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Children, adolescents and adults living with Fontan circulation face numerous

neurological and developmental challenges. As the population with complex CHD

increases thanks to outstanding improvement in medical and surgical care, the long-term

developmental and mental health sequelae have become a public health priority in

pediatric and congenital cardiology. Many patients with a Fontan circulation experience

difficulty in areas of cognition related to attention and executive functioning, visual spatial

reasoning and psychosocial development. They are also at high risk for mental health

morbidities, particularly anxiety disorders and depression. Several hemodynamic risk

factors, beginning during the fetal period, may influence outcomes and yield to abnormal

brain growth and development. Brain injury such as white matter lesions, stroke or

hemorrhage can occur before, during, or after surgery. Other sociodemographic and

surgical risk factors such as multiple catheterizations and surgeries and prolonged

hospital stay play a detrimental role in patients’ neurodevelopmental prognosis.

Prevention and intervention to optimize long-term outcomes are critical in the care of

this vulnerable population with complex CHD.
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INTRODUCTION

Remarkable advances in pediatric cardiac surgical and medical care in the last few decades have
substantially improved survival rates of patients with the most complex forms of congenital
heart disease (CHD). Along with excellent survival and improved short-term outcomes has come
recognition of long-term neurodevelopmental and psychosocial morbidities (1–4). Individuals with
complex CHD, including those with a Fontan circulation, have an elevated risk for structural
brain abnormalities and neuropsychological and mental health disorders, starting early in life and
continuing throughout adulthood (5, 6).

The etiologies of neurological vulnerability and injury are multifactorial, additive, and
interactive. For complex CHD, such as single ventricle anatomies, genetic factors influencing heart
formation may also affect brain development. Indeed, whole exome sequencing of CHD parent-
offspring trios revealed substantial overlap between damaging de novo mutations in children with
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CHD and those previously known to be associated with
neurodevelopmental disorders (7). In addition, disturbed fetal
cerebral hemodynamics may reduce cerebral oxygen and
substrate delivery to the developing brain, thereby altering typical
brain growth and maturation (8). Patient-specific factors such
as lower socioeconomic status, (9) preterm and early-term birth
(birth between 37 and 38 weeks’ gestation) (10, 11), low birth
weight (12), and prolonged hospital stay may further increase
risk (13–15).

Compared with other forms of CHD, children with single
ventricle disease are reported to be the most vulnerable to
neurological sequalae (5, 16). In utero, these children often
have the lowest cerebral oxygen and nutrient delivery, and
after birth, they generally undergo multiple infant and early
childhood cardiac operations and catheterizations, potentially
exposing the brain to repeated stress due to hemodynamic
instability, anesthetic exposure, or other medical complications.
These risks persist well beyond the infant/toddler period, as
children and adolescents with single ventricle face life-long risk
for cerebrovascular events and other systemic morbidities that
may impact neurological functioning, mental health, and quality
of life.

BRAIN ABNORMALITIES FOR PATIENTS

WITH SINGLE VENTRICLE CHD

Neuroimaging findings in single ventricle patients across the
lifespan range from subtle disturbances in brain maturation and
growth to overt injuries evident on clinical imaging. Reductions
in brain volumes and other quantitative brain differences
emerge as early as the 2nd trimester of pregnancy and persist
into adolescence. (17–20) These broad-based developmental
disturbances provide a backdrop upon which overt brain injury,
such as cerebral white matter injury, acute ischemic stroke, or
micro hemorrhage may accumulate over time.

The earliest imaging abnormalities in single ventricle patients
emerge in the 2nd trimester of pregnancy. Normal fetal
circulation preferentially directs relatively oxygen and nutrient-
rich blood to the developing brain while relatively substrate-
depleted blood recirculates to the body. In fetuses with single
ventricle heart disease, abnormal cardiac anatomy leads to
intracardiac mixing, thereby substantially lowering the oxygen
and nutrient content of blood directed to the brain. Moreover,
in fetuses with hypo plastic or atretic systemic outflow tracts,
blood must reach the brain retrograde via the ductus arteriosus.
In general, fetuses with CHD show small brain volumes and
dysmature gyrification (8, 21–24). In one study, single ventricle
heart disease specifically was associated with heightened risk
of small total fetal brain volume compared with biventricular
forms of CHD (17). Fetal brain size correlates with cerebral
oxygen consumption, and regions of brainmost vulnerable to low
substrate delivery show greatest volumetric reductions (17, 23).
These findings lend support to the hypothesis that impaired fetal
cerebral oxygen and nutrient delivery plays an important role in
these disturbances of brain maturation and growth.

As infants grow into childhood and adolescence,
neuroimaging markers of impaired brain growth and
development persist. Two large studies of children who
underwent the Fontan procedure demonstrate persistent
quantitative differences in brain metrics. Watson and colleagues
(18) examined 128 children and adolescents who had undergone
the Fontan procedure in early childhood. Widespread differences
in both regional brain volumes and cortical thickness were
present and associated with several medical risks including older
age at first operation, more catheterization procedures, and
more complications with catheterizations and with surgeries.
Separately, the same group assessed an overlapping Fontan
cohort for differences in white matter microstructure, again
finding widespread differences in white matter microstructure
compared to a control group. Of note, these differences in
white matter microstructure correlated with Full-Scale IQ and
processing speed in the CHD group but not in the control
group, suggesting that white matter abnormalities contribute
to long-term neurocognitive variability in youth with Fontan
circulation (25).

In addition to subtle quantitative differences, clinical brain
MRI may detect overt brain injuries. Indeed, one recent study
of adolescents and adults with Fontan circulation identified
structural brain injury in all 100 participants who underwent
brain MRI with the most common injuries being micro
hemorrhages (94%) and white matter injury (81%) followed
by cerebral infarct (35%), and subcortical gray matter injury
(21%) (26).

White matter injury is the most common clinically significant
acquired brain injury found in children with single ventricle.
About 15–40% of children with single ventricle heart disease
have white matter injury visible on MRI prior to surgery,
with cumulative injury rates rising as high as 70–80%
postoperatively in some studies (20, 26–31). Various factors
may contribute to white matter injury, including relative brain
dysmaturity (19, 20, 27, 29, 32) and reduced oxygen and
nutrient delivery to the developing white matter (27, 33,
34). Perioperative factors including pre- and post-operative
hypoxia, longer time to surgery, presence of aortic arch
reconstruction, duration of hypothermic cardiac arrest, and
postoperative diastolic hypotension have each been shown
to correlate with risk of white matter injury. (29, 31, 35,
36) Interestingly, while comparisons are often made between
preterm brain injury and white matter injury in CHD, the
topology of white matter injury differs between CHD and
preterm infants, with CHD infants showing less central injury
than preterms (37).

Acute ischemic stroke is the second most common clinically
significant brain injury noted in children with single ventricle.
Stroke occurs in about 2–20% of children with CHD (29, 38–47).
As many children with stroke have no clinical symptoms, higher
rates are found in studies where all subjects are screened with
MRI compared with studies relying on clinically acquired scans
(43, 44, 47). Among patients with CHD, the highest prevalence of
stroke is in children with single ventricle; one preoperative study
of neonates with HLHS found stroke in 7%, with the rate as high
as 13% in a separate study of adolescents who were post-Fontan
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(27, 48). About a quarter of strokes in children with CHD
are associated with catheterization or other cardiac procedures
(40, 46, 49, 50). A multitude of factors likely contribute
to thromboembolic risk during the periprocedural period
including exposure to non-native materials, high hematocrit,
inflammation, sluggish venous flow from high Glenn or Fontan
pressures, and prolonged immobilization (42, 51). Abnormal
heart structure itself and staged palliation create stroke risk due
to direct connections between the venous and arterial circulation.
For example, at birth, a patent ductus arteriosus, foramen ovale
or atrial septal defect allow passage of thrombi from the venous
to arterial circulation; similarly, following the stage 1 Norwood
procedure and bidirectional Glenn, venous and arterial blood
mix in the single ventricle. After Fontan, residual right-to-left
shunting may allow venous thrombotic material to pass directly
into the arterial circulation. Cumulatively, these risk factors
present an important long-term risk for stroke-related morbidity
and mortality (39, 52).

Other types of brain injury may also occur in children
with single ventricle. Global hypoxic ischemic brain injury
is fortunately rare, but may occur in settings of severe
hemodynamic compromise. Clinically significant cerebral
hemorrhage is also uncommon, but micro hemorrhages
are often seen after cardiopulmonary bypass. One study of
a biventricular cohort found that a high burden of micro
hemorrhage was associated with poorer neurodevelopmental
outcome (53). Further study of the clinical implications of this
common finding is warranted. Ultimately, patients with single
ventricle heart disease face accumulating risk of developmental
brain disturbance or injury, with increasing evidence showing
associations between these findings and neurodevelopmental
outcome (6, 25, 54).

NEUROPSYCHOLOGICAL AND

BEHAVIORAL OUTCOMES THROUGHOUT

THE LIFESPAN

Outcomes in Children
Children with single ventricle are reported to have the highest
risk of neurodevelopmental disability compared with other
forms of CHD. More than two decades ago, a study reported
outcomes on 11 survivors of HLHS and found that seven children
(64%) presented with profound developmental disabilities (55).
Wernovsky et al. measured ability and achievement in a cohort
of selected survivors whose Fontan procedure was performed
in the 1970s and 1980s (55). Children were a median of 11
years of age at assessment and 6 years after surgery. Median
Full-Scale IQ was 95.7 ± 17.4, significantly lower than that
in the normal population; 8% of patients scored in the severe
intellectual dysfunction range (<70), which is about three
times the expected proportion in the general population. In
multivariable analyses adjusting for social class, lower IQ was
primarily associated with the use of circulatory arrest and with
the anatomic diagnosis of HLHS or “other” complex forms of
single ventricle. Independent risk factors for worse achievement
included the diagnosis of HLHS and “Other” complex single

ventricle, or prior use of total circulatory arrest, as well as with
reoperation using cardiopulmonary bypass within 30 days after
the Fontan procedure. In another study of Fontan survivors,
Goldberg et al. found a Full-Scale IQ score of 101.4 ± 5.4 within
normal ranges for the Fontan group. (56) However, those with
HLHS scored significantly lower (93.8 ± 7.3) than those without
HLHS, and additional risk factors for worse neurodevelopmental
outcome included lower socioeconomic status, longer duration
of circulatory arrest, and occurrence of perioperative seizures. In
a more contemporary study in 2012, a nationwide sample of 23
patients with HLHS and other univentricular hearts was reported
to have amedian cognitive performance within the normal range,
with only 26 of patients with HLHS and 23% of those with
other types of single ventricle having major neurodevelopmental
dysfunction (57).

Some studies have reported that, even if at high risk for
neurodevelopmental impairments, today, the overall prognosis
for patients with single ventricle CHD may not be significantly
different from that of other forms of critical CHD. Indeed, it
has been suggested that, despite variations in the severity of
some symptoms, children with critical CHD share a relative
similar neuropsychological and behavioral phenotype. Indeed,
a prospective longitudinal study evaluating neurodevelopmental
outcomes in 365 young children with CHD at 4 years of age
did not find significant differences in unadjusted scores for
full-scale IQ (Fontan 93.3 ± 17.1 vs. 96.2 ± 19.8) between
survivors of the Fontan procedure and children with CHD who
underwent biventricular repair. Scores were also similar for
visual perceptive skills, social skills and academic achievement,
including math and pre-reading skills. However, preschool
children after the Fontan procedure scored significantly lower
than those with biventricular repair on processing speed (Fontan
90.8± 15.2 vs. 96.5± 16.9 for biventricular CHD) and displayed
more inattention and impulsive behaviors, as rated by their
parents (58).

The Single Ventricle Reconstruction Trial, conducted through
the Pediatric Heart Network, was designed primarily to compare
outcomes of children with HLHS randomized to a right
ventricle to pulmonary artery shunt to outcomes of participants
randomized to a Blalock-Thomas-Taussig shunt (59). To date no
differences have been detected in neurodevelopmental outcomes
between the two shunt groups. Children in this cohort have
lower scores on developmental assessments at 14 months and
at three years of age. (5, 14) Interestingly, patient specific
factors and measures of perioperative morbidities, but not
treatment strategies, were found to be predictive of lower
developmental scores. (5, 13, 14) Long-term follow-up of
the cohort enrolled in the Single Ventricle Reconstruction
Trial will likely provide further insights on factors associated
with impaired neurodevelopmental outcomes for this high-risk
patient group.

Outcomes in Adolescents
Interestingly, adolescents with a Fontan circulation appear to be
at high risk for general cognitive dysfunction and, particularly,
for more prevalent behavioral difficulties. Academic achievement
(math and reading scores) is also lower than expected in
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adolescents, suggesting long-lasting learning challenges. A
single-center cross-sectional study examined neuropsychological
outcomes of a sample of 156 adolescents with Fontan circulation
at a mean age of 14 years. Full-scale IQ scores (91.6 ± 16.8),
mean Mathematics Composite Score (91.9 ± 17.2) and mean
Reading Composite Score (92.0 ± 22.9) were significantly lower
than the expected population mean of 100 ± 15. More than
a third of the Fontan group scored >1 SD below population
means for IQ and both academic achievement tests, and between
12 and 19% scored below−2SD below the norms in these tests.
Neurocognitive areas of particular vulnerability in the Fontan
group are perceptual reasoning, processing speed and executive
function. Memory skills can also be problematic for a proportion
of these adolescents. In the Boston adolescent Fontan cohort,
scores on the General Memory Index of the Children’s Memory
Scale were 1 and 2SD below the expected population mean
in 34 and 18% of patients respectively, which is higher than
expected. Similarly, scores on the General Memory Index of
the Wechsler Memory Composite were 1 and 2SD lower in
39 and 14% of patients respectively. Visual spatial skills were
lower than the referent group when evaluated with the Rey–
Osterrieth Complex Figure, copy and recall trials. Patients who
underwent the Norwood procedure scored significantly lower
than the non-Norwood group for all scores of the Rey Figure (47).

One of the most vulnerable aspects of cognitive development
in individuals with critical CHD including those with a Fontan
circulation pertains to executive functioning. Executive functions
are a set of higher-order neurocognitive skills that include self-
regulation, working memory, behavioral and mental flexibility
as well as planning and organization skills. Impairments in
executive functioning are common in children and adolescents
with CHD, and seem more pronounced for adolescents who
underwent the Fontan procedure (60–63). In a study of 463
adolescents, of whom 145 had a Fontan circulation, one-third
of parents and teachers scored their behavior in the at-risk
range for executive dysfunction on the Behavior Rating Inventory
of Executive Function (63). In this study, neuropsychological
assessment revealed some variations in the profile for executive
functioning across the group with Fontan circulation and those
with d-transposition of the great arteries and tetralogy of
Fallot. All groups with critical CHD presented with deficits
in flexibility/and problem solving; however, scores on visuo-
spatial executive function tasks were more altered in the Fontan
and TOF groups. Executive function issues are at the core of
attention deficit hyperactivity disorder (ADHD) and concern
more than a third of adolescents with univentricular hearts.
Indeed, in a study of 156 adolescents with Fontan circulation,
38% of them had received a lifetime diagnosis of a disruptive
behavior disorder (34 ADHD, 10 oppositional defiant disorder,
and 1% adjustment disorder with disturbance of conduct). The
proportion with ADHD was significantly higher than that of a
same-age referent group without CHD and no differences were
found between Fontan adolescents with or without a genetic
abnormality (64). In another study of 133 adolescents with
Fontan circulation born at term (early, 37–38 weeks’ gestation
or full-term after 39 weeks’ gestation), more than one third
of parents reported clinically concerning executive function

deficits for Fontan adolescents in their daily lives. This was
more prominent for metacognition skills, one of the most
complex executive skills, requiring anticipation, organization
and planning of one’s actions (10). In this study, one third of
parents also rated adolescents’ ADHD symptoms as clinically
concerning, whereas only 7% of the adolescents themselves
rated their attention and hyperactivity symptoms as concerning.
This discrepancy between parent- and self-reports has been
commonly reported in previous studies, (65) suggesting that
children and adolescents with critical CHD, including Fontan
patients, may struggle with identifying or recognizing their
own difficulties.

Importantly, the abnormal developmental milestones
observed for executive function skills in childhood and
adolescence may predispose the individual with CHD to clinical
difficulties in self-adjustment, adherence to treatments and
overall lower quality of life (66). Given the importance of
deficits in executive function and its relevance in predicting
long-term social and health outcomes in youth (65, 67), strategies
have been designed to palliate these deficits in the population
with CHD (68). These interventions, although with modest
overall efficacy, provide hope that, at least some of the issues
of self-regulation and working memory may be amenable
to intervention in adolescents with critical CHD, including
those with Fontan circulation. More research is needed to
understand the extent of neurobehavioral plasticity in this at-high
risk group.

Finally, social cognition is another neurocognitive area of
concern for individuals with critical CHD, including those with a
Fontan circulation. Adolescents with d-TGA, tetralogy of Fallot
and Fontan circulation have worse scores on tests that assess
their ability to interpret the emotions of other people, read social
cues and recognize their own emotions (65). Bellinger et al.
(47) showed that, compared to a referent group, adolescents
after the Fontan procedure had lower scores at the Reading the
Mind in the Eyes Test, an assessment of a person’s ability to
identify the emotions of others from their facial expressions.
They also had difficulties identifying their feelings as reported
in the self-questionnaire of the Toronto Alexithymia Scale and
endorsed more autistic tendencies (i.e., autistic traits) in the
Autism Spectrum Quotient self-report. A higher number of
catheterizations and older age at developmental assessment were
associated with worse outcomes at the Reading the Mind in
the Eyes test. Autism traits were significantly associated with
the presence of a genetic abnormality and higher number of
cardiac surgeries.

Overall, risk factors for adverse neurodevelopmental and
behavioral outcomes are highly correlated. They can also be
additive and/or cumulative, especially for individuals with
single ventricle who present with a chronic health condition.
Independent risk factors that have emerged across multiple
studies include the presence of genetic disorders, lower
birth weight and gestational age, lower socioeconomic status
and maternal education, longer total circulatory support
time, a greater number of operations and catheterizations,
longer hospital length of stay, and a greater number
of complications.
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Outcomes Beyond Adolescence
As the population with Fontan circulation ages, further research
is needed to assess the translation of neurodevelopmental
and behavioral findings in childhood and adolescence into
neurocognitive function in adulthood. Recent studies show that
adults with CHD are at risk for persisting neurocognitive deficits,
particularly in the domain of executive functions (69), whichmay
alter their professional and personal achievement and quality of
life. These deficits seem correlated to alterations of white matter
microstructure in subjects with severe CHD, suggesting long-
lasting neurological effects of critical CHD for some adults. A
binational study using data from Australian and New Zealand
Fontan Registry found that young adults with Fontan circulation
obtained worse neurocognitive outcomes in several domains
compared to those with d-transposition of the great arteries.
Moreover, within group comparisons for the Fontan group found
that adults with Fontan circulation had more severe impairments
than Fontan adolescents in psychomotor function and working
memory, a domain of executive functioning. Neurocognitive
deficits were associated with reduced gray and white matter brain
volumes in the Fontan group (26).

Finally, recognition and management of the
neuropsychological and behavioral impairments that affect
many but not all patients with Fontan circulation have important
implications for patient education, medical adherence, the
transition from pediatric to adult healthcare systems, completion
of higher education, and adult employment. It also plays a
critical role for the long-term mental health outcomes of
this population.

MENTAL HEALTH IN PATIENTS WITH A

FONTAN CIRCULATION

Living with a chronic health condition, including with Fontan
circulation, elevates the risk of psychosocial difficulties in
children, adolescents and adults. As a group, many children and
adolescents with CHD are at risk of psychosocial adjustment
difficulties, particularly according to parental reports (70).
DeMaso and colleagues (64) compared the psychiatric and
psychosocial status of 156 patients (mean age, 15 years) who
had undergone Fontan procedures with that of 111 healthy
peers. The patient cohort had a significantly higher rate
of lifetime psychiatric diagnosis (65 vs. 22%); anxiety and
attention-deficit/hyperactivity disorder were most common.
Furthermore, as a group, patients had worse outcomes
on measures of global psychosocial functioning, anxiety,
depressive symptoms, post-traumatic stress, and disruptive
behavior. Risk factors of poorer psychiatric/psychosocial
outcomes include male sex, lower birth weight, longer
duration of deep hypothermic circulatory arrest, and
lower intelligence.

Conversely, in adults, a meta-analysis of international studies
using survey assessment of psychological distress revealed no
consistent evidence of poorer outcomes among adults with CHD
of various subtypes, although methodological heterogeneity was

evident (71). The results of 3 North American studies, however,
suggest that one third of adults with CHD meet diagnostic
criteria for an anxiety disorder when clinical interviews are
administered (72–74). Indeed, depression may not be the most
prevalent psychiatric disorder in the population with critical
CHD. Adults with CHD are particularly at risk of elevated anxiety
and post-traumatic stress disorder (74–76). Patients’ subjective
health status has beenmore strongly associated with psychosocial
outcomes than objective assessment (77), which is an important
consideration for physicians faced with the symptomatic adult
patient with Fontan circulation. Among adolescents and young
adults with Fontan physiology, elevated symptoms of depression
have been reported (28 with mild symptoms, 32% with moderate
symptoms) and demonstrated to be a negative predictor of
quality of life (78). Furthermore, more than half of patients
endorsed worry about current health, employment, and living
independently (79). MRI of the brain in adolescents with a single
ventricle reveals injury in select areas that control anxiety and
depression, suggesting a structural basis for the functional deficits
seen (80).

Improving the understanding and clinical treatment of
neurological and mental health outcomes in adults with
CHD is a research priority (81). Congenital cardiologist and
related professionals working with people with a Fontan
circulation are encouraged to be proactive by developing
efficient ways to identify psychosocial adjustment issues,
collaborating with psychologists and psychiatrists to prevent
mental health morbidities.

CONCLUSIONS

Patients with single ventricle are at high risk for neurologic,
developmental, and psychosocial sequelae. A variety of
developmental and injurious brain processes may occur,
beginning during fetal development. Altered hemodynamics
reduce cerebral substrate delivery, leading to abnormal brain
growth and development as early as the second trimester of
pregnancy. Specific forms of brain injury, such as white matter
injury, stroke, or hemorrhage, may occur before, during, or after
surgery. Importantly, in neonates with hypoplastic left heart
syndrome, who have no medical contraindication, shorten time
between birth and surgery may lower the risk of postoperative
white matter injury, suggesting a potential neuroprotective
effect (82).

Innate patient-related variables, including genetic factors,
fetal growth, preterm delivery, and maternal education, may be
the most important predictors of future neurodevelopmental
outcome. Perioperative factors, such as multiple catheterizations
and surgeries, as well as prolonged hospital stay, have been
associated with adverse long-term neurodevelopmental
outcome. Awareness and recognition of neuropsychological
challenges in patients with Fontan circulation can facilitate
counseling and increase access to diagnostic assessment and
educational resources (4). Periodic surveillance, screening,
and evaluation for neurodevelopmental disabilities starting
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in early life and beyond are recommended (3, 83, 84).
Identification of deficits allows appropriate therapies and
patient/community education and creates opportunities to
enhance academic, behavioral, psychosocial, and adaptive
functioning, thus allowing each individual to achieve
his or her optimal potential. Finally, recognizing the
remarkable resilience of patients with single ventricle disease
throughout their lives serves as inspiration to strive for
innovative strategies to better support their long-term quality
of life.
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