygenation; CSOR/SCOR, cerebral splanchnic oxygenation ratio; cTOI, cerebral tissue oxygenation index; ELBW, extremely low birthweight; FTOE, Fractional
regional oxygenation; SMA, superior mesenteric artery; sTOI, splanchnic tissue oxygenation index; TANEC, transfusion associated NEC; TR-NEC, Transfusion related NEC; VLBW, very low birth weight.

E cause skin burns even if applied for a longer period (48, 49).
£ Current sensors for neonates are well tolerated due to their
=
g o 2 smaller size and because they are lined with a skin friendly
= < . . . . .
ES < % adhesive. To provide further skin protection in extremely
g g
~ & E s premature patients probes can be attached to a light-
[} %é permeable  skin  barrier = without interference  with
B measurements (9).
Accuracy of NIRS measurements
Before its use in human studies, NIRS was initially used in
T g = laboratory and subsequently animal studies (50, 51). NIRS has
N
2 8= been validated by using a newborn piglet model where the
- ] 5
c 5 | . . .
S ol carotid, renal and mesenteric arteries were occluded and then
- § | ® re-perfused which caused fast, simultaneous changes in rSO,
w b =}
2 £ 3 of the affected end-organs (51). NIRS has since been validated
< 3=
o<

in adult intensive care patients, those undergoing ECMO or
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TABLE 2 Summary of the available literature on the use of Near Infrared Spectroscopy (NIRS) in predicting/diagnosing NEC in neonates.

Author and
reference

Population studied

Study design

Primary outcomes/findings

Cortez etal. (15) - n=21

(2011) - preterm infants less than 30 weeks
gestation enrolled (2 excluded
from results)

Fortune et al. -n=40

(29) (2001) - newborn infants

- 10 with acute abdomens (4 NEC)
- 29 controls
- 1 hypoxic ischaemic injury
Gay et al. (30) - n=29 premature piglets
(2011) - 3 developed NEC
- 11 died prematurely
- 15 served as controls
Howarth et al. -n=48
(31) (2020) - preterm infants <30w gestation
- median BW 884 (range 460-1,600)
grams, median GA 26 +3 (23 +
0-29 + 6) weeks
Kalteren et al. - <32 w gestational age
(32) (2022) - n=29 infants who received 58

RBCT
- median GA 273w

- abdominal NIRS (left paraumbilical region) placed
from within 48 h of birth for the first 14 days

- prospective, observational cohort study

- cerebral and splanchnic (infraumbilical) regional
TOI measured using NIRS

- calculated CSOR

- measured prior to surgery/admission and then daily
until discharge

- serial abdominal (1 cm lateral to the umbilicus)
NIRS recordings were taken of premature piglets
who had received parenteral nutrition followed by
enteral feeding

- piglets monitored for developing NEC

- Cerebral oximetry measurements were performed
using a NIRS monitor weekly for 60 min allowing
measurement of ¢TOI from first week of life to 36
weeks post conceptional age

- prospective observational cohort study from March
2019 until December 2020

- measured urinary biomarkers for oxidative stress (8-
isoprostane) and intestinal cell injury (I-FABP)
shortly before and after RBCT

- 1sSO2 and rsSO2 variability were assessed
simultaneously using INVOS 510°c oximeter
placed in the infra umbilical region

- daily mean sRSO, values decreased over first 9 days

(p <0.0001) followed by increase from day 10 to 14
(p=0.0061)

- sRSO, was lower and FTOE higher in infants with

feeding intolerance compared to those without (p =
0.0043)

- higher sRSO, and variability was associated with a

healthy gut (n=17)

- neonates with NEC had low splanchnic rSO,s and

decreased variability (n =2)

- very small study size—only two babies within their

study cohort developed NEC

- neonates with abdominal pathology had lower CSOR

(p<0.001)

- CSOR detected the presence of intra-abdominal

pathology with a sensitivity of 90% (56-100) and
specificity of 96% (82-100)

- if CSOR <0.75 intestinal ischaemia was identified with

a PPV of 0.75 (0.43-0.95) and excluded with a NPV
of 0.96 (0.81-1.0)

- abdominal NIRS within 12 h of birth was significantly

lower (p=0.02) in infants who subsequently
developed NEC compared with controls

- for all time points measured, abdominal NIRS were

significantly lower in the NEC group compared
with controls (21% vs. 55%, p =0.01).

- -the authors drew a sensible conclusion that these

lower regional oxygenation readings with
abdominal NIRS in piglets with NEC represented
intestinal ischemia-reperfusion injury—a well-
known theory for the pathogenesis of NEC

- also demonstrated that in healthy piglets, when

oxygen levels decreased during apnoeas, there was a
decrease in the abdominal NIRS oxygenation (r =
0.96) which increased again once the apnoea
resolved, demonstrating a clinical correlation with
the gut NIRS readings

- 276 NIRS measurements were completed, and 7

infants developed NEC

- infants who developed NEC had significantly lower

cTOI than those that did not (p = 0.011), even when
adjusted for confounders including GA, BW, PDA,
enteral feeds, gender, ethnicity, and Haemoglobin

- 6 out of 29 developed NEC after RBCT
- Urinary 8-isoprostane and I-FABP increased nearly 2

fold following RBCT (median 282-606 pg/ml and
4,732-6,968 pg/ml, p <0.01)

- this increase was more pronounced in infants who

developed NEC

- Changes in I-FABP correlated with changes in 8-

isoprostane (rho = 0.623, p <0.01)

- Lower rsSO2 variability, but not higher mean rsSO2

was associated with higher 8-isoprostane and I-
FABP levels after RBCT

- RBCT are associated with signs of associated with

concomitant signs of oxidative stress and intestinal
injury, parallel with lower variability in splanchnic
oxygenation
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TABLE 2 Continued

Author and
reference

Population studied

Le Bouhellec
etal. (33) (2021)

-n=45
- mean GA of 31 weeks
- mean BW 1,486 g

Marin et al. (34)
(2013)

-n=8

and BW 705-1,080 g

- non-NEC infants were 27.6-30w

GA and BW 980-1210g

Patel et al. (35)
(2014)

- n=100

<1,500 g enrolled

- 8 with incomplete data excluded
- divided into groups: infants with

NEC (n=14) and normal

preterm infants without NEC (n

=78)

Schat et al. (36)
(2016)

-n=33

- preterm infants

- median GA 28w

- median BW 1,235 g

Schat et al. (37)
(2019)

-n=30
- preterm infants <32 w GA

- preterm infants receiving RBCT
- TR-NEC infants were 24-29w GA

- preterm infants <32w GA and BW

Study design

- assessed the ability of NIRS to distinguish those
neonates with NEC soon after symptom onset

- prospectively collected NIRS measurements of
abdominal (infra-umbilically on the central
abdominal wall) and cerebral regional tissue
oxygen saturation (r-SO,), with values masked by
an opaque cover.

- Two physicians, blinded to the NIRS data,
determined whether the gastrointestinal
symptoms were related to NEC 10 days after
symptom onset.

- infants divided into those with NEC post transfusion
(TR-NEC, n =4) and those without (non-NEC,
n=4)

- measured cerebral and mesenteric lower abdomen)
oxygenation patterns before, during and 48 h after
RBCT using NIRS

- alculated mean baseline rSO, change and CSOR

- 2 year prospective cohort study

- abdominal (right lower abdomen) NIRS
measurements

- taken 5 min every day for the first week and then the
same day once weekly for the next 4 weeks

- compared between those with and without NEC

- prospective observational cohort study

- 13 infants no NEC

- 20 NEC (10 uncomplicated, 10 complicated—Bells
stage 3B or death)

- mean 8 hly cerebral, liver (right costal arch)and
infraumbilical regional oxygenation in those
infants with no NEC and those with complicated
and uncomplicated NEC in the first 48 h after
symptoms developed

- case control study

10.3389/fped.2022.1024566

Primary outcomes/findings

- authors postulated that this may represent the early
pathogenetic process of transfusion-associated NEC

- Gastrointestinal symptoms were related to NEC in 23
patients and associated with other causes in 22
- Analysis of the 48 h of monitoring revealed
comparable abdominal r-SO, and splanchnic-
cerebral oxygenation ratio (SCOR) in patients with
and without NEC (r-SO2: 47.3 [20.4] vs. 50.4 [17.8],
p=0.59, SCOR: 0.64 [0.26] vs. 0.69 [0.24], p = 0.51).
- Results were unchanged after NIRS analysis in 6-hour
periods, and restriction of the analysis to severe
NEC (i.e., grade 2 and 3, 57% of the NEC cases).
in this small study, NIRS monitoring was unable to

individualize NEC in premature infants with acute
gastrointestinal symptoms.

- TR-NEC group received larger mean volumes of total
blood than non-NEC infants

- TR-NEC group showed wider fluctuation above and
below baseline in oxygen saturations than the non-
NEC group

mean abdominal rSO, in healthy preterm infants
during the first week of life was significantly higher
than those who later developed NEC (77.3% +
14.4% vs. 70.7% + 19.1%, p = 0.002)

- infants who developed NEC had a greater variation in
abdominal rSO, during feeding for first 2 weeks of
life

authors suggested that a rSO, of <56% increases the
likelihood of later developing NEC (86% sensitivity,
64% specificity, 96% NPV and 30% PPV)

abdominal rSO, of <56% was independently
associated with a significantly increased risk of NEC
(OR 14.1; p=0.01)

- infants with PDA had significantly lower rSO, than

those without (p =0.023)

no difference between those with NEC and no NEC
regional oxygenation levels in the first 24 h after
symptom onset

- no significant difference in the first 24 h after
symptom onset in regional oxygenation between
infants with no NEC and definite NEC

significantly lower cerebral, liver and infraumbilical

levels in those with complicated NEC in the first
24 h after onset of symptoms compared with those
infants with uncomplicated NEC

cerebral regional oxygenation <71% in first 8 h after
symptom onset predicted complicated NEC with
sensitivity 100% and specificity 80%

- liver oxygenation <59% in first 8 h after symptom

onset predicted complicated NEC with sensitivity
and specificity of both 100%

- cerebral oxygenation was significantly decreased in
those that later went on to develop NEC
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TABLE 2 Continued

Author and
reference

Population studied

- median GA 27.1 w
- median BW 903 g

oxygenation measured using NIRS 2 h daily for
first 5 days and then weekly until 5 weeks of life or
until NEC developed

Sood et al. (27) - n=>57 infants
(2014) - median gestational age of 27 weeks
- received 147 RBCTs.

[n=8]).

- abdominal (midline below the umbilicus and above

measurements performed 48 h after diagnosis of

Stapleton et al. -n=1 - case report

(38) (2007) - one infant with background of congenital heart
disease who developed NEC
the pubic symphysis) and cerebral NIRS
NEC was made

Zabaneh et al. -n=2 - case report

(39) (2011)

Study design

- 10 infants with NEC and 20 control infants matched
for GA/BW/presence of PDA
- cerebral and intestinal (infraumbilical) regional

- monitored cerebral and sRSO, (infraumbilical) in
preterm infants receiving RBCTs

- defined three time points (pre RBCT—12 h prior),
during RBCT and post RBCT—24 h after RBCT)

- also defined 3 groups (1 =no NEC within 7 days of
RBCT [n =120], 2 = NEC within 7 days prior [n =
19] and 3 = NEC within 7 days after RBCT

- 12-day-old growth restricted infant with NEC whose
twin did not develop NEC

10.3389/fped.2022.1024566

Primary outcomes/findings

- cerebral regional oxygenation <70% within the first
48 h of life developed NEC significantly more often
than those with cerebral regional oxygenation >70%
[OR 9 (95% CI 1.33-61.14)]

- no difference in intestinal regional oxygenation
measurements in those with NEC and without NEC
in the first week of life

- in group 1 and 2 rSO, increased over RBCT periods
but in group 3 rSO, decreased over RBCT periods

- RBCT, followed by a diagnosis of NEC, were
characterised by lower heart rates pre-, during and
post-RBCT, decline in sRSO, and increase in
cFTOE post-RBCT compared to RBCTs not
associated with diagnosis of NEC.

- Infants received a RBCT who then developed NEC
were characterised by a higher variability in sRSO,,
post RBCT reduction in sRSO, and lower CSOR
values post RBCT compared to pre RBCT

- authors postulated that sSRSO, response to RBCT may
potentially be a biomarker to identify infants more
likely to develop TR-NEC after a RBCT

- initial abdominal NIRS readings showed low
mesenteric 1SO, when compared with cerebral rSO,
(p<0.0001)

- after conservative medical treatment for NEC (NBM
and IV antibiotics) mesenteric rSO, improved
compared with initial value

- mesenteric rSO, were reduced in the twin with NEC.
- mesenteric rSO, returned to similar level as
asymptomatic twin after bowel resection.

- abdominal NIRS infra umbilical) measured 48 h
after NEC diagnosis made and measured at

irregular intervals

- measurements compared with asymptomatic twin

BW, birthweight); CGA, corrected gestational age; ELBW, extremely low birthweight; EPO, Erythropoietin; GA, gestational age; Hb, Haemoglobin; I-FABP, Intestinal
fatty acid binding protein; IFN gamma, interferon gamma; IL-1 B. interleukin 1 beta; IL-6, interleukin 6; IL-8 interleukin 8; IL-10, interleukin 10; IL-17, interleukin
17; L-FABP, liver fatty acid binding protein; NEC, Necrotising Enterocolitis; NIRS, Near Infrared Spectroscopy; PCA, post conceptual age; RBCT, red blood cell
transfusion; TANEC, transfusion associated NEC; TNF-a, Tumour necrosis factor alpha; TR-NEC, Transfusion related NEC; VLBW, very low birth weight.

cardiac surgery by comparing central venous samples with
NIRS values (52-56). Its
measuring splanchnic oxygenation in preterm infants and the

effectiveness and validity in
clinical implications of this were extensively examined in a
recent systematic review article by Seager et al. (57). In a
study by Menke et al. (58) two observers repeated a total of
500 NIRS measurements in 25 neonates and they performed a
baseline measurement to assess the physiological variation in
every neonate. They reported that inter-patient variance
contributed most to the total variance, while the interobserver
variance had the smallest effect. They demonstrated that
crSO,
measurement variance slightly but not significantly higher

showed a good reproducibility, with an inter-
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than the physiological baseline variation. Banerjee et al.
measured gut oxygenation using NIRS in 71 preterm infants
(59 receiving blood transfusion and 12 controls) and reported
that NIRS is a reliable method of measuring changes in
splanchnic tissue oxygenation and therefore gut tissue
perfusion (59).

However, there are many factors that can affect the accuracy of
the rSO, obtained including the specific device used but also,
unsurprisingly, given it is transcutaneous, the placement of the
sensor is important. Placement of the sensor over fatty deposits,
hair, bony protuberances, nevi, hematomas or broken skin, or
application of pressure to the sensor may result in inaccurate
readings. For measuring splanchnic oxygenation there are
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other factors that inherently affect the measurement reliability
(48) because the gut is moving, can be filled with varying
degrees of gas or stool and is near the stomach and bladder,
all of which can affect results, and all of these are
exacerbated in preterm infants given their size. It has
previously been described that meconium interferes with the
NIRS measurements (60) and depending on the gestational
and chronological age of preterm infants, and whether an
ileus is present or not, the amount of meconium present in
the bowel will differ significantly. The currently available
NIRS devices do not account for the absorption by stool and
given the absorption spectra of meconium this can alter the
optical signal from the NIRS device meaning that the
measured regional oxygenation value will differ depending
on the amount of meconium present in the bowel.

In addition, movements of the infant and consequently pull
on the NIRS probes are more likely. The measurement accuracy
of splanchnic oxygenation is affected by the amount of gaseous
distension and faecal matter present in the abdomen which in a
preterm is continually changing as they mature, due to the
initiation of enteral feeds and depends on the level of
respiratory support they are requiring; with non-invasive
methods such as CPAP and Vapotherm being well known to
increase abdominal distension.

NIRS is also susceptible to motion artefact caused by relative
motion between the NIRS optical fibers and the skin of the region
where they are placed. Relative motion will cause a rapid shift in
the optical coupling between the NIRS optical fibers and the body
area where the probe is placed (e.g., scalp or abdomen), which
typically results in a period of high-frequency noise in the
recorded NIRS data. In preterm infants this motion can be
unavoidable; some critically ill preterm infants require high
frequency oscillation ventilation (HFOV) which because of the
chest “wobble” from the vibrations can be transmitted to the
abdomen as well. Furthermore, even in more stable preterm
infants movement can affect NIRS readings; NIRS motion
artefact has been reported to be approximately 15% (61).
Motion artifacts in NIRS data are often relatively easy to
identify using a combination of observation of the subject
during NIRS recording and visual inspection of the resulting
data. However, there is no universal approach to whether
remove or correct these (62). In most NIRS studies around
10% of infants are excluded because of motion artefacts (63,
64), but there have been recent studies demonstrating that you
can avoid needing to exclude any infants due to motion
artefact by using consistent probe placement (31, 47).

The accuracy of NIRS information is also affected by light
scattering, the concentration of haemoglobin (Hb) and the
level of melanin and bilirubin in the skin (65, 66). In neonatal
intensive care, an obvious difficulty is in the first few days of
life most preterm infants become jaundiced and many need
phototherapy. Overhead phototherapy and the bilirubin level
itself will affect the NIRS readings and, in some cases, the
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sensors will not work at all if the light is too bright near the
sensors. Changes in Hb levels in preterm infants over the first
few weeks of life have been shown to change NIRS
measurements by a significant amount; 30%-50% (9, 65-67).
Therefore, these factors would need to be considered when
interpreting any NIRS measurements.

Finally it is well known that there is a high variability of
the NIRS measurements in the abdominal region, although
this has been shown to decrease over time (9, 47, 48, 68)
This the
measurements for both the detection of NEC onset and

high variability limits accuracy of NIRS
establishing normal ranges. This higher variability seen at
the abdominal region is to be expected given the inherent
limitations we have already discussed, as there is a plethora
of factors which can alter its accuracy and cause high
variability, including gut peristalsis, faecal and air content,
as well as the impact of nursing cares including nappy
changes. There are emerging techniques looking at ways to
improve the reliability and accuracy of NIRS measurements
by reducing this variability and Isler et al. (60) recently
published their study where they examined the optical
properties of faeces of preterm infants to enable a more
accurate measurement, considering the effect of stool on
the NIRS measurements. Therefore, it is conceivable that in
the future corrections such as this will be commercially
available for all NIRS devices and subsequently allow for
more accurate NIRS abdominal regional oxygenation
measurements.

Summary of effectiveness

NIRS is non-invasive and safe (48, 49, 69); but the accuracy
of splanchnic oxygenation measured is affected by the structure
and content of the bowels (48). NIRS can detect alterations in
splanchnic oxygenation and perfusion, potential allowing
earlier recognition of bowel ischaemia and gut injury such as
NEC than currently used methods. However, its widespread
application is limited given that current literature evidence
has involved mostly very small studies, using both term and
preterm infants of various gestations and postnatal ages as
well and with varying NIRS monitors (2). One limitation of
NIRS is that repeated measures within subject standard
5% to 6% (70) and there is a
methodological bias between sensors from the two most
commonly used monitors- INVOS-5100 and NIRO-300 (71)
and therefore attention needs to be paid to the type of sensor

deviation is about

used and the device used when interpreting any regional

oxygenation results. Because authors report studies on
regional oxygenation using different NIRS monitors the
emphasis should be on using NIRS to report trends in

regional oxygenation (72).
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Conclusion

Despite advances in neonatal care, the severity of NEC and
its morbidity and mortality remain high. As a neonatal
community our research must focus on identifying this
devastating disease prior to symptom onset.

Continuous splanchnic NIRS monitoring may benefit the
clinical outcomes of preterm infants because NIRS has the
potential to alert clinicians to when relative regional hypoxia
occurs for an individual neonate allowing time for prompt
interventions to ameliorate their hypoxia, and potentially
reduce their long-term impairments. However further trials
involving larger numbers of infants are needed to examine if
NIRS monitoring coupled with intervention can improve
outcomes. Perhaps the real answer is using a machine
learning algorithm combining routine clinical, laboratory and
gut tissue biomarkers along with NIRS on each individual
preterm neonate in intensive care; therefore, we need larger
scale observational studies and randomised trials combining
NIRS with the more successful tissue biomarkers including
intestinal fatty acid binding proteins (IFABPs), which are the
most studied gut biomarker, and other clinical parameters to
review their effectiveness in predicting NEC onset in larger
numbers of infants.

While there is currently no conclusive evidence regarding
NIRS and its ability to predict NEC there are promising small
studies and the option of having a non-invasive method of
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