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Lung injury induced by oxygen is a key contributor to the pathogenesis of preterm
infant bronchopulmonary dysplasia (BPD). To date, there are comprehensive therapeutic
strategy for this disease, but the underlying mechanism is still in progress. By using
lentivirus, we constructed microRNA34a (miR34a)-overexpressing or knockdown A549
cell lines, and exposure to hyperoxia to mimic oxygen induce lung injury. In this study, we
investigated 4 proinflammatory cytokines, interleukin-1β (IL-1β), tumor necrosis factor-α
(TNF-α), angiopoietin-1 (Ang-1), and Cyclooxygenase-2 (COX-2) in the secreted sputum
of infants who received mechanical ventilation, and found that IL-1β was substantially
elevated in the first week after oxygen therapy and with no significant decrease until
the fourth week, while TNF-α, Ang-1, and COX-2 were increased in the first week
but decreased quickly in the following weeks. In addition, in vitro assay revealed that
hyperoxia significantly increased the expression of miR-34a, which positively regulated
the proinflammatory cytokine IL-1β in a time- and concentration-dependent manner in
A549 cells. Overexpressing or knockdown miR34 would exacerbate or inhibit production
of IL-1β and its upstream NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3)
inflammasome signaling pathway. Mechanically, it’s found that TNFAIP3 interacting
protein 2 (TNIP2), an inhibitor of nuclear factor κB (NF-κB), is a direct target of miR34a,
negatively regulated activation of NLRP3 inflammasome and the production of IL-
1β. Overexpressing TNIP2 ameliorated hyperoxia-induced production of IL-1β and cell
apoptosis. Our findings suggest that TNIP2 may be a potential clinical marker in the
diagnosis of BPD.
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INTRODUCTION

Bronchopulmonary dysplasia (BPD), defined as the need for supplemental oxygen after 36 weeks
post-menstrual age, affects around 30% of infants with a birth weight less than 1,000 g (1).
BPD is a leading cause of long-term hospitalization, stunted growth, recurrent respiratory illness,
and neonatal death (2). Abnormal lung function and structures associated with BPD persist
into adolescence (3, 4). Until now, there is no particular therapy or therapeutic agent accessible
to relieve BPD, since many factors that can contribute to the development of BPD, such as
genetics, oxygen damage, lung damage, infection, and malnutrition, etc. (5). MicroRNAs (miRNA)
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are single-stranded and evolutionarily conserved sequences of
short non-coding RNAs (∼21–25 nucleotides), which act as
endogenous repressors of gene expression by mRNA degradation
and translational repression (6, 7), and have been demonstrated
to have critical roles in cell differentiation, development,
proliferation, signaling, inflammation, and cell death (8, 9).
Hence, they are considered to be the promising candidates for
novel targeted therapeutic approaches to lung diseases. The role
of oxygen in the development of BPD has been evaluated in a
few studies, which explored the expression profiles of miRNA
in various animal models and human infants (10). MiR-34a
expression was significantly increased after oxygen exposure,
peaked at postnatal day (PN) 7, and then steadily declined
(11). It has been reported that neonates with respiratory distress
syndrome and BPD have shown an increased miR-34a expression
in type 2 alveolar epithelial cells, suggesting that miR34a might
be a potential pharmacologic target (11). As the loss or gain
of function of miR-34a improves or aggravates BPD-associated
pulmonary arterial hypertension in BPD mouse models, its role
in BPD still needs to be explored.

Interleukin-1β (IL-1β), a central cytokine involved in the
initiation and persistence of inflammation, is increased in
amniotic fluid in chorioamnionitis and preterm labor (12).
Increased IL-1β concentration in amniotic fluid has been
verified to be linked to the development of BPD (13). IL-1β

levels were also elevated postnatally in the tracheal aspirates
of preterm infants who develop BPD (14). A bi-transgenic
mouse with conditional IL-1β expression in airway epithelial
cells developed a series of lung diseases that were clinically
and histologically comparable to BPD (15). Oxygen therapy
caused pulmonary inflammation, and oxygen exposure enhanced
the production of neutrophil chemo-attractants, resulting in
infiltration of the lungs with neutrophils (16). NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3) inflammasome
and its downstream Caspase 1, regulated the production
of inflammatory molecules such as IL-1β (17), and miR-
34a suppression reduces lung inflammation and apoptosis in
an LPS-induced acute lung damage mouse model, indicating
that miR-34a may mediate inflammasome activation (18).
Except IL-1β, miRNA-34a also up-regulates TNF-α, IL-6,
and Ang-1 production in animal or cell model (11, 19–
21), which all are proinflammatory factors that closed relate
with progress of BPD. However, the dynamics of these
pro-inflammatory cytokines during the development of BPD
in preterm infants and their role in BPD have not been
reported in detail. And there is still no experimental evidence
of how miR34a regulates NLRP3 inflammasome and the
expression of cytokines.

The focus of this research was to analyze the expression
of miR-34a in airway epithelial cells and the secretion of
IL-1β and its upstream components. The difference in the
expression of the above factors at different time points after birth
can aid in developing early monitoring and early warning of
BPD, and a prognostic judgment to provide monitoring signs.
Moreover, this study tried to explore the mechanism during
which to target the impact of miR-34a expression changes on
downstream factors.

MATERIALS AND METHODS

Establishment of A549 Cell Lines and
Hyperoxia Exposure
Human alveolar basal epithelial cells A549 cells were purchased
from China Center for Type Culture Collection (CCTCC,
Wuhan, China), and were maintained in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS), 100 U/ml penicillin, 100 µg/ml streptomycin
(GIBCO, CA, United States) at 37◦C in 95% air, 5% CO2. miR34a
overexpression or knockdown A549 cell lines were generated
using pBABE-puro-miR34a or pBABE-puro-si-miR34a lentivirus
and packaging cell line A549, as previously described (22).
Infected A549 cells were selected by adding puromycin
(2 µg/mL) 3 days after infection and overexpression or
knockdown efficiencies were examined by GFP fluorescence
and identified by sequencing. For hyperoxia experiments, cells
at sub-confluence (70%, ∼350–400 cells/mm2) were placed in
sealed glass chambers filled with 95% O2–5% CO2, 60% O2–
5% CO2, 35% O2–5% CO2, at 37◦C, and culture for 24, 48,
or 72 h, respectively. Normoxic cells were kept in normal air
conditions (21% O2–5% CO2) at 37◦C. Mediums and gases were
replaced every 2 days.

Western Blotting Analysis
After hyperoxia exposure, cell proteins were extracted
as previously described (23). Proteins were blotted on a
nitrocellulose membrane and then incubated with antibodies.
The membranes were then washed and incubated with a
horseradish peroxidase-conjugated anti-mouse antibody or
peroxidase-conjugated anti-rabbit antibody (1:1,000; Beyotime,
Shanghai, China). Proteins were detected by using ECL reagents
(Biosharp, Beijing, China). Densitometric evaluation was
performed using Image J (NIH, United States).

Preterm Infant Criteria and Sputum
Collection
A total of 37 infants who finally diagnosed as BPD hospitalized to
the Neonatal Intensive Care Unit of Wuhan Children’s Hospital
between January 2021 and September 2021 were recruited.
Inclusion criteria: (1) Gestational age ≤ 32 weeks; (2) The legal
guardians of the infants agreed and signed the informed consent
form. Exclusion criteria: (1) Infants whose families abandoned
treatment during hospitalization or whose families withdrew
midway; (2) Infants with complex congenital heart disease,
respiratory malformations, congenital genetic metabolic diseases,
and those requiring surgical intervention such as neonatal
necrotizing enterocolitis and diaphragmatic hernia, etc. Detail
clinical characteristics of infants were listed in Table 1. According
to the diagnostic criteria (24), these infants were divided into
3 groups, 5 cases were severe BPD, 11 cases were moderate
BPD, and 21 were mild BPD. As control, other 95 non-BPD
infants were enrolled. In 24 h after birth, 0.5 ml of respiratory
secretions were retained by deep aspiration and tested within
24 h. Sputum was extracted via tracheal intubation in intubated
patients and deep aspiration by suction tube in non-intubated
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TABLE 1 | Clinical characteristic of BPD infants.

BPD (n = 37) Non-BPD (n = 95) P value

Gender (male, %) 20 (54.05%) 53 (55.79%) 0.67a

Gestational age (Weeks, x s) 28.63 ± 1.57 31.09 ± 0.74 <0.01b

Weight (g, x s) 1244.67 ± 241.36 1690.92 ± 235.86 <0.01b

Fetal distress (%) 9 (24.32%) 36 (37.90%) 0.37a

Apgar-1 [score, M (P25, P75)] 6 (4, 7) 8 (7, 8) <0.01c

Apgar-5 [score, M (P25, P75)] 7 (5, 8) 9 (8, 9) <0.01c

Apgar-10 [score, M (P25, P75)] 8 (5, 8) 8 (8, 9) <0.01c

Time of PS used (more than once, %) 10 (27.03%) 2 (2.11%) <0.01a

Invasive mechanical ventilation used (days, x s) 10.12 ± 16.09 0.94 ± 0.46 <0.01b

CPAP used (days, x s) 27.24 ± 10.92 15.89 ± 6.22 <0.01b

length of stay (days, x s) 57.82 ± 16.21 30.62 ± 12.32 <0.01b

Early sepsis (%) 6 (16.22%) 12 (12.63%) 0.54a

Prenatal glucocorticoid Administration (%) 7 (18.92%) 12 (12.63%) 0.25a

Maternal Chorioamnionitis (%) 5 (13.51%) 1 (1.05%) <0.01a

Cesarean section (%) 13 (35.14%) 47 (49.47%) 0.36a

aChi-square test, Fisher’s exact probability method was used for n < 40.
b Independent sample t-test.
cTwo-Sample K-S Test.

patients. Aspiration operation was then performed once a week.
All parents of infants have been aware of and provide written
informed consent for their participation, and have also obtained
permission from the Ethics Committee of Wuhan Children’s
Hospital (2021R050-E01), Tongji medical college, Huazhong
University of Science and Technology, Wuhan, 430077, China.

Enzyme Linked Immunosorbent Assay
Part of the sputum was weighted and add 0.1% DTT
(Dithiotreitol) twice as much as the volume of the sputum. The
sputum was blown repeatedly with a straw, and vortex for 15 s,
and vibrated in a 37◦C water bath for 5 min. Then add PBS buffer
twice the amount of sputum and continued to vibrate for 15–
20 min, then filter with 150 pieces of wire mesh, centrifuge at
1500 rpm for 10 min and extract the supernatant for detection.
Concentrations of cytokines (IL-1β, TNF-α, Ang-1, and COX-
2) were measured according to the manufacturer’s instructions.
The levels of IL-1β, TNF-α, and Ang-1 in the sputum of
infants were measured by enzyme linked immunosorbent assay
(ELISA) kit from Elabscience (Wuhan, China). The COX-2
levels were determined using a human COX-2 ELISA kit from
CUSABIO (Wuhan, China).

Terminal Deoxynucleotidyl
Transferase-Mediated dUTP Nick End
Labeling Assay
Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP
nick end labeling (TUNEL) assay was performed on A549 cells
grown on glass coverslips using One-step TUNEL Assay Kit (Red,
AF594) (E-CK-A322, Elabscience, Wuhan, China) following
manufacturer’s instructions. Quantification of TUNEL-positive
cells was performed in selected images by an observer masked
to the identity of the experimental groups. Cell density about
350–400 cells/mm2.

Real-Time Quantitative Polymerase
Chain Reaction
The total RNA was extracted by a TRIzol reagent (Invitrogen,
CA, United States) following the manufacturer’s instructions.
1 µg of RNA was reversely transcripted for mRNA by a First-
Strand cDNA Synthesis Kit (Yeasen, Shanghai, China) or a
miRcute Plus miRNA First-Strand cDNA Kit (Tiangen, Beijing,
China), respectively. The standard quantitative polymerase
chain reaction (qPCR) was performed on an ABI StepOnePlus
real-time quantitative PCR instrument using SYBR Green Mix
(Yeasen, Shanghai, China). The reaction was performed with
pre-denaturation at 95◦C for 3 min, followed by 40 cycles of
denaturation at 95◦C for 5 s and annealing at 60◦C for 30 s. This
cycle was followed by a melting curve analysis, ranging from 60 to
95◦C with temperature increase by steps of 0.5◦C every 10 s. The
method for miR34a’ reverse transcription referred to published
literature (25). The primers used for RT-PCR detection were
listed as following. miR34a-F: GGCAGTGTCTTAG CTGGTTG.
miR34a-R: CCAGTGCAGGGTCCGAGGTATTC. miR34a-RT:
GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT
ACGA CCAACCA. U6-F: GTGCTCGCTTCGGCAGCACATA.
U6-R: GCGCAGGGGCCA TGCTAATCTTC. U6-RT: AAAAAT
ATGGAACGCTTCACGAATTTG. IL-1β-F: ATGATGGCTTAT
TACAGTGGCAA. IL-1β-R: GTCGGAGATTCGTAGCTGGA.
TNIP2-F: AAGTCCTGACCAGTCGGAACA. TNIP2-R: TCTTC
AACGTGAGTCA CCTTCT. ACTB-F: CATGTACGTTGCTA
TCCAGGC. ACTB-R: CTCCTTAATGTC ACGCACGAT.

Luciferase Activity Assay
The wild-type (WT) or mutant TNIP2 3’-untranslated region
(UTR) plasmid was cloned and inserted into psiCHECK-2
within XhoI and NotI restriction sites located downstream of
the Renilla luciferase gene. Wild-type TNIP2 3’-UTR sequence:
GCUGGGUCACAGGGAACUGCCAG; mutant TNIP2 3’-UTR:
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GCUGGGUCACA GGGAGCUUCAAG. These plasmids were
co-transfected into HEK293T cells with miR-34a mimic or
scramble at a final concentration of 100 nM. After 48 h, cells were
harvested, and lysates were used for firefly and Renilla luciferase
activities using the dual-luciferase reporter assay kit (Promega,
CA, United States) according to the manufacturer’s instructions.
The normalized values (Renilla/firefly activity) were used for
analysis. Experiments were performed in triplicate.

Statistical Analysis
All data are expressed as Mean ± SEM. Unpaired t-test
was used to assess statistical significance between the two
groups. With respect to multiple comparisons involving three
or more groups, statistical significance was assessed by one-
way analysis of variance (ANOVA) followed by post hoc test
(Bonferroni’s method). Statistics were computed with Graphpad
Prism 6 (GraphPad Software). P < 0.05 was considered as
statistically significant.

RESULTS

Interleukin-1β Has Markedly Enhanced in
Neonates Receiving Oxygen Therapy
Although several proinflammatory cytokines were increased
in infants following oxygen therapy (26), none of them have
been implicated in the development of BPD. To investigate
the expression of proinflammatory in the development of BPD,
the secreted sputum of infants was collected and examined.
As expected, all proinflammatory cytokines, including IL-1β,
TNF-α, Ang-1, and COX-2 were markedly enhanced in the
first week after oxygen therapy. However, except for IL-1β

(Figure 1A), other cytokines (Figures 1B–D) returned to
normal levels by the second week, while IL-1β remained
elevated until the fourth week. And those infants with
higher IL-1β concentrations eventually developed BPD. It was
suggested that IL-1β may contribute more than others to the
development of BPD.

Expression of miR-34a and
Interleukin-1β in Bronchopulmonary
Dysplasia-Like Cell Model
Previous research has linked miR34a to the development of BPD,
and it also promotes the production of IL-1β. However, the
underlying mechanism has not been explored. Thus, in this study,
a BPD-like cell model using A549 cells (27, 28) was established
by the overexpression (miR34a-OE) or knockdown (miR34a-
KO) of miR34a in A549 cells (Figures 2A,B) to investigate the
relationship between them. To mimic the situation of oxygen
therapy in infants, wild type (WT), miR34a-OE, and miR34a-KO
A549 cells were exposed to oxygen with different concentrations
and times. It was observed that miR-34a expression increased in
a time- and concentration-dependent way after oxygen exposure
(Figures 2C–E). On the other hand, it was found that the mRNA
level of IL-1β also increased in concentration- (35, 60, and 95%)
and time- (24, 48, and 72 h) dependent ways (Figures 2F–H). The

above results indicated that the production of IL-1β might has a
closed with miR-34a.

A549 Cell Apoptosis Was Mediated by
miR34a
Proinflammatory cytokines cause injury to alveolar epithelial
cells and lead to the development of BPD via inducing cell
apoptosis (29). As BPD is characterized by inflammation and
apoptosis of various cell types, we next investigated whether
miR34a was involved in hyperoxia-induced apoptosis. The
cells apoptotic rate in WT, miR34a-OE, and miR34a-KO
A549 was checked by TUNEL-staining and flow cytometry.
More apoptotic cells were observed in miR34a-OE A549
cells (Figures 3A,C), while markedly reduced in miR34a-KO
A549 when compared to WT A549 cells. Flow cytometry
(Figures 3B,D) confirmed that miR34a-KO ameliorated cell
apoptosis induced by hyperoxia, while in contrast enhanced
apoptotic rate greatly in miR34a-OE cell, suggesting miR34a
mediated apoptosis in A549 cells.

miR34a Mediated Hyperoxia-Activated
NLRP3 Inflammasome Pathway
One major pathway of IL-1β synthesis depends on the
activation of the NOD-, LRR-, and pyrin domain-containing
protein 3 (NLRP3) inflammasome, thus the expression of
an NRLP3-related protein was detected. After exposure to
different concentrations of oxygen for 72 h, A549 cells were
collected and assayed using Western blotting. The expression
of IL-1β, cleaved caspase 1, and NLRP3 were enhanced in
a concentration-dependent way. However, knockdown miR34a
prevented these increases, even with the induction of oxygen,
while the overexpression of miR34a would further strengthen
this enhancement (Figures 4A,C–E). Another proinflammatory
cytokine COX-2, inducted by IL-1β, was also upregulated
or blocked by overexpression or knockdown of miR34a
(Figures 4A,B).

Bioinformatic Analysis of miR34a’s
Binding to 3’UTR of TNIP2
As predicted by Targetscan,1 one target of miR-34a is TNIP2,
a hub protein that can both positively and negatively regulate
NF-κB-dependent transcription of target genes. It has been
revealed that TNIP2’s anti-inflammatory actions in mice
are mediated via several downstream effectors, including
the NLRP3 inflammasome (30, 31). Therefore, the role of
TNIP2 on NLRP3 induced by miR34a was investigated.
Testing by Western blotting, it was observed that the protein
level of TNIP2 was induced by oxygen, and this induction
was blocked by the knockdown of miR34a (Figures 5A,C).
TNIP2 mRNA was also elevated by oxygen and inhibited by
miR34a knockdown (Figure 5D). Prediction by TargetScan
indicated that there existed miR34a binding sites in the
3′ UTR of TNIP2 (Figure 5B), therefore dual-luciferase
reporter gene assay was applied to test this prediction.

1http://www.targetscan.org/vert_71/
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FIGURE 1 | Proinflammatory was upregulated in sputum of neonates. The concentration of IL-1β (A), TNF-α (B), Ang-1 (C), and COX-2 (D) were assay using ELISA
in sputum of neonates every week after receiving oxygen therapy. One-way ANOVA, ∗ p < 0.05, ∗∗ p < 0.01 vs. 0 week, n = 37.

FIGURE 2 | Establishment of oxygen-injury A549 cell model. (A,B) A549 cell that overexpression or knockdown of miR34a was established by being infected with
lentivirus that carrying miR34a sequence or miR34a shRNA and their mRNA level (B). One-way ANOVA, ∗∗∗ p < 0.001 vs. WT, n = 5. Transfected cells images under
the light (Face) and fluorescence (GFP) microscope. (C–E) The expression of miR34a was detected by qPCR after exposure to oxygen. (F–H) The expression of
IL-1β was assayed using ELISA after exposure to oxygen. One-way ANOVA, ∗ p < 0.05, ∗∗∗ p < 0.001 vs. 21%, n = 5.

As expected, luciferase activity was greatly reduced with
transfection of miR34a and 3’UTR of TNIP2, and was not
affected with transfection of mutated miR34a (Figure 5E),

which indicated the binding between miR34a and 3’UTR of
TNIP2. These above resulted indicated TNIP2 was a potential
target of miR34a.
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FIGURE 3 | miR34a promoted A549 apoptosis induced by hyperoxia. (A) WT, miR34a-OE, and miR34a-KO A549 cell was staining by TUNEL-FITC (Red) after
culture in slice and treated with hypoxia, and (C) its statistical result. (B) WT, miR34a-OE, and miR34a-KO A549 cell apoptotic rate was examined by flow cytometry
and its statistical result (D). One-way ANOVA, ∗ p < 0.05 vs. WT, n = 5.

FIGURE 4 | NLRP3 inflammasome pathway was activated by hyperoxia. (A) WT, miR34a-KO, and miR34a-OE A549 cells were collected after to different
concentration of oxygen for 72 h, then examined by COX-2, IL-1β, caspase 1, and NRLP3 antibody using Western blotting and (B–E) their statistical results.
One-way ANOVA, ∗ p < 0.05 vs. 21%, n = 5.

Overexpression of TNIP2 Inhibited
Hyperoxia-Induced Interleukin-1β and
Cell Apoptosis
Given the influence on its expression, the role of TNIP2 on the
regulation of lung epithelial cells’ survival and the inflammatory
pathway was investigated to demonstrate the mechanistic
function of miR-34a. Overexpression of TNIP2 in the A549
cell model revealed a substantial reduction in IL-1β and COX-
2 expression induced by hyperoxia (Figures 6A,B). Moreover,
flowcytometry analysis revealed that decreasing apoptotic cell in

TNIP2 overexpression A549 cells (Figures 6C,D) after induction
by hyperoxia compared to vector transfection cells. Thus, it was
suggested TNIP2 has a protective role in inhibition of apoptosis
induced by hyperoxia.

DISCUSSION

Preterm infants diagnosed with BPD have an increased risk
of abnormal lung function and were characterized mainly by
pulmonary inflammation leading to impaired alveolarization
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FIGURE 5 | Bioinformatics analysis miR34a’s downstream target. (A) WT, miR34a-KO, and miR34a-OE A549 cells was collected after to different concentration of
oxygen for 72 h, then examined by TNIP2 antibody using Western blotting and (C) its statistical results, One-way ANOVA, ∗ p < 0.05 vs. 21%, n = 3. (B) Schematic
diagram revealed bioinformatic prediction of miR-34a and 3’UTR of TNIP2 and mutated sequence. (D) qPCR analyzed mRNA of TNIP2 in WT, miR34a-KO, and
miR34a-OE A549 cells after exposure to different concentration of oxygen for 72 h. One-way ANOVA, ∗ p < 0.05 vs. 21%, n = 3. (E) HEK293T were transfected with
pGL3-3’UTR TNIP2 and miR34a mimic or scramble for 24 h and then analyzed using dual luciferase reporter gene. Unpaired t-test, ∗ p < 0.05 vs. scramble, n = 3.

and vascular dysregulation (32), and miRNA plays a role in
promoting BPD development during this process (33). In this
study, it was found that the concentration of proinflammatory
cytokine IL-1β in the sputum of infants with ultimately
confirmed BPD remain high for a long time after a sharp rise.
Then genetic gain-of-function and loss-of-function strategies
(including overexpression of miR34a and knockdown of miR34a
in A549 cells) were used to provide experimental evidence of the
role of miR34a in the production of proinflammation cytokine
IL-1β. Furthermore, it was found that TNIP2 was a potential
target of miR34a, which may suppress NLRP3 inflammasome
activation, IL-1β production, and cell death. The above results
indicated the miR34a-TNIP2-IL-1β pathway has a key role in the
development of BPD.

With the advancement of therapy and improvement in
medical practice, the diagnostic pathological features of BPD have
changed over the years. In any case, inflammation is still a major
contribution to the pathophysiology of BPD (34). A previous
study had demonstrated that in newborn transgenic mice that the
expression of IL-1β in the lungs revealed BPD-like characteristics,
indicating that IL-1β-induced inflammation in the newborn rat’s
lung was sufficient to cause BPD without additional insults
(35). Researchers discovered that individuals developing BPD
have increased cytokine levels, particularly IL-1β, by using
transcriptional profiling to reveal gene modifications in preterm
human lung macrophages between health and disease (36).
Consistent with these results, it was also a significant increase
of IL-1β was observed in the first week after oxygen therapy
in those infants who were finally diagnosed with BPD. Other
inflammatory cytokines, such as TNF-α, Ang-1, and COX-2, also

rose to a greater level when compared to healthy babies, although
these cytokines returned to normal by the second week. Only IL-
1β concentration maintains a higher level until the fourth week.
These suggest that IL-1β has a more profound inducement in
the development of BPD. Though IL-1β is mainly produced by
alveolar macrophage, alveolar epithelia may play more important
role in the progress of BPD as followed: (1) alveolar epithelial type
II cells (AECII)-derived chemokine Monocyte chemoattractant
protein-1 (MCP-1) was identified as a main factor in activating
alveolar macrophages (37); (2) alveolar epithelial type II cells
more sensitive to hyperoxia (38). Therefore, it proposed IL-1β

secreted by A549 induced by hyperoxia may function as a trigger,
recruits and activates alveolar macrophages to secrets more IL-1β,
resulting inflammation.

In a multicenter cohort study including infants with
gestational age less than 28 weeks, BPD occurred in 3,835 infants
of 5,179 infants (74.0%), resulting in a substantial burden on
healthcare systems worldwide (39). Therefore, biomarkers or
therapeutic targets in BPD diagnostics and prediction appear
to be particularly important (40). MiRNAs have been extremely
studied in many diseases due to their utility in diagnostics
of oncology (41), infectious diseases (42), and lung disease
(43). Previous research found that miR34a was considerably
increased in the lungs of mice subjected to hyperoxia compared
to normal controls, but decreased when exposed to hypoxia
(35, 44). Moreover, increased miR-34a has been reported in
the lungs of LPS-induced injury and plasma of patients with
sepsis who developed shock, indicating a function of miR-34a
in the alteration of endothelial homeostasis and inflammation
(45). When analyzed in vitro hyperoxia-injury A549 cell model,
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FIGURE 6 | TNIP2 blocks inflammatory pathway and inhibits cell apoptosis induced by hyperoxia. (A,B) WT (Vector) and TNIP2 overexpression A549 cells were
treated by hyperoxia for 48 h, then analyzed by Western blotting with TNIP2, IL-1β, and COX-2 antibodies and (B) their statistical results. (C,D) WT and TNIP2
overexpression A549 cells were treated by hyperoxia for 48 h and then analyzed its apoptotic rate using flowcytometry and (D) statistical result. Unpaired t-test, ∗

p < 0.05, ∗∗∗ p < 0.001 vs. Vector, n = 3.

it’s found that the rise of inflammatory factor IL-1β was
positively associated with the increase in miR34a. Therefore,
we established miR34a overexpression or knockdown cell line
to investigate relation between IL-1β and miR34a. Just as we
expected, overexpressing miR34a induced higher concentration
of IL-1β in hyperoxia-injury A549 cell, while this increase was
prevented by miR34a knockdown, suggesting that miR34a was
closely related with production of IL-1β. Further, apoptosis
induced by hyperoxia was higher when overexpressing miR34a,
and inhibited by knockdown. IL-1β, as a key proinflammatory
factor, facilitates apoptosis of epithelial cell lines (46). Based on
above results, we hypothesis that miR34a was a upstream effector
of IL-1β.

Role as a key activator of inflammation, nuclear factor κB
(NF-κB) primes the activation of NLRP3-inflammasome and
inducing pro-IL-1β and NLRP3 expression (47). TNIP2, also
named A20 binding inhibitor of NF-κB activation-2 (ABIN2),
was first discovered in a yeast two-hybrid screen, whose function
as regulating NF-κB by binding to A20, a well-known anti-
inflammatory signaling molecule (48). TNIP2 has been identified
as a hub protein in the NF-κB network and interacts both
with protein and RNA, suggesting a role in cellular transport
machinery, and RNA transcript processing (49). It was reported

that a missense variation in the TNIP2 gene was found in
two patients with pulmonary arterial hypertension (50) (PAH),
indicating TNIP2 also has a role in BPD, as about 25% of infants
with moderate to severe BPD would develop BPD-PAH (51).
In this study, it was observed that TNIP2 was downregulated
markedly after exposure to hyperoxia in A549 cells. Moreover,
the knockdown of miR34a inhibited the decrease of TNIP2, and
overexpression of miR34a reduced TNIP2 markedly. Prediction
by TargetScan revealed that miR34a may bind to the 3’UTR
of TNIP2, and this prediction was validated by using dual-
luciferase reporter gene method, confirming that TNIP2 was
a target of miR34a. Finally, overexpression of TNIP2 in A549
cells could reverse the induction of COX-2, IL-1β, and NRLP3,
suggesting TNIP2 has a protective role in the inhibition of the
proinflammation pathway. However, as BPD is a multifactorial
disease (52) with no clear mechanism of pathogenesis, further
study is required.

However, the current study was performed mainly on an
in vitro cell model, which is difficult to simulate the complex
condition of BPD development under physiological conditions.
In this study, the A549 cell line was selected for this study due
to its human alveolar type II epithelial cell origin. Also, due to
the limitations of A549 cells, our next step is to conduct rat
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animal studies to investigate the development and progression
of mir-34a to BPD in premature fetal rats undergoing oxygen
and inflammatory exposure. Also, the expression of miR34a was
just in A549 cell, but not pulmonary epithelial lining in lungs of
infants with BPD, thus we cannot rule out that other miRNAs,
such as miR-219-5p, a miRNA increased in BPD infant (53),
involved in the production of inflammatory factors.

In conclusion, these findings showed that miR-34a may
contribute to infants BPD by enhancing IL-1β through the
regulation of the NLRP3-inflammasome pathway. Deleting
miR-34a ameliorates the inflammatory response, leading to
suppression of A549 apoptosis, which would be activated if
miR34a was overexpressed. TNIP2, a downstream of miR34a,
negatively regulated NFKB and inhibited the activation of
the inflammasome and production of IL-1β, which suggests a
potential therapeutic target.
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