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Ultrasound image intelligent
diagnosis in community-
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People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China,
3Department of Electronic Information, Shanghai Ocean University, Shanghai, China, 4Department of
Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

Background: Studies show that lung ultrasound (LUS) can accurately diagnose
community-acquired pneumonia (CAP) and keep children away from radiation,
however, it takes a long time and requires experienced doctors. Therefore, a
robust, automatic and computer-based diagnosis of LUS is essential.
Objective: To construct and analyze convolutional neural networks (CNNs)
based on transfer learning (TL) to explore the feasibility of ultrasound image
diagnosis and grading in CAP of children.
Methods: 89 children expected to receive a diagnosis of CAP were
prospectively enrolled. Clinical data were collected, a LUS images database
was established comprising 916 LUS images, and the diagnostic values of
LUS in CAP were analyzed. We employed pre-trained models (AlexNet, VGG
16, VGG 19, Inception v3, ResNet 18, ResNet 50, DenseNet 121 and
DenseNet 201) to perform CAP diagnosis and grading on the LUS database
and evaluated the performance of each model.
Results: Among the 89 children, 24 were in the non-CAP group, and 65 were
finally diagnosed with CAP, including 44 in the mild group and 21 in the severe
group. LUS was highly consistent with clinical diagnosis, CXR and chest CT
(kappa values = 0.943, 0.837, 0.835). Experimental results revealed that, after
k-fold cross-validation, Inception v3 obtained the best diagnosis accuracy,
PPV, sensitivity and AUC of 0.87 ± 0.02, 0.90 ± 0.03, 0.92 ± 0.04 and 0.82 ±
0.04, respectively, for our dataset out of all pre-trained models. As a result,
best accuracy, PPV and specificity of 0.75 ± 0.03, 0.89 ± 0.05 and 0.80 ± 0.10
were achieved for severity classification in Inception v3.
Conclusions: LUS is a reliable method for diagnosing CAP in children.
Experiments showed that, after transfer learning, the CNN models
successfully diagnosed and classified LUS of CAP in children; of these, the
Inception v3 achieves the best performance and may serve as a tool for the
further research and development of AI automatic diagnosis LUS system in
clinical applications.
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TABLE 1 Studies evaluating CNNs used for CAP in children.

Study
(country)

Study
objective

Image,
Population

Models
used

Evaluation
results

Kermany et al.
(China) (7)

Pneumonia
detection in
children

x-ray, 5,232
images

Inception Accuracy = 0.96

Rajaraman et al.
(America) (8)

VGG 16 Accuracy = 0.96

Sousa et al.
(Canada) (9)

VGG19 Accuracy = 0.95

Liang et al.
(China) (10)

VGG16,
DenseNet121,
InceptionV3,
Xception, and
Proposed
method

Accuracy =
0.74, 0.82, 0.85,
0.88, 0.90
Introduction

Community-acquired pneumonia (CAP) is a common

infectious disease in children and the main cause of

hospitalization in children. According to the World Health

Organization (WHO), CAP is also the leading cause of death

worldwide in children under the age of five years (1, 2). Early

and timely diagnosis and disease grading have important

clinical significance in improving the cure rate of CAP and

reducing the fatality rate. At present, the diagnosis and

grading of CAP in children rely primarily on medical history,

clinical symptoms, physical signs, and related examinations;

among these, chest x-ray (CXR) and chest CT are important

imaging methods (3). However, interpretations of CXR may

differ substantially between different observers, while chest CT

has disadvantages including larger radiation damage, high

cost, and the inability of young children to cooperate. As a

result, parents often refuse early imaging. Currently, domestic

and foreign guidelines do not recommend chest CT as a

routine examination, and CXR is not recommended for

typical cases (4, 5). It is therefore urgent to seek another

alternative for children with pneumonia, especially in

community hospitals. With the development of ultrasound

technology, studies have shown that lung ultrasound can

accurately diagnose pneumonia in children and is a safe and

feasible examination method (6). Ultrasonography has the

advantages of being radiation-free, low-cost, and suitable for

bedside operation. However, it is also more dependent on the

subjective judgment of the operator, making it easy for

inexperienced doctors to misdiagnose. At the same time, the

increase in work intensity may increase the misdiagnosis rate

even among experienced doctors. Applying artificial

intelligence (AI) to LUS can make up for the shortcomings of

traditional ultrasound operations and improve the diagnosis

of CAP in children.

Recent new and exciting advances in the applications of AI

in many healthcare areas have inspired innovations in the

development of novel AI-based CAP diagnostic technology.

Deep learning (DL) is an advanced stage of AI that can

simulate the human neural network using a multi-layer

neuron cascade learning modus to abstract the original data

layer by layer. Features obtained from the data are then

exploited for classification prediction. Since DL can learn

complex features in images, it has been widely used in

medical image analysis. One such method is the use of

convolutional neural networks (CNNs) algorithms, which has
02
had remarkable success in medical imaging. CNNs have high

potential for feature extraction and analysis and have achieved

high precision in CXR of CAP in children. Table 1 lists some

relevant studies. Although a comprehensive dataset of

ultrasound for CAP in children does not exist, upon the

emergence of COVID-19, numerous CNNs techniques have

been adopted to diagnose pneumonia of COVID-19. To the

best of our knowledge, this is few study that uses CNNs to

identify children’s pneumonia in LUS images.

In this study, we established a LUS image database to

analyze the diagnostic consistency of LUS with clinical

manifestations, CXR and CT. At the same time, 8 CNNs—

AlexNet, VGG 16, VGG 19, Inception v3, ResNet 18, ResNet

50, DenseNet 121 and DenseNet 201—were constructed to

explore the feasibility of ultrasound image diagnosis and

grading of CAP in children. The present work is expected to

lay a theoretical foundation for the later application of AI

technology in clinical LUS diagnosis of CAP in children.
Objects and methods

Study design and dataset establishment

A prospective clinical diagnostic study was conducted in a

tertiary-level hospital from January 2021 to February 2022.

This study was a diagnostic test to evaluate the accuracy of

LUS in diagnosing CAP. According to the literature review

(26, 27), the estimated sensitivity was 90%, the specificity was

80%, and the allowable error was 0.1. A two-sided test was

required, with an alpha of 0.05. Using the formula
frontiersin.org
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to calculate the sample size according to

the sensitivity (n = 35) and specificity (n = 62), the larger value

was selected. At least 62 cases should be included in this trial.

Eighty-nine patients were recruited in this study finally.

Inclusion criteria: (1) age more than 1 month and less than

14 years; (2) for children over two years of age, a body mass

index (BMI) below the 95th percentile of the same age and

sex; (3) patients in the experimental group had two or more

of the following symptoms: fever, cough, wheezing, increased

respiratory rate, dyspnea, three concave signs, nasal fan, and

audible moist rales (5); (4) patients in the control group had

fever or upper respiratory tract infection symptoms such as

cough, nasal congestion, runny nose, and sore throat; (5)

consent to complete CXR or chest CT examination; (6)

signing the informed consent form and agreeing to be

included in the trial.

Exclusion criteria: (1) interval between CXR and LUS

exceeding 72 h; (2) interval between chest CT and LUS

exceeding 72 h; (3) other serious diseases such as thoracic

deformity, congenital heart disease, chest skin trauma or

infection, etc., which may affect the study results; (4) patients

who could not complete the LUS; (5) patients who had

completed the LUS inspection without images; (6) knowing

the results of chest x-ray or chest CT and lung ultrasonography.

All patients included in the study completed medical history

collection, laboratory examination, chest CT or (and) CXR

examination. In order to avoid more radiation, CXR is the

first choice, the clinical condition and evolution of patients

drove to performance of chest CT. The clinical diagnosis and

grading criteria referred to were the “Code of Diagnosis and

Treatment of Children with Community-Acquired Pneumonia

(2019 Edition)” (5), and the clinical diagnosis was made by

experienced clinicians. According to clinical manifestations

and chest CT or (and) CXR examination, the children were

divided into a non-CAP control group and an experimental

group; the experimental group was then further divided into a

mild CAP group and a severe CAP group. Lung

ultrasonography was performed on all children.

All lung ultrasound examiners were experienced physicians

with relevant professional qualifications who had received

special training in LUS examination. The Philips Affiniti70

ultrasonic diagnostic apparatus was used for LUS

examination; the line was used in infants and preschool

children, while array probes (5–12 MHz), and convex array

probes (3–5 MHz) were used in children older than six years.

The patient was placed in the supine and prone positions in a

quiet state (sitting and lateral positions were used to fully

expose the chest wall if necessary), and the lungs were divided

into 12 regions by the anterior axillary line, the posterior

axillary line, and the bilateral nipple lines on the bilateral

chest walls, respectively. Each area was scanned horizontally

and vertically. According to the relevant guidelines for the

diagnosis of CAP in children by LUS at home and abroad
Frontiers in Pediatrics 03
(11, 12), the criteria selected in this study were: (1) lung

consolidation with air trachea sign or bronchial fluid fill sign;

(2) abnormal pleural line and disappearance of A-line; (3) ≥3
B-lines or fused B-lines or dense B-lines; (4) pleural effusion.

Normal LUS manifestations were as follows: (1) under B-

mode ultrasound, the pleural line and A-line of the normal

lung field are both smooth, clear, and regular linear

hyperechoic, and arranged in parallel at equal intervals. From

the superficial to the deep, the echo of the A-line gradually

weakens; (2) <3 B lines; (3) no consolidation and pleural

effusion; (4) lung sliding sign exists under real-time ultrasound.
Pre-processing and augmentation of
image dataset

Firstly, images were removed redundant information by

cropping and then resized to 513 × 513 pixels. Given the very

particular images we are dealing with, we carefully selected

data augmentation techniques to diversify the obtained

dataset. Random horizontal flip is always adopted in other

medical imaging experiments. On the contrary, a vertical flip

would yield to a non-sense image where the pleural line is

upside-down, thus this operation is not considered. We

randomly rotated the image in the range [−10°, 10°] in order

to simulate different incidence angles of the probe. A stronger

rotation would give an unnatural image; thus, it is avoided

(13). Finally, to simulate multiple acquisitions of the same

image with multiple devices, and thus make the training

procedure robust against different calibrations and

instruments, we randomly modified the brightness and the

contrast of the images in a relative range of 25% (14).

As such transformations can naturally occur with diverse

ultrasound devices and recording parameters, augmentation

adds valuable and realistic diversity that helps to prevent

overfitting.
Transfer learning, cross validation and
CNN architectures

Transfer learning (TL) is the application of knowledge

learned from one environment to a new environment. The

parameters in the classical CNNs have been trained on

ImageNet using millions of images, and the extracted features

have been shown to be effective for image classification. TL

can solve different tasks simply by fine-tuning the trained

model and training it with a small amount of labeled data. TL

can also be implemented on ordinary personal computers,

without high hardware requirements, and the model training

usually only takes a short time to complete. The TL

methodology has yielded beneficial and significant

achievements in a variety of medical areas (15–17). Owing to
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these advantages, we utilize 8 pre-trained architectures to deal

with the LUS image dataset, rather than using the long

training process from scratch. We selected 8 distinct pre-

trained CNN architectures: AlexNet, VGG 16, VGG 19,

Inception v3, ResNet 18, ResNet 50, DenseNet 121 and

DenseNet 201. The proposed methodology was illustrated in

Figure 1. It is necessary to set and optimize parameters as the

CNN architecture itself is not able to define parameters for

the fine-tuning method. The setting of parameters for CNN

architectures were shown in Table 2.

Cross-validation is any of various similar model validation

techniques for assessing how the results of a statistical analysis

will generalize to an independent data set. We selected k-fold

cross-validation. The cross-validation process is then repeated

k times, with each of the k subsamples used exactly once as

the validation data. The k results can then be averaged to

produce a single estimation. The advantage of this method
FIGURE 1

Framework for the detection of CAP and severity classification.

TABLE 2 The setting of parameters for CNN architectures.

Parameters AlexNet ResNet 18 ResNet 50 VGG 16

Optimizer ADM ADM ADM ADM

Base learning rate 0.0001 0.0001 0.0001 0.0001

Momentum 0.9 0.9 0.9 0.9

epochs 30 30 30 30

Train batch size 32 32 32 32

Test batch size 32 32 32 32

Frontiers in Pediatrics 04
over repeated random sub-sampling is that all observations

are used for both training and validation, and each

observation is used for validation exactly once. Different

values of K result in different outcomes, and we select k of

5,8,10 in the study.
Alexnet architecture

The AlexNet model won the 2012 ImageNet competition by

a large margin. The model consists of five convolutional layers

and three fully connected layers. The extraction of image feature

information is mainly completed by the convolutional layers,

while the role of the fully connected layers is to integrate local

feature information, flatten the feature information, and then

complete the classification task (18).
VGG 19 Dense-Net 121 Dense-Net 201 Inception v3

ADM ADM ADM ADM

0.0001 0.0001 0.0001 0.0001

0.9 0.9 0.9 0.9

30 30 30 30

32 32 32 32

32 32 32 32
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VGG 16 and VGG 19 architecture

It was found that the greater the network depth, the

stronger the classification function of the network (19). CNN

gradually developed from the eight-layer AlexNet model to

the 16-layer and 19-layer VGGNet model.
Inception v3 architecture

The Inception network is an important milestone in the

history of CNNs. Before Inception, most CNNs simply

stacked more and more convolutional layers, making the

network deeper and deeper. Inception performs multiple

convolution or pooling operations in parallel and stitches all

the output results into a very deep feature map (20).

Inception v3 proposes a series of corrections that increase

accuracy and reduce computational complexity (21).
Resnet 18 and ResNet 50 architecture

However, blindly stacking layers cannot improve

performance and may even reduce the rate of network

convergence. He et al. (22) proposed the ResNet model,

which effectively alleviated the problems of gradient

disappearance and network degradation. This model can

increase the training speed and greatly improve the

generalization ability and robustness of deep networks. The

ResNet model comprises multiple residual units, each of

which consists of a convolutional layer, a batch

normalization layer, and a ReLU function. With the

increasing number of residual units, models such as

ResNet-18 and ResNet-50 have been developed.
Densenet 121 and DenseNet 201
architecture

The DenseNet model, its basic idea is the same as ResNet,

but it establishes a dense connection between all the previous

layers and the latter layers (23). Another major feature of

DenseNet is feature reuse through the connection of features

on channels. These features allow DenseNet to achieve better

performance than ResNet with fewer parameters and

computational costs.
Statistical analysis and performance
matrices

The SPSS 22.0 software package was used for statistical

analysis of the clinical data. The normal distribution of
Frontiers in Pediatrics 05
measurement data was expressed as mean ± standard

deviation, and the count data was expressed as a

percentage. Differences between groups were compared

using one-way ANOVA, nonparametric tests, χ2 tests, and

paired χ2 tests. The Kappa consistency test was used to

analyze the consistency between LUS and clinical diagnosis,

CXR and chest CT in diagnosing CAP. All P values were

two-sided and P < 0.05 was considered statistically

significant. Kappa value evaluation criteria: A Kappa value

of 0–0.20 was deemed very low consistency, a value of

0.21–0.40 was deemed average consistency, 0.41–0.60

represented medium consistency, 0.61–0.80 indicated high

consistency, and a Kappa value of 0.81–1.00 was

interpreted as very consistent.

The accuracy, sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), and area under

the receiver operating characteristic (ROC) curve of different

models (area under curve of ROC, AUC) were calculated to

assess the detection performance of the model. The accuracy,

sensitivity, specificity, positive predictive value (PPV) and

negative predictive value (NPV) were calculated to assess the

classification performance of the model.
Results

General information of patients and
comparison of baseline

The clinical trial flow diagram was shown in Figure 2.

Among the 200 children who met the inclusion criteria for

this study, 111 patients were not included due to the time

interval between CXR (48 cases) or chest CT (17 cases) and

LUS longer than 72 h, or refusing imaging examinations (23

cases) or blood tests (14 cases), or being unable to cooperate

in completing the LUS examination and taking images (9

cases). In the final 89 cases, 65 cases were clinically diagnosed

with CAP, including 44 cases of mild disease and 21 cases of

severe disease. Twenty-four cases were diagnosed with other

diseases, such as acute bronchitis, acute tonsillitis, febrile

convulsion, infection mononucleosis, etc. The LUS database

constructed in this study was built from a total of 916 LUS

images of the above-mentioned 89 children. A total of 64

cases were diagnosed as CAP by ultrasound, and 690 images

of related lesions were obtained. Twenty-five cases were

diagnosed as normal by ultrasound, and 226 images were

obtained.

As displayed in Table 3, there was no statistical difference

between the three groups in terms of gender, age, weight,

allergy history, symptoms of upper respiratory tract infection,

white blood cells, serum amyloid A, and procalcitonin

(P > 0.05). Statistical differences were found among the three

groups in terms of respiratory rate, days of fever before
frontiersin.org
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FIGURE 2

Trial flow diagram.
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admission, general status, food refusal, moist rales, days of

hospitalization, C-reactive protein, and interleukin-6 (P < 0.05)

(Table 1). After pairwise comparison, the number of days of

fever before hospitalization (P = 0.001), respiratory rate

(adjusted P = 0.006), general status, food refusal, C-reactive

protein (adjusted P = 0.03), interleukin-6 (adjusted P = 0.04),

and the length of hospital stay (adjusted P = 0.01) were

statistically different between the mild CAP group and the

severe CAP group.
Frontiers in Pediatrics 06
Comparison of the value of LUS and
clinical diagnosis, CXR and chest CT in the
diagnosis of CAP

Among the 89 children, 65 were clinically diagnosed with

CAP, 41 were diagnosed as CAP by CXR, and 25 were

diagnosed as CAP by chest CT. Sixty-four cases were

diagnosed as CAP by LUS; of these, one case was

LUS-negative but diagnosed by chest CT as CAP, while
frontiersin.org

https://doi.org/10.3389/fped.2022.1063587
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


TABLE 3 Demographic and clinical characteristics of patients at baseline according to clinical diagnosis.

Variables Clinical diagnosis (All patients, n = 89) P value

Non (n = 24) Mild (n = 44) Severe (n = 21)

General information

Gender, female, (n %) 12 (50) 20 (45.5) 5 (23.8) .17

Age, years, median (IQR) 3 (1–6) 3 (2–4.75) 5 (3–6.5) .07

Weight, kilograms, median (IQR) 15.2 (11.5–20) 15.6 (13.1–18) 21 (14.9–25.9) .05

Allergy history, Positive, (n %) 3 (12.5) 7 (15.9) 5 (23.8) .58

Associated symptoms

Days of fever before hospitalization, average ± SD 2.8 ± 2.4 2.7 ± 2.3 4.9 ± 2.5 .002

Presentation of upper respiratory tract infection, Positive, (n %) 18 (75) 40 (90.9) 19 (90.5) .196

General status, Well, (n %) 24 (100) 44 (100) 17 (81) .002

Food refusal, Positive, (n %) 1 (6.7) 0 (0) 12 (57.1) <.001

Physical examination findings

Respiratory rate, median (IQR) 25 (22–29.5) 26 (24–28) 30 (27–32) .004

Moist Rales, Positive, (n %) 0 (0) 18 (40.9) 9 (42.9) 0.001

Laboratory findings, median (IQR)

WBC, 109 cells/L 7 (5–11.2) 7.5 (5–10.8) 7 (4.5–8.5) .36

CRP, mg/L 0.8 (0–8.8) 4.5 (0.5–14.8) 20.3 (4.5–35.8) .001

SAAa, mg/L 57.4 (5.4–130.8) 48.8 (6.4–132.2) 108.0 (43.3–262.2) .06

IL-6b, ng/L 9.2 (4–25.6) 8.1 (3.7–27.9) 34.3 (79–51.3) .03

PCTc, ng/ml 0.1 (0.1–0.4) 0.1 (0.1–0.5) 0.1 (0.1–0.8) .61

Hospital stay, median (IQR) or average ± SD 6 (4.3–6.8) 5 (5–6) 7 (6–7.5) .02

IQR, interquartile range; SD, standard deviation; WBC, white blood cells; CRP, C-creative protein; SAA, serum amyloid A; IL-6, interleukin-6; PCT, procalcitonin. Non:

diagnosed as other diseases other than pneumonia.
aObtained for 76 patients (non group: n= 21; mild group: n= 39; severe group: n= 16).
bObtained for 82 patients (non group: n= 21; mild group: n= 41; severe group: n= 20).
cObtained for 79 patients (non group: n= 21; mild group: n= 40; severe group: n= 18).

Fang et al. 10.3389/fped.2022.1063587
one case was LUS-positive but the chest CT was negative.

After calculation, the diagnostic accuracy, sensitivity

and specificity of LUS emerged as 97.7%, 98.5% and

95.8% respectively. There was no statistical difference

between LUS and clinical diagnosis, CXR and chest CT

diagnosis of CAP (all P > 0.05), and the kappa values were

0.943, 0.837, and 0.835 respectively, which were shown in

Figure 3.
FIGURE 3

Clinical outcomes of hospitalized patients.
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Efficacy evaluation of pre-trained CNN
models for CAP diagnosis

In the task of identifying CAP in children by LUS, the

metrics of accuracy, sensitivity, specificity, PPV, NPV, as well

as AUC, for the proposed models were shown in Figure 4. It

is clear that the performance metrics of the models changed

when we increased the value of the fold. Our data achieved
frontiersin.org
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FIGURE 4

Result of performance metrics for the proposed 8 models in CAP detection for different k-folds cross validation.
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the highest accuracy of 0.87 ± 0.02, PPV of 0.90 ± 0.03,

sensitivity of 0.92 ± 0.04 and AUC of 0.82 ± 0.04, respectively,

in Inception v3 for 10-fold. The best NPV and specificity

achieved in DenseNet 121, 0.70 ± 0.08 and 0.82 ± 0.07 by 5-

fold and 8-fold. The average computational time of the 8

proposed modes for each image was 0.00173 s of AlexNet,

0.00183 s of VGG 16, 0.00205 s of VGG 19, 0.00283 s of

Inception v3, 0.00203 s of ResNet 18, 0.00169 s of ResNet 50,

0.00150 s of DensetNet 121 and 0.00154 s of DenseNet 201.
Efficacy evaluation of pre-trained CNN
models for CAP severity classification

Figure 5 was the result of the proposed 8 models in the task

of degrading in children’s CAP by LUS for different k-folds. On

our data, highest accuracy, PPV and specificity of 0.75 ± 0.03,

0.89 ± 0.05 and 0.80 ± 0.10 were achieved in Inception v3 for
Frontiers in Pediatrics 08
5-fold. As regards the best NPV of the pretrained models,

VGG 16 achieved 0.88 ± 0.07 for 5-fold. The best sensitivity

was also found in 0.93 ± 0.05 of VGG 16 for 5-fold.
Discussion

Principal findings

CAP is a common disease in children, especially in low-

income countries, where the mortality rate of children in the

first year with CAP is up to 50.13% of inpatient (24). Early

and accurate diagnosis of CAP and judgment of the severity

of the disease therefore have important clinical value (25).

LUS can improve the shortcomings of CXR and chest CT

with radioactivity. At the same time, machine learning models

can enhance the efficiency of diagnostic methods and serve as

a suitable alternative to the CXR and chest CT. No previous
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FIGURE 5

Result of performance metrics for the proposed 8 models in CAP severity classification for different k-folds cross validation.
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study has employed CNNs model for analyzing the LUS of

children suspected with CAP. The study is a prospective case-

control clinical trial and has established a standard LUS

database. Our study suggests that LUS is a reliable method for

diagnosing CAP in children, with comparable diagnostic

capabilities to CXR and chest CT. The LUS-based AI

recognition system has a good predictive ability for children’s

CAP based on our dataset. In the future, the CNNs method

can be employed at diagnostic centers as a reliable method to

detect CAP in children with high precision in the early stages

of the disease, and achieve an automated and more efficient

diagnosis.
Frontiers in Pediatrics 09
Comparison with other works

For children also have certain anatomical characteristics,

such as a thin chest wall and small thorax, which are

beneficial to ultrasound imaging, studies have shown that LUS

can accurately diagnose pneumonia in children, and has the

further advantages of no radiation, simplicity, dynamic

observation, and repeatability. It can accordingly be used to

replace pediatric CXR examinations, and has a diagnostic

sensitivity and specificity no weaker than that of chest CT,

which is a safe and feasible examination method. The

diagnostic accuracy, sensitivity, and specificity of LUS in this
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study were found to be 97.7%, 98.5%, and 95.8%, respectively.

LUS results were highly consistent with those of CXR and

chest CT in the diagnosis of CAP (Kappa = 0.943, 0.837,

0.835), and were also consistent with previous findings. In a

retrospective cohort study using chest CT as the gold

standard, the sensitivity of LUS for diagnosing CAP was

90.6% and the accuracy was 66.1% (26). A meta-analysis

further showed that the sensitivity of lung ultrasonography in

diagnosing pneumonia in children was 98% with a specificity

of 92% (27).

Ultrasonography relies more on the subjective judgment of

the operator, meaning that inexperienced doctors may easily

misdiagnose a condition. At the same time, the associated

increase in work intensity may also increase the misdiagnosis

rate of experienced doctors. Novice physicians often fail to

correctly identify lesions and quantify their extent. AI

technology is very well suited to solve these problems.

Although no researchers have attempted to diagnose childhood

pneumonia, at present, researchers have developed a CNN

model to quantify the B-line of lung ultrasound in emergency

dyspnea patients. The best CNN model established by the team

had a sensitivity of 93% and a specificity of 96% when

determining the presence of B-line (28). Gravina et al. (29)

collected neonatal lung ultrasound images and videos to

construct different CNN models to diagnose and differentially

diagnose temporary tachypnea in neonates and neonatal

respiratory distress syndrome, the highest accuracy of which

was 87.8%. AI automated image analysis has advantages in its

ability to assist doctors in improving the accuracy, efficiency

and work intensity. In our study, the test results show that the

operation time of every single image is extremely fast, which

can significantly improve the diagnosis efficiency. According to

our findings, Inception v3 achieved the highest diagnostic

accuracy of 87%, which had similar diagnostic accuracy of lung

ultrasound in other diseases, though the performance on the

severity classification task is not satisfactory.

Nowadays, existing AI diagnosis systems designed for

children’s CAP are mainly based on clinical symptoms,
TABLE 4 Studies using LUS based on CNNs for pneumonia of COVID-19.

Study (country) Study objective Popula

Born et al.
(Switzerland) (12)

Pneumonia Classification
COVID-19 Detection

1,103 images

Born et al.
(Switzerland) (33)

Pneumonia Classification
COVID-19 Detection

202 videos

Perera et al. (America)
(34)

COVID-19 Detection
Pneumonia Classification

COVID-19: 84 video clips,
and Pneumonia: 53 video c
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physical examination and imaging examination of CXR.

Abeyratne et al. (30) extracted the mathematical features of

cough sounds through machine learning and used them to

train a logistic regression classifier that classified cough

sounds into pulmonary cough and non-pulmonary cough.

The algorithm had a sensitivity of 94% and a specificity of

75% for the diagnosis of pneumonia. Other studies segmented

the expiratory and inspiratory phases of breath sounds for

parallel acoustic analysis (31). Sometimes patients don’t have

typical clinical manifestations. Mahomed et al. (32) analyzed

and summarized the characteristics of children’s CXR using

an AI method and expressed the possibility of pneumonia

through different colors; however, the AI’s diagnostic

sensitivity (76%) and specificity (80%) were low. Previous

studies mostly used traditional machine learning methods; By

contrast, our study uses LUS images to train the CNNs

AlexNet, VGG 16, VGG 19, Inception v3, ResNet 18, ResNet

50, DenseNet 121 and DenseNet 201 using the TL method.

After decades of technological development, the performance

of AI diagnosis of CXR has been significantly improved (7–9),

but this does not change the fundamental disadvantage of

radiation. Since there is no public database of ultrasound

images of children’s pneumonia, prior to our study, no

researchers have used LUS based on deep learning methods in

the field of children’s pneumonia. Upon the emergence of

COVID-19, numerous CNNs techniques have been adopted to

diagnose pneumonia of COVID-19. Table 4 lists some

relevant studies. Our study detecting pneumonia in children

had close accuracy to these studies of COVID-19.

Consistently, our multi-class accuracy was slightly inferior to

binary classification, which was the same as others.

Our study confirmed that LUS is a reliable method for

diagnosing CAP in children. The CNN method can accurately

identify CAP in children, which lays a theoretical foundation

for future pediatric pulmonary AI-based ultrasound. However,

this study still has certain limitations: (1) compared with the

large number of datasets required for AI image recognition,

the sample size used in this study is small. In the future,
tion Models used Evaluation
results

POCOVID-Net Accuracy = 0.89
Sensitivity = 0.96
Specificity = 0.79
F1-score = 0.92.

optimized variations of VGG
and NasNetmobile

Accuracy = 0.89
Accuracy = 0.79

Healthy: 75 video clips
lips.

Proposed model Accuracy = 0.87
Sensitivity = 0.83
Specificity = 0.97
Accuracy = 0.90
Sensitivity = 0.90
Specificity = 0.98
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more images need to be collected to verify and test the model;

(2) this study is a single-center study, in which a fixed

number of doctors used a unified ultrasound instrument and

probe to collect images. In future work, we will collect multi-

center data for further research; (3) this AI system only

observes LUS without clinical data. In the future, clinical data

can be added on the basis of images; (4) due to the limited

performance of single networks, an increasing number of

studies have found that integration with other network

models is an important development direction; (5) the clinical

situation is always changeable, and the doctor still needs to

combine other manifestations of the patient. In the future, we

will improve AI diagnostic techniques that combine medical

history and ultrasound signs, which may further increase the

detection rate of other conditions. After all, AI cannot replace

the doctor, if necessary, further examination is required.
Conclusions

AI technology has great prospects in the promotion of LUS,

especially in economically underdeveloped areas or in primary

medical care, where they can improve the diagnostic accuracy

of CAP. Using the automated diagnosis system for detecting

children’s CAP minimizes the time of image interpretation and

consequently the possibility of delayed diagnosis for patients

waiting at radiology centers. Furthermore, by increasing the

number of images and comprehensively analyzing of multi-part

images produced by the LUS and increasing the population

size, better classification results for differentiating positive and

negative cases can be expected in the future.
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