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A joint transcriptional regulatory
network and protein activity
inference analysis identifies
clinically associated master
regulators for biliary atresia
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Biliary atresia (BA) is a devastating cholangiopathy in neonate. Transcription
factors (TFs), a type of master regulators in biological processes and
diseases, have been implicated in pathogenesis of BA. However, a global
view of TFs and how they link to clinical presentations remain explored.
Here, we perform a joint transcriptional regulatory network and protein
activity inference analysis in order to investigate transcription factor activity
in BA. By integration of three independent human BA liver transcriptome
datasets, we identify 22 common master regulators, with 14 activated- and 8
repressed TFs. Gene targets of activated TFs are enriched in biological
processes of SMAD, NF-kappaB and TGF-beta, while those of repressed TFs
are related to lipid metabolism. Mining the clinical association of TFs, we
identify inflammation-, fibrosis- and survival associated TFs. In particular,
ZNF14 is predictive of poor survival and advanced live fibrosis. Supporting
this observation, ZNF14 is positively correlated with T helper cells,
cholangiocytes and hepatic stellate cells. In sum, our analysis reveals key
clinically associated master regulators for BA.
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Introduction

Biliary atresia (BA) is an obstructive cholangiopathy with neonatal onset. Although

incidence of BA is relatively low (1 in 5,000 to 1 in 14,000 live births) (1–3), it remains

the leading indication for pediatric liver transplantation worldwide. The primary

treatment of BA is a surgery intervention known as Kasai portoenterostomy (KPE).

However, the efficient of KPE is limited and more than half of BA patients require

liver transplantation after KPE. Thus, development of treatment for BA is essential for

blocking disease progression and improving patient survival.

The etiology of BA is multifactorial. Prenatal insults such as genetic predisposition

[eg. variants in ADD3 gene (4–6)], viral infection [e.g., cytomegalovirus (7, 8),

rotavirus (9–11)] or toxins [e.g., biliatresone (12, 13)] engage the immune system and
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thereby induces an uncontrollable and amplifying innate and

adaptive immune response, which manifests as infiltration of

immune cells, activation of myofibroblasts, atresia of bile

ducts and liver fibrosis (14, 15).

Among genes contributed to BA, multiple transcription

factors (TFs) including FOXA2 (16), HNF1B (17), SOX17

(18) and ARF6 (19) have been identified, suggesting

transcription factors served as key regulators in BA. For

example, aberrant expression of SOX17 is associated with

development defect of extrahepatic bile duct in mice and

abnormal peribiliary glands in human BA patients (18).

Transcription factors, a master regulator in diseases,

modulate disease progression via several downstream

transcriptional targets, forming a transcriptional network.

Therefore, it is necessary to comprehensively uncover

disease specific TFs and their target network to understand

the global landscape of BA and to develop targeted

therapeutic strategies (20, 21). Recent liver transcriptome

analyses of human BA provide an opportunity to explore

this in depth.

Several methods have been developed to reconstruct

transcriptional network from transcriptome data (22–25).

Among them, the algorithm for the reconstruction of accurate

cellular networks (ARACNe) has been widely used in the

research community due to its high accuracy (26). ARACNe

reverse engineers transcriptional network by estimating

mutual information between transcription factor and its

targets. Despite high accuracy, ARACNe may not be able to

identify disease specific TFs and transcriptional network as it

does not consider differentially expressed genes between

disease and normal control. Virtual inference of protein

activity by enriched regulon analysis (VIPER) addresses this

challenge by analyzing the expression of TF’s entire targets

(collectively referred to as TF’s regulon) between disease and

normal control, by taking into account the TF’s mode of

action, to infer TF’s protein activity (27). The emergence of

ARACNe and VIPER allow us to identify BA specific TFs and

their downstream signaling.

In this study, by employing a joint ARACNe and VIPER

analysis of three datasets of liver transcriptome (either RNA

sequencing or microarray) of human BA, we identified 14

activated and 8 repressed transcription factors (or master

regulators) for BA. Activated TFs target genes are enriched

in SMAD, NF-kB and TGF-β pathways, while repressed TFs

regulate genes are related to lipid metabolism. On the

purpose of exploring the clinical association of TFs, we

identified inflammation-, fibrosis- and survival associated

TFs, with ZNF14 were predictive of advanced liver fibrosis

and poor survival. Finally, we searched for the association

between ZNF14 and cell infiltration, finding that ZNF14

was positively correlated with T helper cells, cholangiocytes

and HSC.
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Materials and methods

Samples description

We curated three liver transcriptome datasets (accession

number: GSE122340, GSE46960 and GSE15235) from Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/). Dataset I (GSE122340) contained 121 BA cases

and 7 controls where the single-end RNA-seq data had been

generated on an Illumina HiSeq 2500. Dataset II (GSE46960)

contained 64 BA cases and 7 controls where the microarray

data had been generated on GeneChip® Human Gene 1.0 ST

Array. Dataset III (GSE15235) contained 47 BA cases where

the microarray data had been generated on Affymetrix

Human Genome U133 Plus 2.0 Array. The dataset III has

clinical information of BA patients and is used for clinical

analysis of transcription factors.
Transcriptional network reconstruction

ARACNe (26), an information-theoretic algorithm for

inferring transcriptional interactions, was used to identify

candidate transcriptional regulators of the transcripts

annotated to genes in dataset I, dataset II and dataset III.

First, mutual interaction between a candidate TF (x) and its

potential target (y) was computed by pairwise MI, MI (x, y),

using a Gaussian kernel estimator. A threshold was applied

on MI based on the null hypothesis of statistical

independence (P < 0.05, Bonferroni-corrected for the number

of tested pairs). Second, the constructed network was trimmed

by removing indirect interactions using the data processing

inequality (DPI), a property of the MI. Therefore, for each

(x, y) pair, a path through another TF (z) was considered,

and every path pertaining to the following constraint was

removed: MI (x, y) < min [MI (x, z), MI (z, y)]. A P value

threshold of 1 × 10−8 using DPI = 0.1 [as recommended (28)]

was used when running ARACNe.
Virtual protein activity analysis

The regulon enrichment on gene expression signatures was

tested by the VIPER (27) (Virtual Inference of Protein-activity

by Enriched Regulon analysis) algorithm in dataset I and

dataset II. [Of note, dataset III cannot be used to estimate the

protein activity because it does not provide normal controls

(NC)]. First, the gene expression signature was obtained by

comparing two groups of samples representing distinctive

phenotypes, for example BA and NC samples in this study. In

the next step, regulon enrichment on the gene expression
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signature can be computed using analytic rank-based

enrichment analysis (29). At the end, significance values

(P value and normalized enrichment score) were computed by

comparing each regulon enrichment score to a null model

generated by randomly and uniformly permuting the samples

1,000 times. The output of VIPER is a list of highly active

MRs as well as their activity scores and their enrichment

P values. Further information about VIPER can be accessed in

(27). MRs with enrichment P < 0.05 by virtual protein activity

analysis were identified as representative MRs of BA.

Common MRs from dataset I and dataset II with enrichment

P < 0.05 were selected MRs (Figure 2A).
Functional enrichment analyses

Biological Process (BP) pathway enrichment analysis for

selected MRs and for gene targets of selected MRs were

conducted using ToppFun (https://toppgene.cchmc.org/

enrichment.jsp; Transcriptome, ontology, phenotype,

proteome, and pharmacome annotations-based gene list

functional enrichment analysis, ToppFun). The maximum and

minimum number of genes for each category were set to

2,000 and 5, respectively, based on the default setting.

Bonferroni-Hochberg multiple test adjustment was applied to

the enrichment output. FDR significance threshold was set

to 0.05.
Correlation between liver pathology,
survival and expression of TFs

The matched liver grade and patient survival in dataset III

were obtained from a previous study (30). In brief,

inflammation grades were assessed by hematoxylin/eosin stain.

According to the hematoxylin/eosin stain, no inflammation

was considered grade 0, while portal expansion together with

inflammation in >50% portal tracts was considered grade

3. Gomorra trichrome stain was used to assess the fibrosis

grade, and no fibrosis was rated as stage 0, while portal

fibrosis with expansion and bridging in >50% portal tracts or

regenerative nodule was rated as stage 3. Inflammation/

fibrosis grades were included in the correlation analysis. We

performed Pearson correlation to evaluate the correlations

between gene expression of TFs and inflammation/fibrosis

grades in dataset III, and P value under 0.05 was considered

significant.

The survival time was modeled by log-normal distribution.

A Cox regression model was proposed to characterize the effects

of selected MRs on liver native survival time. The cox regression

was using the R package, survival (31).
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Correlation between immune cells,
cholangiocytes, portal fibroblasts, hepatic
stellate cells infiltration and protein
activity of MRs

Abundance of immune cells, cholangiocytes, portal

fibroblasts, hepatic stellate cells were estiamated by single

sample gene set enrichment analysis (ssGSEA) using GSVA R

package based on cell type specific signatures. The correlation

between infiltrating immune cells scores and protein activity

of selected MRs was estimated by Pearson correlation analysis.
Results

Transcriptional regulatory network and
protein activity inference analysis of liver
transcriptome identifies 14 activated and
8 repressed master regulators for BA

To comprehensively understand BA specific master

regulators and their transcriptional regulatory network, we

first developed an analytic pipeline started by analyzing of

liver transcriptome of human BA (Figure 1). We included

three liver transcriptome datasets of human BA from GEO

database, which dataset I (GSE122340) contained liver RNA

sequencing of 121 BA patients and 7 normal controls, dataset

II (GSE46960) had liver microarray of 64 BA patients and 7

normal controls and dataset III (GSE15235) provided liver

microarray of 47 BA patients and their clinical information

(liver pathology and survival after KPE). To obtain high

confidence master regulators and their downstream network,

we used dataset I and II for deconvolution of the

transcriptional regulatory networks and estimation of protein

activity of master regulators, and used dataset III for clinical

association analysis of master regulators (Figure 1).

Deconvolution of the transcriptional regulatory networks

for dataset I and II with ARACNe identified 1,404 and 1,580

TFs, respectively (Figure 1). ARACNe first identifies gene-

gene co-regulatory patterns by measuring mutual information,

followed by network trimming through removing indirect

relationships. We identified 1,404 TFs in dataset I, where the

corresponding networks contain 16,646 targets and 249,801

transcriptional interactions (Supplementary Table S1). For

dataset II, we observed 1,580 TFs and their regulatory targets

in the constructed network, including 21,189 targets and

227,305 predicted interactions (Supplementary Table S2).

Using the reconstructed transcriptional network, we next

performed a virtual protein activity analysis of the TFs by

considering the expression patterns of their downstream

regulons between BA and normal controls through a

dedicated probabilistic algorithm named VIPER. VIPER
frontiersin.org
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FIGURE 1

An outline of the systems biology analytical pipeline used in this study.
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exploits the TFs mode of action, the confidence of the TFs-

target gene interactions, and the pleiotropic features of the

target regulation. We inputed the transcriptional network into

VIPER to examine whether the TFs had a significant role in

regulation of downstream target genes. VIPER outputs a short

list of ranked TFs by adjusted activity P values and their

potentially regulating a large set of targets (Supplementary

Table S3). As a result, among the TFs with highly significant

VIPER P values, we only took those with adjusted P < 0.05 as

potential MRs. This process resulted in 107 potential MRs in

dataset I (Supplementary Table S4) and 213 potential MRs

in dataset II (Supplementary Table S5). We did not conduct

virtual protein activity analysis in dataset III because of

missing NC. Therefore, 22 TFs were common between dataset

I and II (Figure 2A). All of these 22 TFs were significant in

both datasets (P < 0.05). Of these 22 TFs, 14 TFs were

upregulated in BA, whereas 8 TFs were downregulated when
Frontiers in Pediatrics 04
compared to NC (Figures 2B,C). We defined upregulated TFs

as activated TFs while downregulated TFs as repressed TFs.

Next, we processed to investigate the downstream signaling

and clinical relevant for these TFs.
Biological processes analysis reveals that
enrichment of SMAD, NF-kappaB and
TGF-beta signaling for targets of
activated MRs and of metabolism for
targets of repressed MRs

To access the downstream mechanisms of these 22 TFs, we

began by conducting biological processe analysis using

ToppGene. A full list of enriched biological processes for 22

TFs was presented in Supplementary Table S6. As expected,

top 10 enriched biological processes for these 22 TFs were
frontiersin.org
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FIGURE 2

22 common TFs regulon activity in dataset I and dataset II. (A) Venn diagram shows 22 common TFs between dataset I and dataset II. (B) RNA
expression profiles between biliary atresia (BA, dataset I, n= 121; dataset II, n= 64) and normal liver (NC, dataset I, n= 7; dataset II, n= 7) were
evaluated for a transcriptional network activity through regulon analysis. Most differentially active 14 TFs-regulons were highlighted as red boxes
and differentially repressed 8 TFs-regulons as blue boxes. (C) The violin plot demonstrated the difference of 14 activated TFs protein activity
between BA (dataset I, n= 121; dataset II, n= 64) and NC (dataset I, n= 7; dataset II, n= 7). (D) The violin plot demonstrated the difference of 8
repressed TFs protein activity between BA (dataset I, n= 121; dataset II, n= 64) and NC (dataset I, n= 7; dataset II, n= 7).
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related to transcription and RNA metabolism (Figure 3A). In

addition, we observed other biological processes such as

macromolecule biosynthesis (negative regulation of cellular

biosynthetic process), immune associated pathways (Negative

regulation of CD4−positive, alpha−beta T cell differentiation,

Negative regulation of alpha−beta T cell differentiation),

development/fibrosis (negative regulation of pathway−restricted
SMAD protein phosphorylation, Branching involved in

mammary gland duct morphogenesis) (Figure 3A). This initial

result suggest that BA enriched TFs might be related to

metabolism, immune response, development and fibrosis.

To further probe the downstream signaling, we fed the

entire list of targets of 14 activated TFs for biological process

analysis. We revealed several immune and fibrotic processes

including SMAD protein complex assembly, Regulation of

NIK/NF−kappaB signaling, response to transforming growth

factor beta, were enriched (Figure 3B). This is consistent with

activation of immune response and liver fibrosis in BA, and

confirm that the activated TFs are master regulator. In

contrast, the enriched processes for targets of 8 repressed TFs

were largely linked to metabolism (Figure 3C). The findings

demonstrate that immune and fibrosis regulating TFs are
Frontiers in Pediatrics 05
activated while metabolism regulating TFs are repressed in

BA. This also in line with several previous observations that

BA displayed abundant immune infiltration, advanced liver

fibrosis and reduced liver metabolism compared to normal

(14, 32–35).
ZNF14 is associated with advanced
fibrosis and poor survival

Having established the link between TFs and biological

processes, we next sought to examine how they associate with

clinical presentation. We used dataset III as it provided

comprehensive clinical data (liver inflammation and fibrosis

scores and survival time) for 47 BA patients. Pearson

correlation analysis between expression of 22 TFs and clinical

data showed that, only ZHX3 was positively associated with

inflammation (Figure 4A). Activated TFs ZNF14 and ZNF512

were positively correlated with advanced liver fibrosis

(Figure 4B). Survival analysis (cox regression) result revealed

that only ZNF14 was predictive of poor survival. Taken all
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https://doi.org/10.3389/fped.2022.1050326
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

Enrichment analysis for 22 common TFs and their targets. (A) Biological Process Pathways for 22 common TFs. Pathway terms were ranked according
to their −log10 (p value) values. The dot sizes were proportional to number of genes. (B) Top 10 Biological Process Pathways for targets of 14
activated TFs (dataset I, dataset II, dataset III). All the targets and pathways were common in three datasets. Pathway terms were ranked
according to their −log10 (p value) values. The dot sizes were proportional to number of genes. (C) Top 10 Biological Process Pathways for
targets of 8 repressed TFs (dataset I, dataset II, dataset III). All the targets and pathways were common in three datasets. Pathway terms were
ranked according to their −log10 (p value) values. The dot sizes were proportional to number of genes.
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together, we conclude that ZNF14, an activated TFs associated

with worse clinical outcomes, is a key MR in BA.
ZNF14 predicts liver infiltration of T helper
cells, cholangiocytes and hepatic
stellate cells

Recent studies have shown that advanced liver fibrosis and

poor survival is associated with infiltration of immune cells,

cholangiocyte and hepatic stellate cells (36). ssGSEA was

applied to access the immune cells/HSCs/PF/cholangiocytes

infiltration in dataset I and dataset II. This analysis reveal

several TFs correlated with cell infiltration. T helper cells and

ZIK1, ZNF880, ZNF14, ZNF512, ETV1, XBP1 protein activity

had the positive relationship, respectively (P < 0.05,

Supplementary Figure S1A,C). Cholangiocytes and ZNF660,

ETV4, ZNF711, SMAD7, ZFP28, ZNF14, ZNF512, ETV1,

ZHX3 protein activity was positively related, respectively,
Frontiers in Pediatrics 06
while MBD4 was negatively related (P < 0.05, Supplementary

Figure S1B,D). HSC was positively correlated with GPBP1,

ZNF526, ETV4, ZNF880, ZNF14, ETV1, XBP1 protein

activity respectively, while negatively correlated with ATF5

(P < 0.05, Supplementary Figure S1B,D). Among the

examined cell types, the results of correlation analysis

suggested that ZNF14 protein activity had positive correlation

of T helper cells, cholangiocytes and HSC cells in dataset I

and II (Figures 5A,B).
Discussion

Like other complex disorders, BA is caused by multifactors

(14). A major challenge for understanding the biological

implications of master regulators is to confirm the core gene

networks in BA-associated hepatobiliary tissue. In this study,

with the aim of bringing to light the master regulators that

may make contribution to BA pathogenesis, we have used an
frontiersin.org
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FIGURE 4

Correlation analysis between TFs expression and liver pathology/patient survival in BA. (A) Relationship between TFs expression and liver inflammation
grade in BA liver. TFs were ranked according to the strength of the correlation (−1 < r < 1). The point size and line length represented the strength of
the correlation. The color represented the p value. (B) Relationship between TFs expression and liver fibrosis grade in BA liver. TFs were ranked
according to the strength of the correlation (−1 < r < 1). The point size and line length represented the strength of the correlation. The color
represented the p value. (C) Cox regression for patient survival. TFs were ranked according to log2(HR). The point size and line length related to
log2 (HR). The color represented the p value.
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approach to assembling BA liver-specific transcriptional

regulatory networks on two datasets (I and II). There were 22

MRs common in two datasets with P < 0.05. The confidence

of the identified MRs was further strengthened by their

presence in transcriptional profile and clinically validated by

liver pathology and patient survival in dataset III.

Biological processes for 22 TFs were largely similar with

those for gene targets of 22 TFs. Top 20 BP pathways for TFs

were enriched in development, gene transcription, immune

associated pathways, lipid metabolism. Biological processes for

gene targets of activated TFs were relevant to development,

gene transcription, immune associated pathways. In particular,

for immune and fibrosis associated processes, they included

regulation of NF-KB signaling, SMAD protein complex

assembly, cellular response to transforming growth factor beta

stimulus, response to transforming growth factor beta. These

immune associated processes are probably key factors for BA.

Many studies have demonstrated that these activities were

involved in BA development. For example, SMAD activation

was considered a characteristic feature of the TGF-β signaling

pathway (37–40). NF-κB was a key molecule in the expression

of various inflammatory genes in antiviral innate immune

reactions and thought to be implicated in the pathogenesis of

BA (41–43). While gene targets for repressed TFs were

enriched in BP pathways (top 10), most of them were about

lipid metabolism, including neutral lipid biosynthetic process,

triglyceride biosynthetic process, acylglycerol biosynthetic
Frontiers in Pediatrics 07
process. The repressed TFs and their targets were

downregulated in BA, suggesting repressed TFs could promote

lipid metabolism. As children with BA were at high risk for

malnutrition, this data indicated that reduction of repressed

TFs might contribute to worse progression of BA.

Searching for clinical association of 22 TFs, we found that

ZNF14 was associated with advanced fibrosis and poor

survival. Consistently, its protein activity was positively

correlated to T helper cells, HSC and cholangiocytes cells

infiltration. Supporting this observation, ZNF14 are mainly

expressed in T cells, hepatic stellate cells, endothelial cells and

erythroid cells in the liver single cell RNAseq data in human

protein atlas database. Among related pathways for ZNF14

were gene expression (Transcription) and validated nuclear

estrogen receptor beta network. Gene targets of ZNF14 were

mostly enriched in BP pathways that were related to gene

transcription/translation (mRNA Splicing-Major Pathway), cell

cycle (regulation of cell cycle, cell cycle process), immune

associated pathways (Innate Immune System, macro

autophagy, regulation of complement cascade, regulation of

response to stress), substate metabolism (peroxisomal lipid

metabolism, metabolism of vitamins and cofactors,

arachidonic acid metabolism) (Supplementary Table S7). Cell

cycle pathways may be correlated with cholangiocyte

abundance, while immune regulation activities may be

involved in recruiting T helper cells and promoting the

production of HSC. Thus, multiple lines of evidence from our
frontiersin.org
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FIGURE 5

Correlation analysis between TFs regulon activity and single sample gene Set enrichment analysis (ssGSEA) scores. (A) Linear regression analysis
between ZNF14 regulon activity and T helper cells/choanocyte/HSC ssGSEA scores (dataset I). (B) Linear regression analysis between ZNF14
regulon activity and T helper cells/choanocyte/HSC ssGSEA scores (dataset II).
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study suggest that the ZNF14, possibly regulating biliary

proliferation and bile duct development. Despite the possible

effects of ZNF14 regulons on BA as discussed above,

experimental validation is required to elucidate the function

of ZNF14 in BA in the future.

In addition to ZNF14, other TFs suggest that there are

additional gene networks contributing to BA. Among these

identified TFs, SMAD7 and HMGB1 are two interesting

factors. SMAD7 binds the E3 ubiquitin ligase SMURF2 in the

nuclear and the binding complex translocates to the

cytoplasm, in which TGF-β receptor type-1 interacts with

SMAD7 and then they both degrade. Among its related BP

pathways are regulation of transcription by RNA polymerase

II, transforming growth factor beta receptor signaling

pathway, negative regulation of epithelial to mesenchymal

transition, BMP signaling pathway, positive regulation of cell-

cell adhesion (Supplementary Table S8). Gene targets for

SMAD7 are enriched in BP pathways about cellular response

to growth factor stimulus, regulation of supramolecular fiber

organization, substrate adhesion-dependent cell spreading,
Frontiers in Pediatrics 08
actin filament-based process (Supplementary Table S9).

These pathways are closely associated with BA. HMGB1 has

been reported to be associated with pathogenesis of BA

(44–46). BP pathways for activated HMGB1 gene are related

to negative regulation of transcription by RNA polymerase II,

inflammatory response to antigenic stimulus and immune

system process (Supplementary Table S10). In our

deconvoluted gene network of HMGB1, its predicted targets

were in the vast majority enriched in pathways related to

cellular response to epidermal growth factor stimulus, positive

regulation of transforming growth factor beta1, immune

system development (Supplementary Table S11). The signal

pathways descripted above have been proven to be altered in

BA (44–46).

Some TFs, such as FOXA2, SOX17 have been reported to be

the risk factors for BA. However, these TFs didn’t reach

significance in this study (Supplementary Table S12). One

possibility is the dynamic change of expression of these TFs.

These TFs may act at the very early phase of BA, and their

expression change dramatically as the disease progress. The
frontiersin.org
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liver samples used in gene expression studies are unlikely at the

very early phase. Thus, the previously reported TFs may not be

captured in this study.
Conclusion

In conclusion, using three datasets based on bioinformatics

and clinical data, we identify a vital 22 master regulators related

to BA. Of them, ZNF14 is likely a key factor which contributes

to BA etiopathology.
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