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Holder pasteurization (HoP) is the current recommended treatment for donor human
milk. Although this method inactivates microbial contaminants, it also negatively affects
various milk components. High-pressure processing (HPP, 400, 500, and 600 MPa),
ultraviolet-C irradiation (UV-C, 2,430, 3,645, and 4,863 J/L) and thermoultrasonication
(TUS, 1,080 and 1,620 kJ/L) were investigated as alternatives to thermal pasteurization
(HoP). We assessed the effects of these methods on microbiological safety, and on
concentration and functionality of immunoglobulin A, lactoferrin, lysozyme and bile salt-
stimulated lipase, with LC-MS/MS-based proteomics and activity assays. HoP, HPP,
TUS, and UV-C at 4863 J/L, achieved >5-log10 microbial reduction. Native protein
levels and functionality showed the highest reduction following HoP, while no significant
reduction was found after less intense HPP and all UV-C treatments. Immunoglobulin A,
lactoferrin, and lysozyme contents were also preserved after low intensity TUS, but bile
salt-stimulated lipase activity was significantly reduced. This study demonstrated that
HPP and UV-C may be considered as suitable alternatives to HoP, since they were able
to ensure sufficient microbial inactivation while at the same time better preserving the
bioactive components of donor human milk. In summary, our results provide valuable
insights regarding the evaluation and selection of suitable processing methods for donor
human milk treatment, which may replace HoP in the future.

Keywords: donor human milk, non-thermal processing, bacteria inactivation, bacteriostatic properties,
proteomics, antimicrobial proteins

INTRODUCTION

Human milk (HM) is universally identified as the normative standard for infant nutrition, due
to its unique nutritional composition and bioactive components such as immunoactive proteins,
hormones, and growth factors, that facilitate proper infant growth and development (1). An
essential component of HM known for its bioactive function is the HM proteome, which is
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comprised of a wide array of proteins, glycoproteins, enzymes,
and endogenous peptides (2). For example, HM exerts
bacteriostatic activity, a function largely ascribed to the
presence of bioactive proteins, such as immunoglobulin A
(IgA), lactoferrin (LTF), and lysozyme (LYZ), due to their high
abundance in HM [(3, 4)]. More specifically, IgA protects the
infant from invasive pathogens, LTF inhibits the growth of iron-
dependent pathogens and LYZ lyses the proteoglycan matrix of
the cell walls in Gram-positive bacteria. In addition, a synergistic
effect of LYZ and LTF is suggested against Gram-negative
bacteria (4–6)].

In case mother’s own milk is unavailable, donor human milk
(DHM) is the best alternative and it should be provided by
established human milk banks that enforce all necessary actions
to guarantee its safety (7, 8). Human milk banking guidelines
recommend holder pasteurization (HoP) for the elimination of
possible life-threatening pathogens in DHM (9). This method
is performed by heating DHM for 30 min at a temperature of
62.5◦C, followed by a rapid cooling down to <10◦C (10).

Even though HoP achieves the 5-log10 reduction of vegetative
bacterial cells required by all human milk banking guidelines, it
also leads to the degradation of key DHM bioactive components
(9). After HoP, a significant reduction has been reported in the
concentration and activity of IgA, LTF, and LYZ, as well as in
several enzymes, hormones, cytokines, and growth factors (10,
11). In addition, HoP completely inactivates bile salt-stimulated
lipase (BSSL), a heat-labile enzyme that facilitates fat absorption
and enhances lipid metabolism (11). It is thus possible that BSSL
inactivation through HoP may be the cause of the reported lower
growth rates of preterm infants fed with HoP-treated DHM,
compared with the ones fed mother’s own milk (12). To overcome
the disadvantages of this treatment, novel methods such as high-
pressure processing (HPP), ultraviolet-C irradiation (UV-C), and
thermoultrasonication (TUS) have been proposed as promising
non-thermal alternatives to HoP (9, 13).

High-pressure processing is a mild food preservation
method commonly applied in the food industry to guarantee
the food safety of a product by microbial inactivation due
to the high hydrostatic pressure (14, 15). UV irradiation is a
non-thermal disinfection method, especially at wavelengths
between 200 and 280 nm (UV-C) (16). This method
effectively inactivates microbial contaminants by disrupting
DNA transcription and replication, ultimately leading to
cell death (16, 17). Ultrasonication (20–100 kHz) is a food
preservation method that involves microbubble formation
and their rapid collapse though inertial cavitation. The shock
waves that are produced from this process, as well as the
chemical changes induced by it, ultimately lead to bacterial
cell death (9, 18). TUS, the process where ultrasonication is
combined with mild heating, is considered more effective
in microbial inactivation than ultrasonication alone (19).
In addition to bacterial inactivation, all the aforementioned
methods are able to batch process human milk, as would
be required when applying these methodologies in a
human milk bank.

When applied to DHM, these methods have shown promising
results with regards to microbial inactivation and retention of

DHM bioactive components (9, 20, 21). However, the number
of studies evaluating UV-C or TUS as possible alternatives to
HoP is still quite limited, while a large number of different
pressure, time and temperature combinations have been applied
for HPP to DHM, making direct comparison of those studies
complicated (9).

The aim of this study was first to assess whether HPP,
UV-C and TUS can achieve a 5-log10 bacterial reduction as
found following HoP, which is a primary requirement for
use of DHM. Secondly, we aimed to evaluate the effects
of these methods on the DHM proteome in order to get
a full overview of the changes caused, as well as on the
concentration and bioactivity of IgA, LTF, LYZ, and BSSL, and
compare them with HoP.

MATERIALS AND METHODS

Milk Samples
The HM samples used in this study were provided by the
Dutch Human Milk Bank (located at Amsterdam UMC,
Amsterdam, Netherlands). Donor screening and milk collection
was performed according to standardized procedures that
comply to international guidelines (10). All donors signed
informed consent before recruitment. Milk expression,
collection, and transportation to the Dutch Human Milk
Bank was performed as previously described (22). The
samples were transported frozen (−20◦C) to the human
milk bank and were stored frozen at the same temperature,
for a maximum of 3 months, until further processed. Before
analysis, each donated sample was thawed overnight in
a refrigerator at 4◦C. Once thawed, the native microflora
of the samples was assessed by pour or surface-plating of
undiluted DHM (1 or 0.1 mL, respectively) in duplicate
onto selective media (VRBGA, violet red bile glucose agar,
CM0107B and MSA, mannitol salt agar, CM0085B, Thermo
Fisher Scientific, Massachusetts, USA) and non-selective media
(PCA, Plate Count Agar, CM0325, Thermo Fisher Scientific,
MA, United States) followed by an incubation at 37◦C for
24–48 h, while the remaining amount of each sample was
again placed in the freezer (−20◦C). Bacterial numbers were
determined by colony counting (CFU/mL), and the samples
with 1 log10 CFU/mL or less were selected. Next, the samples
were again thawed overnight at 4◦C, and milk from four
different donors was pooled to ensure sufficient amounts of
DHM for all treatments. One pool (four donors, 1,000 mL)
was used to evaluate the inactivation of the selected bacterial
strains and another pool (four donors, 1,000 mL) was used
to evaluate the DHM proteome, the total protein content,
the BSSL activity and the bacteriostatic properties. Aliquots
for each treatment (HPP, UV-C, TUS, and HoP) and for
the untreated milk (UN) that served as control were then
created. After all treatments, the samples were cooled in an
ice-water bath and all analyses were performed immediately.
The analyses were performed as two independent experiments
(biological replicates) in duplicate (technical replicates). The
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FIGURE 1 | Schematic representation of the experimental approach used.
K12, SE, and EC stand for E. coli K12, S. epidermidis and E. cloacae,
respectively. Two independent experiments (biological replicates) were
performed while all analyses were performed in technical duplicate for each
sample.

experimental approach used in this study is presented in
Figure 1.

Treatments
High-Pressure Processing
High pressure treatment was carried out in a pilot-scale
equipment, custom made by Resato (1.6 L, Resato, Roden,
Netherlands). The computer-controlled pressure build up was
∼30 MPa/s. The samples were subjected to three different
pressures for various holding times; 400 MPa for 5, 10, and
30 min, 500 MPa for 1.5, 2 × 1.5, 3, and 5 min, 600 MPa for
1.5, 2 × 1.5, 3, and 5 min. For the treatments “2 × 1.5 min,” the
process of pressure build up, holding time of 1.5 min and pressure
release was carried out twice. This was done based on previous
findings which demonstrated that two pressure treatments
with 1.5 min holding time were more effective in microbial
inactivation than one pressure treatment of 3 or 4 min at the
same pressure (23). DHM samples (10 mL, 4◦C) were packed into
sterile pouches made of polyethylene. Two to four small sample
pouches were packed in a larger pouch which was subsequently
vacuumized at 95% vacuum. The larger pouches were then taped
in a cylindrical holder that was placed in a sample holder as
described previously (14). Samples were not preheated and tap
water of 10◦C was used at the start of the treatment as medium.
The temperature increase during HPP treatment was described
as follows (14): Tincrease/100 MPa = 0.026 × Tinitial + 2.26,

leading to a maximum sample temperature of around 18◦C
(after 600 MPa).

Ultraviolet-C Irradiation Treatment
The UV-C system was based on published literature (16), where
a UV-C lamp (TUV PL-S 5W, UV-C radiation 1.1 W, Philips,
Netherlands) was placed diagonally in a sterile beaker glass filled
with 140 mL DHM. During treatment, the milk was stirred
with a sterile 4 × 20 mm stirring rod at 500 rpm (IKA RH 2,
Staufen, Germany). Samples (20 mL, 4◦C) were taken at three
different time points and were aliquoted for further analysis. The
samples were exposed to three different UV-C dosages; 2,430,
3,645, and 4,863 J/L. The time needed to reach these dosages
(5.15, 6.63, and 7.36 min, respectively) was calculated according
to: Dosage ( J

L ) = Time (s) × UV−C Power(W)
Volume(L) (16). The temperature

was controlled during the whole process with a temperature data
logger (RS PRO 1384, RS Components B.V., Netherlands) and a
maximum increase of 3◦C was documented after a treatment of
4,863 J/L. This set-up was used in order to overcome the limited
penetration of UV-C in milk (absorption coefficient of 300 cm−1

at 254 nm), by applying a turbulent flow (16).

Thermoultrasonication
A sonifier (Branson 450 Digital Sonifier R©, Branson Ultrasonics
Corporation, CT, United States) with a horn frequency of
20 kHz was outfitted with a sound enclosure (Branson
Emerson Technologies, GmbH & Co, Germany), a microtip
probe (length: 60 mm, diameter: 10 mm), and a circulating
water bath. Samples (20 mL, 4◦C) were placed into a sterile
80 mL glass beaker that was surrounded by circulating water
of 40◦C. The sonifier was operated in pulse mode, with a
continuous pulse of 59.9 s followed by a short pause of 30 s.
The samples were treated for 9 min (excluding pause time)
at 40 W (1,080 kJ/L, 38% amplitude), for 6 min at 60W
(1,080 kJ/L, 58% amplitude) or for 9 min at 60 W (1,620 kJ/L,
58% amplitude). The energy density (KJ/L) was calculated
as power (W) x treatment time (sec)/volume (mL) (24). The
temperature of the samples was recorded by a temperature data
logger (RS PRO 1384, RS Components B.V., Netherlands). The
maximum temperature increase was 20◦C (maximum sample
temperature, 59◦C), after 9 min at 60 W.

Holder Pasteurization
Donor human milk (30 mL) was placed into a Greiner tube
(50 mL) and was heated at 62.5◦C for 30 min, in a shaking
water bath (150 rpm). The sample was cooled in an ice-water
bath immediately after treatment, until a temperature 4◦C was
reached. The time required for the temperature of the sample to
reach the pasteurization temperature (62.5◦C) was 25 min, while
the cooling down time to 4◦C was 15 min. A temperature data
logger RS PRO 1384 (RS Components B.V., Netherlands) was
used to monitor the temperatures during the whole process.

Bacterial Inactivation
Bacterial species were selected based on their clinical relevance
for DHM. Fresh cultures of Enterobacter cloacae (ATCC 13047,
American Type Culture Collection, Manassas, VA, United States),

Frontiers in Pediatrics | www.frontiersin.org 3 March 2022 | Volume 10 | Article 828448

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pediatrics#articles


fped-10-828448 March 21, 2022 Time: 11:18 # 4

Kontopodi et al. DHM Processing With Non-thermal Methods

Escherichia coli K12 (DSM 498, Deutsche Sammlung von
Mikroorganismen und Zellkulturen, Braunschweig, Germany)
and Staphylococcus epidermidis (ATCC 14990, American Type
Culture Collection, Manassas, VA, United States) were prepared
from frozen stocks in brain heart infusion broth (CM1135,
Thermo Fisher Scientific, MA, United States) after an overnight
incubation at 37◦C. The bacterial pellets that were obtained after
centrifugation at 4,000 × g for 10 min (Microcentrifuge 5890R,
Eppendorf, Hamburg, Germany), were subsequently inoculated
into DHM samples at a final concentration of 108 CFU/mL and
were then subjected to HPP, UV-C, TUS, or HoP treatment.
Treated and untreated samples were next plated in duplicate
onto VRBGA (E. coli, E. cloacae) and MSA (S. epidermidis)
and were incubated overnight at optimal growth conditions.
Untreated but inoculated samples with the three strains served
as reference to verify the starting microbial concentration and to
calculate bacterial reduction. The reduction in bacterial numbers
was determined by colony counting (CFU/mL), with a detection
limit of 0 log10 CFU/mL (E. coli and E. cloacae counts) and 1
log10 CFU/mL (S. aureus counts). Since the HPP unit used in
this study is located in a food safe environment, inoculation with
pathogenic strains was prohibited. Therefore, all the strains used
in this study were biosafety level 1 strains. In addition, bacteria
inactivation after HPP was tested only with the E. cloacae and
S. epidermidis strains.

Milk Serum Preparation and Total Protein
Content
To obtain the native milk serum proteins, after all treatments,
caseins and denatured proteins were removed. To do so,
untreated samples (520 mL) were first centrifuged at 6,500 × g
for 30 min at 4◦C (with rotor 16.250, Avanti Centrifuge J-26
XP, Beckman Coulter, United States) to remove the fat. The
skimmed samples were then treated with all methods as described
above (sections 2.2.1–2.2.4), apart from one sample that remained
untreated (control). Next, the pH of the skimmed samples was
adjusted to 4.6 by the addition of 1 mol/L HCl under stirring,
to precipitate the caseins and the denatured serum proteins (25).
The samples were left for 30 min at 4◦C to equilibrate and
were subsequently ultracentrifuged at 100,000 × g for 90 min
at 30◦C (Optima L-80, Beckman Coulter, United States). Finally,
the casein pellet was discarded, and the supernatant containing
the native serum proteins was collected. The total native protein
content was then assessed using the bicinchoninic acid (BCA)
assay kit (Thermo Fisher Scientific, United States), according to
the manufacturer’s instructions.

Protein Quantification and Identification
by Liquid Chromatography With Tandem
Mass Spectrometry
Filter Aided Sample Preparation
The Filter Aided Sample Preparation (FASP)method was carried
out as previously reported (26, 27). Briefly, milk serum samples
were diluted with 100 mM Tris (pH 8.0) to a protein
concentration of 1.0 µg/µL. The next steps included; DDT
reduction (10 µL, 0.15 M), alkylation with 136 µL urea (8 M)

in 100 mM Tris/HCl (0.1 M, pH 8.0) and 20 µL of acrylamide
(0.2 M), placing the samples into ethanol washed Pall 3K
omega filters (10–20 kDa cut off, OD003C34, Pall corporation,
Port Washington, NY, United States) and centrifuging them at
14,000 × g for 30 min, adding 110 µL 50 mmol/L NH4HCO3 to
the filters and centrifuging them again (14,000 × g for 30 min).
The samples were then digested with 1 µL trypsin (0.5 µg/µL
sequencing grade) in 100 µL of NH4HCO3 (0.05 M) and after
an overnight incubation, they were centrifuged for 30 min at
14,000 × g. After the addition of 100 µL 1 mL/L HCOOH in
water on the filters, another centrifugation followed (14,000 × g
for 30 min). Finally, 3 µL of TFA (10% v/v) was added to the
filtrate to adjust the pH of the samples to 3. All samples were
stored at −20 ◦C prior to liquid chromatography with tandem
mass spectrometry (LC-MS/MS) analysis.

LC-MS/MS Analysis
The LC-MS/MS analysis was performed as previously described
(28). Briefly, the samples (5 µL) were injected onto a
0.10 × 250 mm ReproSil-Pur 120 C18-AQ 1.9 µm beads
analytical column that was prepared in house, using pressure of
800 bar. The peptides were then eluted at a flow of 0.5 µL/min
with an acetonitrile gradient. The gradient elution increased
from 9 to 34% acetonitrile in water with 1 mL/L formic
acid in 50 min. Next, an electrospray potential of 3.5 kV
was applied straight to the eluent, through a needle that was
equipped to the P777 Upchurch micro cross waste line. Using
a Q Exactive HF-X quadrupole-Orbitrap mass spectrometer
(Thermo Electron, San Jose, CA, United States), full scan Fourier
Transform MS in positive mode between m/z 380 and 1400
were measured. MS/MS scans of the most abundant multiply-
charged peaks were recorded in data-dependent mode. The
obtained MS/MS data was analyzed using the Andromeda
search engine of the MaxQuant software (v1.6.3.4). The Uniprot
human protein database was used, together with a database
containing the sequences of common contaminants (29). Protein
identification and quantification was performed as previously
described (30, 31). To calculate the false discovery rate (FDR),
MaxQuant created a decoy database of reversed sequences.
The FDR cut off used was 0.01. The required peptide length
was set to at least seven amino acids, with a maximum of
2 missed cleavages allowed. Protein modifications were set
for propionamide (C) (fixed) and oxidation (M) (variable).
Contaminants (e.g., keratins, trypsin) were removed from the set
of identified proteins, as well as the proteins that were detected in
less than half of our samples.

BSSL Activity
Bile salt-stimulated lipase activity was determined according
to Krewinkel et al. (32), with minor modifications. This
fluorometric assay allows the determination of lipase activity in
DHM by utilizing the synthetic substrates 4-methylumbelliferyl
butyrate (4-MUB) and 4-methylumbelliferyl laurate (4-MUL).
Milk samples were first skimmed as described in section 2.4
and were then preincubated at 40◦C for 3 min, under shaking
(800 rpm) in a ThermoMixer (SmartBlock 1.5 mL, Eppendorf,
Hamburg, Germany). The conversion of the added substrate was
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stopped by the addition of a stop solution containing GuHCl
(8 M) and HCl (1 M) in water. Next, a neutralizing solution with
Bis-tris (1 M), NaOH (0.85 M), and EDTA (0.25 M) in water was
added to clarify the samples. The fluorescence was then measured
with a fluorimeter (excitation 355 nm, emission 460 nm).

DHM Bacteriostatic Capacity
To evaluate the effect of processing on the bacteriostatic capacity
of DHM, the growth rate of E. coli and S. aureus, which are
known to be sensitive to these proteins was characterized (5, 33,
34). Bacterial pellets of E. coli K12 (DSM 498) and S. aureus
(ATCC6538, American Type Culture Collection, Manassas, VA,
United States) were prepared as described in section 2.3 and
were dissolved in peptone physiological salt solutions (PFZ;
Tritium Microbiology, Netherlands). After determining the
optical density (OD) with a spectrophotometer (Cary 50 UV–
Visible Spectrophotometer, Agilent Technologies, United States)
for bacterial culture standardization (35, 36), E. coli and S. aureus
cultures were diluted and inoculated into untreated samples and
samples that were previously treated with HPP, UV-C, TUS,
and HoP, to a final concentration of around 103 CFU/mL.
This inoculation level was selected because higher levels may
overcome the ability of the milk to inhibit the growth of E. coli
and S. aureus (37). Next, the samples inoculated with E. coli and
S. aureus were incubated at 37◦C for 2 and 4 h, respectively. All
samples were then plated in duplicate onto VRBGA (selective
for E. coli) and MSA (selective for S. aureus) and the plates
were subsequently incubated overnight at 37◦C. The amount of
inoculated DHM sample plated was 1 and 0.1 mL for VRBGA
and MSA, respectively. The bacterial concentrations were then
determined by colony counting (CFU/mL). The growth rate per
hour was calculated as ln( Nt

N0
)/ t, were Nt = bacterial counts after

2 or 4 h incubation, N0 = bacterial counts immediately after
inoculation and t = incubation time.

Data Analysis
Data analysis and visualization were performed using GraphPad
Prism software 8.0 (GraphPad Inc., La Jolla, CA, United States).
For multiple comparisons of means and to determine significant
differences among the treatments, ANOVA and Tukey’s HSD
for post-hoc testing were performed. Protein retentions (%
compared to untreated) were calculated as the ratio of the
concentration after each treatment to the concentration of
untreated samples, multiplied by 100. Perseus software v.1.6.2.1
was used to analyze the intensity based absolute quantitation
(iBAQ) values that were determined by MaxQuant. These values
refer to the sum of all peptide peak intensities divided by
the number of theoretically generated tryptic peptides and
are considered as a good indicator for the absolute protein
concentration (30). To indicate significant differences in the
DHM proteome after the different treatments, student’s t-tests
were performed in Perseus after imputation of missing values,
using permutation-based false discovery rate (FDR) correction.
The cluster analysis was performed and visualized with the
circos.heatmap package in R version 4.1.2 (38) on the imputed
log10 scaled IBAQ values. Pearson correlations were also
calculated to determine the relationship between the bacterial

growth rate and the retention of IgA, LTF, and LYZ. A correlation
matrix was created using R version 3.4.0 (38). Significant
differences in all analyses were indicated by a p-value < 0.05. Two
independent experiments (biological replicates) were conducted
and all analyses were performed in technical duplicates. Data are
presented as mean ± standard deviation of the two independent
experiments.

RESULTS

Bacterial Inactivation
The bacterial count reductions after HPP, UV-C, TUS and HoP
are presented in Table 1. A >7.8–log10 inactivation of E. cloacae
and S. epidermidis was obtained after all the different HPP
conditions tested. The same inactivation was obtained after HoP
for all tested bacterial strains. A UV-C dosage of 4,863 J/L was
the only UV-C dosage effective in causing a >5-log10 reduction
of E. cloacae, E. coli K12 and S. epidermidis counts. All TUS
conditions tested were able to achieve a >5-log10 reduction for
all tested bacterial strains.

Protein Damage
Native Milk Serum Protein Concentration
The total native milk serum protein concentration after HPP, UV-
C, TUS, and HoP is shown in Figure 2. When compared to the
untreated samples, a significant decrease in protein concentration
was observed only after HoP (p < 0.05).

Effects of Processing on the DHM Proteome
To further evaluate the effect of the different treatments on the
native milk serum proteins, a detailed characterization of the
DHM proteome was obtained, by means of LC-MS/MS. Next,
a clustered heat map based on the obtained iBAQ values was
created, for visualization of the protein profile of the different

TABLE 1 | Reduction in bacterial counts in HoP, HPP, UV-C, and TUS treated
DHM samples.

Methods Parameters Log10 reduction (CFU/mL), mean ± SD

Enterobacter
cloacae

Staphylococcus
epidermidis

E. coli
K12

HoP >7.8 (below the detection limit)

HPP 400 MPa, 5–30 min >7.8 (below the detection limit) ND*

500 MPa, 1.5–5 min >7.8 (below the detection limit)

600 MPa, 1.5–5 min >7.8 (below the detection limit)

UV-C 2,430 J/L 4.25 ± 0.1 5.00 ± 0.3 4. 36 ± 0.1

3,645 J/L 4.64 ± 0.1 5.95 ± 0.1 5.30 ± 0.3

4,863 J/L 5.78 ± 0.2 6.95 ± 0.4 6.92 ± 0.1

TUS 40 W for 9 min 6.31 ± 0.4 6.07 ± 0.3 6.40 ± 0.1

60 W for 6 min 6.63 ± 0.6 6.50 ± 0.5 6.73 ± 0.3

60 W for 9 min 6.52 ± 0.5 6.21 ± 0.2 6.79 ± 0.4

The results are presented as mean ± standard deviation of two independent
experiments and all analyses were performed in technical duplicate. *ND, Not
determined. The detection limit was 0 log10 CFU/mL for E. coli and E. cloacae
and 1 log10 CFU/mL for S. aureus.
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FIGURE 2 | Native milk serum protein concentration as determined with a BCA assay. The results are presented as mean ± standard deviation of two independent
experiments and all analyses were performed in technical duplicate. UN represents the untreated values. *Indicates significant differences to untreated samples
(p < 0.05).

treated DHM samples (Figure 3). Samples with similar protein
patterns are clustered together. The samples formed two main
clusters; one that consists of the untreated, the HPP and the UV-
C samples and one that includes the TUS and HoP samples. This
clustering pattern indicates that HoP and TUS affect the DHM
proteome the most, and similarly. In addition, the separation
of the HPP treatments with the highest intensities (600MPa for
3 and 5 min) in the cluster with the other samples suggests
that these most intense HPP treatments have a larger effect
on the proteome compare to the less intense HPP and UV/C
treatments.

Retention of IgA, LTF and LYZ After Processing
Of all the proteins analyzed by LC-MS/MS as shown in
Figure 3, IgA, LTF, and LYZ are of importance due to their
bacteriostatic activity. The retention values of the three proteins,
as calculated from the LC-MS/MS data, were significantly
reduced after HoP (p < 0.05), with only 40, 22, and
44% of IgA, LTF, and LYZ levels being retained after HoP,
respectively (Figure 4). At the same time, none of the HPP
treatments tested caused a significant reduction in LTF and
LYZ levels. Furthermore, no IgA losses occurred after HPP
at 400 and 500 MPa, regardless of the treatment time. When
the pressure intensity increased (600 MPa), a treatment of
3 min caused a major decrease (55% IgA retention), although
statistically non-significant, while a treatment of 5 min caused
a statistically significant decrease (47% IgA retention). None
of the applied UV-C dosages caused a significant reduction
on the levels of the three proteins. The retentions of the
three studied proteins showed a decreasing tendency with
increasing TUS intensity and exposure time. After 6 min
at 60 W, LYZ levels were significantly reduced, while after
9 min at 60 W, all three proteins were significantly reduced
(p < 0.05).

BSSL Retention After Processing
To evaluate whether the different methods affected the BSSL
levels and activity, we first determined the BSSL retention, based
on the LC-MS/MS results. Then, a specific lipase activity assay
was used (as described in section 2.6), and the percentage of BSSL
activity retained after the different treatments was compared
to the LC-MS/MS values (Figure 5). Although the majority
of the values obtained by the activity assay were higher than
the LC-MS/MS values, no significant differences between the
retention values from both analytical methods were observed
(p > 0.05). After HoP, BSSL was almost completely diminished
(LC-MS/MS, 3% and activity assay, 7%). On the contrary, the
different HPP and UV-C treatments applied in this study did
not lead to a significant decrease. However, BSSL retention
decreased significantly after TUS, regardless of the intensity and
the exposure time applied.

Retention of DHM Bacteriostatic Properties After
Processing
To evaluate whether the bacteriostatic capacity of DHM was
retained after the different treatments, the growth rate of
S. aureus and E. coli was characterized, in both untreated and
treated samples (Figure 6). Untreated samples showed the lowest
bacterial growth rate, thus the highest inhibition rate for both
strains (1.6 ± 0.75 and 4.4 ± 0.04-fold per hour, for S. aureus
and E. coli, respectively). In contrast, the highest bacterial growth
rate was observed after HoP (3.9 ± 1.02 and 6.1 ± 0.70-fold
per hour, for S. aureus and E. coli, respectively, p < 0.05),
which indicates a significant decrease in the DHM bacteriostatic
capacity. When compared to the untreated samples, E. coli
growth rate after HPP was not significantly different, while a
significant increase in S. aureus growth rate was only observed
at the highest intensities (3.0 ± 0.13 and 3.2 ± 0.40-fold
per hour, after 600 MPa for 3 min and 600 MPa for 5min,
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FIGURE 3 | Hierarchical cluster analysis and heatmap showing the changes in the protein profile after HPP, UV-C, TUS, and HoP, based on iBAQ values (log10 scale
from 2 to 12 according to color bar). Proteins are labeled by their UniProt ID. Functional categories (enzyme, immune, transport, and other) were based on GO
annotation of biological function. Two independent experiments (biological replicates) were performed while all analyses were performed in technical duplicate for
each sample. UN represents the untreated values. HPP; 400 MPa for 5, 10, and 30 min, 500 MPa for 1.5, 2 × 1.5, 3, and 5 min, 600 MPa for 1.5, 2 × 1.5, 3, and
5 min, UV-C; 2430J/L, 3645J/L, and 4863L/L,TUS; 9_40W, 6_60W, and 9_60W.

respectively, p < 0.05). After UV-C, as well as after TUS for
9 min at 40 W, bacterial growth rates were not significantly
different to those of untreated samples. The growth rate of
S. aureus was significantly increased after 6 min at 60 W
(3.0± 0.18-fold per hour), while after 9 min at the same intensity,
the growth rates of both strains were significantly increased
(S. aureus, 3.4 ± 0.69 and E. coli, 5.7 ± 0.66-fold per hour,
p < 0.05).

When the bacterial growth increased while the IgA, LTF,
and/or LYZ levels decreased, a negative correlation could
be expected between the S. aureus and E. coli growth rate
and the retentions of these three antimicrobial proteins.
To confirm this bacteriostatic activity, a correlation matrix
was created (Figure 7). Figure 7 shows that S. aureus
growth was strongly negatively correlated with the levels of

these three antimicrobial proteins (IgA, r = −0.95, LTF,
r = −0.90, and LYZ, r = −0.91, p < 0.05). Although the
correlation between the inhibition of E. coli growth and the
concentrations of these proteins was weaker, it was still significant
(IgA, r = −0.61, LTF, r = −0.64, and LYZ, r = −0.64,
p < 0.05).

DISCUSSION

The present study demonstrates that the tested HPP and UV-
C conditions preserved the levels and functionality of key
DHM bioactive components better than HoP, while at the same
time ensured sufficient microbial inactivation. Although the
tested TUS conditions resulted in similar bacterial inactivation,
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FIGURE 4 | Effect of HPP, UV-C, TUS and HoP on the IgA (A), LTF (B), and LYZ (C) content. The retention values were calculated based on the iBAQ intensities
obtained by LC-MS/MS analysis. Untreated values were set at 100% (dotted line). The results are presented as mean ± standard deviation of two independent
experiments and all analyses were performed in technical duplicate.*Indicates significant differences to untreated samples (p < 0.05).

this method was generally less efficient in retaining the DHM
bioactive components.

Effects of Processing on Bacteria
Inactivation
All different HPP intensity-time combinations were able to
achieve a reduction >7.8-log10 CFU/mL of E. cloacae and
S. epidermidis counts (Table 1), even at the lowest condition of

400 MPa for 5 min. Similarly, coliform and Enterobacteriaceae
counts were reduced to undetectable levels after 5 min at
pressures of 400–600 MPa (39, 40). Viazis et al. (41) also found
a ≥6-log10 reduction of E. coli and S. aureus counts after
400 MPa for 30 min, while an 8-log10 reduction of Listeria
monocytogenes and Streptococcus agalactiae counts was already
achieved after ≤4 min at the same intensity. Although some
S. aureus strains were found to be more pressure resistant, at
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FIGURE 5 | BSSL retention after HPP, UV-C, TUS, and HoP, based on iBAQ intensities and a lipase activity assay. Untreated values were set at 100% (dotted line).
The results are presented as mean ± standard deviation of two independent experiments and all analyses were performed in technical duplicate.*Indicates
significant differences to untreated samples (p < 0.05).

FIGURE 6 | Growth rate per hour of S. aureus and E. coli in untreated, HPP, UV-C, TUS, and HoP DHM samples. The results are presented as mean ± standard
deviation of two independent experiments and all analyses were performed in technical duplicate. UN represents the untreated values. *Indicates significant
differences to untreated samples (p < 0.05).

higher pressures intensities significant reductions were achieved
(500–600 MPa, or 400 MPa for 30 min for >5-log10 reduction)
(41–43).

Only the highest UV-C dosage of 4,863 J/L was capable
of achieving a >5-log10 CFU/mL reduction of E. cloacae,
S. epidermidis, and E. coli K12 counts (Table 1). Christen et al.
(16) showed similar reductions of S. epidermidis, E. cloacae,
Bacillus cereus, and E. coli counts at 4,863 J/L, and according

to Li et al. (44), the same dosage reduced DHM bacterial
counts as effectively as HoP. Martysiak-Żurowska et al. (17)
reported a 5-log10 reduction of S. aureus and E. coli K12
counts already at much lower dosages (400 and 700 J/L,
respectively). The differences in the experimental set up (e.g.,
actual UV-C output power, milk flow around lamp, milk
compositional differences) used in these studies may account for
the observed variation.
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FIGURE 7 | Correlation matrix of S. aureus and E. coli growth rates and IgA, LTF and LYZ iBAQ values. Each box contains an r value (Pearson correlation coefficient).

All TUS treatments tested in this study achieved a >6-log10
reduction of E. cloacae, S. epidermidis, and E. coli K12 counts
(Table 1). Similar results were observed by Czank et al. (45),
who found that the decimal reduction time of S. epidermidis and
E. coli K12 was 1.74 and 2.08 min, respectively after TUS at 60 W
and 45◦C.

In the current study, all HPP treatments, the highest UV-C
dosage (4,863 J/L), and all three TUS treatments were capable
of reducing bacterial counts in DHM samples >5-log10, thus
meeting the requirements of the human milk banking guidelines.

Effects of Processing on the DHM
Proteome, IgA, LTF, LYZ, and BSSL
Levels and Activity
In order to get a full overview of the impact of the different
processing methods on the DHM proteome, the native milk
serum protein levels were assessed by means of the BCA assay
and LC-MS/MS. With regard to HoP, our results (Figures 2, 3)
confirm the major decrease in native protein abundance (46).
Moreover, the proteomic analysis of the differently treated DHM
samples showed that HoP affected the native serum protein levels
the most (Figure 3), an outcome that supported the results of the
BCA assay (Figure 2). Of all the treatments tested in this study,
HoP caused the highest reduction in IgA, LTF and LYZ levels

(Figure 4), which is consistent with the losses previously reported
(11, 47). As expected, the highest reduction in bacteriostatic
capacity was also documented after HoP (Figure 6), which is in
line with previous studies (5). These results can be attributed
to the thermally induced denaturation and aggregation during
HoP, which caused a loss in the functionality of these bioactive
components (45). As BSSL is a heat-labile enzyme that inactivates
at temperatures around 45◦C (48), the complete loss of BSSL that
was observed in this study was to be expected (11, 16, 21, 49).

We showed that HPP treatments at intensities of 400,
500 MPa and of short duration (<3 min) at 600 MPa, preserve
the levels of the three main antimicrobial proteins in DHM
(Figure 4). Furthermore, our proteomic analysis showed that
HPP treatments at these intensities had only minimal effects on
the levels of the native milk serum protein levels, while more
intense conditions showed a larger change in these levels. The
enhanced denaturation observed after HPP at 600 MPa at longer
treatment times might be explained by the fact that HPP can
cause native conformation unfolding and formation of inter/intra
protein complexes, where these changes may only be reversible
at lower treatment intensities (40, 50, 51). Moreover, increased
protein denaturation has been observed at higher pressures
and holding times, suggesting an effect of both pressure and
holding time (52, 53). Other studies have also reported significant
reductions in IgA levels after HPP at 600 MPa for >2.5 min
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(40, 54–57), while after treatment at 400–500 MPa, only 0–15%
of IgA losses were documented (15, 39, 40). Our data showed
that treatments of 400, 500, and 600 MPa retained LTF levels
within a range of 62–90%, as previously described (52, 54, 58). In
addition, none of the HPP treatments tested had an effect on LYZ
levels, as well as on BSSL levels and activity, in line with previous
studies (13, 15, 49, 56, 57, 59, 60). Since pressure and temperature
have a synergistic effect on protein denaturation, the low initial
temperature (4◦C) and the limited temperature increase during
HPP treatment (around 14◦C at the most intense pressure of
600 MPa), may have additionally contributed to the improved
protein retentions observed (61–63).

As a non-thermal method, UV-C does not inactivate
pathogens by thermally-induced protein denaturation and
aggregation, but by DNA disruption, that often results from
pyrimidine dimerization (44). Hence, this method may effectively
reduce bacterial counts in HM without causing detrimental losses
of bioactive components (5, 44). All UV-C treatments in our
study preserved both the levels and the bioactivity of IgA, LTF,
and LYZ. In fact, the three antimicrobial proteins were retained
within a range of 80–95% after UV-C treatment, while the
bacteriostatic activity was similar to that observed in untreated
HM (Figures 4, 6). The clustering pattern observed for the three
dosages additionally suggests that the changes occurring in the
DHM proteome after UV-C are minimal (Figure 3). Christen
et al. (5) also reported retention of IgA, LTF, and LYZ within
a range of 75–95% and no loss of bacteriostatic activity, after
treatments of the same intensity. As it is possible that UV-C
induces protein photo-oxidation (direct or indirect) the authors
speculated that the reductions (∼25%) in LYZ levels at the highest
dosage could be attributed to the fact that LYZ contains several
amino acid residues that may absorb photons at this wavelength
(5). With respect to the BSSL levels and activity, none of the
dosages in this study showed a significant reduction compared
to untreated milk (Figure 5), supporting previous findings (16,
44, 60).

After TUS at the highest ultrasound power (60 W) for the
longest exposure time (9 min), the IgA, LTF, LYZ and BSSL
levels and bioactivity retained were comparable to those after
HoP (Figure 4). Similar reductions have been previously reported
after 10 min at 60 W and 45◦C (64). Treatments at 60 W for
a shorter time (6 min) caused significant reductions in LYZ
and BSSL levels and bioactivity, whereas at 40 W for 9 min,
only BSSL was significantly reduced. Our findings suggest that
at constant exposure times, higher ultrasound power will result
in more protein damage. In addition, the differences observed
when ultrasound energy was held constant (1,080 kJ/L after
9 min at 40 W or 6 min at 60 W), suggest that higher
ultrasound power rather than the longer exposure time may
lead to more protein damage. The impact of those treatments
on the DHM proteome was confirmed by the hierarchical
clustering analysis, that showed a similar pattern of protein
damage to HoP-treated DHM (Fig. 3). These results could
be further attributed to the temperature increase documented
during such treatments, and to the denaturation that might be
caused due to the shear effects generated during ultrasound
cavitation (64, 65).

Specifically for BSSL, published reports have used both activity
assays and quantification techniques (e.g., ELISA) to evaluate its
retention (16, 66). Since the loss of protein as measured through
LC-MS/MS approaches or ELISA assays is not necessarily
correlated to loss of function (67), we compared the retention of
the BSSL levels (LC-MS/MS) and the BSSL activity (activity assay)
after the different treatments. Our findings suggest that although
the activity assay produced higher values than LC-MS/MS values,
no significant differences were observed between the results of
the two methods.

Lastly, the correlations in this study between native IgA,
LTF, and LYZ levels and the growth rate of bacteria sensitive
to these proteins, suggest that these proteins may significantly
contribute in limiting their growth (Figure 7). However, as
DHM contains large numbers of antimicrobial components, the
exact proportion of bacteriostatic activity attributed to those
proteins is difficult to determine. These findings underline
the importance of using complementary assays to determine
protein levels and functionality, to accurately assess the effects
of different processing methods. In this regard, many analytical
techniques are available that can be used for future, more detailed
characterization of such HM components and their functionality
(28, 46, 68). In addition, the outcomes of our study suggest
that certain proteins may be more sensitive to specific non-
thermal treatments than others, due to the different underlying
mechanisms of these treatments. Our proteomic analysis, for
example, showed that even though TUS and high HPP intensities
both cause protein damage, they cluster separately (Figure 3),
indicating that different underlying mechanisms lead to a
different profile of resulting protein damage. In summary,
HPP at 400, 500, and 600 MPa for <3 min, as well as UV-
C at 4,863 J/L, may be promising alternatives to HoP, when
considering the sufficient microbial inactivation achieved and
the improved outcomes on the preservation of important HM
bioactive components.

CONCLUSION

Although HoP is the method currently recommended for DHM
processing, the results of the current study indicate that non-
thermal methods such as HPP and UV-C may offer improved
retention of key DHM bioactive components, while at the same
time effectively reduce bacterial contaminants. These findings
are of particular importance in the context of providing DHM
to high-risk infants. However, before full-scale implementation
of these technologies in a human milk bank setting, additional
studies are needed to investigate both viral inactivation and the
clinical significance of this study’s observations, especially with
regards to growth rates and health status of infants fed DHM
treated with HPP or UV-C.
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