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Background: The COVID-19 pandemic continues worldwide with fluctuating case

numbers in the United States. This pandemic has affected every segment of the

population with more recent hospitalizations in the pediatric population. Vertical

transmission of COVID-19 is uncommon, but reports show that there are thrombotic,

vascular, and inflammatory changes in the placenta to which neonates are prenatally

exposed. Individuals exposed in utero to influenza during the 1918 pandemic had

increased risk for heart disease, kidney disease, diabetes, stomach disease and

hypertension. Early exposure of COVID-19 during fetal life may lead to altered gene

expression with potential long-term consequences.

Objective: To determine if gene expression is altered in cord blood cells from term

neonates who were exposed to COVID-19 during pregnancy and to identify potential

gene pathways impacted by maternal COVID-19.

Methods: Cord blood was collected from 16 term neonates (8 exposed to COVID-19

during pregnancy and 8 controls without exposure to COVID-19). Genome-wide gene

expression screening was performed using Human Clariom S gene chips on total RNA

extracted from cord blood cells.

Results: We identified 510 differentially expressed genes (374 genes up-regulated, 136

genes down-regulated, fold change ≥1.5, p-value ≤ 0.05) in cord blood cells associated

with exposure to COVID-19 during pregnancy. Ingenuity Pathway Analysis identified

important canonical pathways associated with diseases such as cardiovascular disease,

hematological disease, embryonic cancer and cellular development. Tox functions related

to cardiotoxicity, hepatotoxicity and nephrotoxicity were also altered after exposure to

COVID-19 during pregnancy.

Conclusions: Exposure to COVID-19 during pregnancy induces differential gene

expression in cord blood cells. The differentially expressed genes may potentially

contribute to cardiac, hepatic, renal and immunological disorders in offspring exposed to
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COVID-19 during pregnancy. These findings lead to a further understanding of the effects

of COVID-19 exposure at an early stage of life and its potential long-term consequences

as well as therapeutic targets.

Keywords: global gene expression, perinatal COVID-19 exposure, Transcriptome, umbilical cord blood, infants

INTRODUCTION

The recent coronavirus disease (COVID-19) is caused by
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2). The COVID-19 pandemic has affected every segment of the
population with more recent hospitalizations in the pediatric
and infant population (1). The development of multisystem
inflammatory syndrome in children (MIS-C) has now been
well documented as a complication of SARS-CoV-2 infection.
It involves a systemic inflammatory response that is thought
to be due to post-infectious immune dysregulation causing
macrophage stimulation and cytokine release (2, 3). Early case
reports indicated that vertical transmission of COVID-19 is
uncommon but have been shown to occur (4–6). However,
even without vertical transmission, there is an effect on the
placenta as reports of PCR-positive placentas for SARS-CoV-2
have been published (7). Additionally, infected maternal patients
have shown thrombotic, vascular, and inflammatory placental
changes to which neonates are prenatally exposed (7–9). A
more recent study using cord blood cells reported that maternal
COVID-19 infection during pregnancy affected the neonatal
immune system with an increased percentage of natural killer
and regulatory T cells with enhanced cytokine functionality (10).
Maternal systemic inflammatory response due to COVID-19
during pregnancy as well as inflammatory changes in the placenta
can incite a fetal inflammatory response, immune dysregulation,
epigenetic changes and differential gene expression that could
have long-term consequences in offspring. In life-course studies
of individuals exposed in utero to influenza during the 1918
pandemic, there was a significant increased risk for heart disease,
kidney disease, diabetes, stomach disease and hypertension when
compared with the general population (11, 12). Experts have
raised concerns that offspring born to mothers with COVID
19 infection during pregnancy may have similar long-term
consequences (13).

Gene expression studies of cells and tissues have become a
major tool for discovery in the pathogenesis of various diseases.
Global gene expression by transcriptomic analysis can uncover
gene signatures and help delineate the molecular pathways that
could be involved in the long-term consequences to offspring
born to mothers with COVID-19 infection during pregnancy.
Previous study has reported differential gene expression patterns
associated with exposure to histological chorioamnionitis in
preterm infants (14, 15). More recently, we described differential
gene expression in cord blood mononuclear leukocytes after
exposure to histological chorioamnionitis in term neonates
(16). Similar to histological chorioamnionitis, maternal COVID-
19 infection during pregnancy can potentially incite fetal
inflammatory response and differential gene expression (17).

The fetal environment has been shown to impact neonatal
gene expression with long-term consequences into childhood
and even adult life (18–20). One mode for this environmental
impact has been attributed to epigenetic modifications that lead
to differential gene expression and can increase the risk for
various immunological, allergic, and chronic diseases later in life
(18, 19, 21). We have previously demonstrated fetal epigenetic
changes in relation to maternal chorioamnionitis and given
the known inflammatory effects of COVID-19 on maternal
physiology (22), the fetal environment may also be altered
with downstream effects on gene expression. There is no data
examining the impact of COVID-19 during pregnancy on global
gene expression in neonates. Our study aims to examine the
effect of COVID-19 infection during pregnancy on global gene
expression modifications in neonates through cord blood cells
analysis. To the best of our knowledge, this is the first study to
investigate global gene expression profile in cord blood cells from
neonates exposed to COVID-19 infection during pregnancy.

METHODS

Ethical Approval
Institutional Review Board of Thomas Jefferson University
Hospital had approved all human protocols and procedures
described in this study. Informed consent was signed by the
participants (8 COVID-19 positive mothers and 2 controls). Six
control samples were used from a related study on discarded
blood and placental tissue, thus the informed consent was waived
for these participants. These control samples were collected from
healthy infants born before the COVID-19 pandemic (August
and September 2019) with no exposure to clinical or histological
chorioamnionitis. All experiments performed in this study were
approved by the Nemours Institutional Biosafety Committee.

Study Design
This is a prospective observational study that examines
differential gene expression in cord blood cells of term singleton
infants born to mothers with or without a diagnosis of COVID-
19 either during pregnancy or at delivery. Electronic medical
records were reviewed for demographic, medical, and obstetric
history. Mothers with clinical or histological chorioamnionitis
were excluded as this may impact gene expression. Similarly,
mothers who received the COVID-19 vaccine were excluded.

Cord Blood Collection, Processing and
Storage
At the time of delivery, the umbilical cord was disinfected and
cut at the placental side of the clamp. 2.5ml of cord blood was
collected in PAXgene blood RNA tube (BD Catalog # 762165)
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and then processed and stored as per manufacturer’s guidelines.
In brief, collected blood was mixed gently by inverting 10 times,
incubated for 2 h at room temperature, then saved overnight at
−20◦C and moved to−80◦C next day for long term storage.

RNA Isolation and Gene Expression Study
Total RNA was isolated using PAXgene Blood RNA Kit
(PreAnalytiX, A Qiagen/BD Company, Switzerland) following
manufacturer’s protocol. RNA was eluted with 40 µl of
elution buffer and then quantified on a Nanodrop ND-2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA),
and quality was assessed by an Agilent 2200 TapeStation (Agilent
Technologies, Palo Alto, CA). 100 ng of RNA was used from each
sample to prepare fragmented biotin-labeled cDNA by GeneChip
WT PLUS reagent kit (Affymetrix, Santa Clara, CA). Human
Clariom S gene chips were hybridized with 2.5 µg of fragmented
biotin-labeled cDNA in 100µl hybridization cocktail, followed by
target denaturation at 99◦C for 5min and then 45◦C for 5min.
Hybridization was performed for 16 h at 45◦C with a rotation
of 60 rpm. GeneChip hybridization wash and stain kit was used
to wash and stain the arrays in GeneChip Fluidic Station 450.
Chips were scanned on GeneChip Scanner 3000 using Command
Console Software (Thermo Fisher Scientific, Waltham, MA).

Statistical Analysis
The COVID group was compared with the control group using
Transcriptome Analysis Console software 4.0 (TAC 4.0, Thermo
Fisher Scientific, Waltham, MA). Sst-RMA normalization was
performed on 16 cel files generated from the samples. Student t-
test was performed for comparison of the two groups. Genes with
fold change ≥1.5 and p ≤ 0.05 were identified as differentially
expressed. Gene expression data is available at the Gene
Expression Omnibus (GEO) database of the NIH (Accession
number GSE195938). Data were analyzed through the use of IPA
(QIAGEN Inc., https://digitalinsights.qiagen.com/IPA) (23). IPA
is one of advanced bioinformatic tools provided by Qiagen Inc.
that is a web-based software application program for the analysis,
integration, and interpretation of data derived from microarray,
gene expression or other array based or sequencing methods.
IPA analyses and interprets data based on the comprehensive,
manually curated content of the Ingenuity Knowledge Base. IPA
identifies Canonical pathways, Networks, Tox Functions and
Upstream regulators.

RESULTS

Sixteen term infants were enrolled in this study. Eight infants had
COVID-19 exposure during pregnancy (COVID-19 group), and
eight infants born either before the pandemic (n= 6) or maternal
COVID-19 antibody negative at the time of delivery (n = 2)
served as the Control group. COVID-19 infection was diagnosed
at a median of 89 days (range 1–238 days) before delivery,
two mothers were symptomatic at the time of delivery, one
with severe symptoms. The median gestational age of COVID-
19 diagnosis was 24 weeks (range 5–37 weeks). Clinical and
demographic data is depicted in Table 1.

Differential Gene Expression
Five hundred and ten genes (probe IDs) were found to be
differentially expressed with a fold change ≥1.5 (p ≤ 0.05) when
COVID-19 group array data was compared with the Control
group using Transcriptome Analysis Console (TAC 4.0) software.
Of these, 374 genes were up-regulated (Supplementary Table 1),
and 136 genes were down-regulated (Supplementary Table 2).
The top 10 up-regulated and down-regulated genes based on the
fold change are reported in Table 2.

Ingenuity Pathway Analysis
Five hundred and ten probe sets (fold change ≥ 1.5, p ≤

0.05) were used for pathway analysis using Qiagen Ingenuity
Pathway Analysis (IPA) software (QIAGEN Inc., https://
digitalinsights.qiagen.com/IPA) (23). Four hundred canonical
pathways were identified to be modified by IPA after exposure to
COVID-19 during pregnancy. Top canonical pathways altered
included: sirtuin signaling (Supplementary Figure 1), DNA
methylation and transcriptional repression signaling, TREM1
signaling (Figure 1), transcriptional regulatory network in
embryonic stem cells and kinetochore metaphase signaling.
Relevant altered canonical pathways are depicted in Table 3.
Differential gene expression with COVID-19 exposure could
potentially alter 53 diseases and biological functions. Top altered
diseases/disorders associated with changes in gene expression
after exposure to COVID-19 during pregnancy include:
cancer, organismal injury and abnormalities, cardiovascular
disease, connective tissue disorders, and hematological disease.
Cellular and molecular functions potentially impacted by
differential gene expression observed in neonates of mothers
with COVID-19 included cellular assembly and organization,
DNA replication, recombination, and repair, cellular movement,
cellular development, cellular growth and proliferation.
Physiological system development and function that may
be altered by differential gene expression are hematological
system development and function, immune cell trafficking,
embryonic development, hematopoiesis and lymphoid
tissue structure and development. Important functions that
may be modified with exposure to COVID-19 are listed in
Table 4.

TABLE 1 | Demographic and clinical characteristics.

COVID-19

exposure

N = 8

Control

(N = 8)

p

Birth weight in Kg (mean ± SD) 3.14 ± 0.63 2.98 ± 0.56 0.6

Gestational age in weeks (mean ± SD) 38.1 ± 1.3 38.5 ± 1.4 0.6

Male sex n (%) 5 (62.5) 6 (75.0) 1.0

Maternal diabetes n (%) 1 (12.5) 0 (0) 1.0

Chronic hypertension n (%) 1 (12.5) 1 (12.5) 1.0

Preeclampsia n (%) 1 (12.5) 0 (0) 1.0

Small for gestational age n (%) 1 (12.5) 1 (12.5) 1.0

Healthy neonate n (%) 8 (100) 8 (100) 1.0
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TABLE 2 | Top 10 differentially up- or down-regulated genes associated with exposure to Covid.

Probe ID Gene symbol Covid group

average exp

Control group

average exp

Fold CHANGE Up/down P-value

TC0100013223.hg.1 RAP1GAP 1,833.01 288.01 6.37

Up

0.0367

TC0400011013.hg.1 PPBP 26,801.01 4,837.35 5.52 0.0282

TC0600011232.hg.1 HIST1H1B 4,513.40 968.76 4.65 0.01

TC0200008268.hg.1 GNLY 652.58 146.02 4.47 0.0479

TC1700010447.hg.1 CCL5 5,007.93 1,323.37 3.77 0.0271

TC1500010160.hg.1 CTSH 354.59 104.69 3.38 0.0028

TC1800007360.hg.1 RAB27B 268.73 81.57 3.28 0.0176

TC0400012922.hg.1 TLR6 1,584.71 487.75 3.25 0.0354

TC0600014083.hg.1 HIST1H2AG 3,420.52 1,097.50 3.12 0.0095

TC0400011014.hg.1 CXCL5 103.25 33.59 3.06 0.0485

TC1600011312.hg.1 HBZ 4,640.29 56,266.94 −12.09

Down

0.0148

TC0X00007704.hg.1 COX7B 699.41 2,062.24 −2.94 0.0448

TC0200008351.hg.1 RPIA 4,039.61 11,585.24 −2.86 0.0484

TC1400007430.hg.1 SYNE2 39.40 105.42 −2.68 0.0222

TC0100018307.hg.1 ACKR1 14.93 37.53 −2.51 0.0411

TC0700009680.hg.1 TMEM176A 25.11 55.33 −2.19 0.0089

TC0800006692.hg.1 MSRA 39.67 85.63 −2.16 0.0061

TC0900007457.hg.1 CNTNAP3P2 59.30 127.12 −2.15 0.0279

TC1400007227.hg.1 LGALS3 4,039.61 7,858.29 −1.95 0.0194

TC0200016424.hg.1 LBH 1,052.79 2,048.00 −1.94 0.0407

IPA Networks
The top 4 networks that were picked up by the IPA are:
Network 1—cardiovascular disease, connective tissue disorders,
organismal injury and abnormalities (score 44, focus molecules
30), Network 2—cellular development, cellular growth and
proliferation, cellular movement (score 37, focus molecules
27), Network 3—cancer, neurological disease, organismal injury
and abnormalities (score 35, focus molecules 26), Networks
4—cellular development, cellular function and maintenance,
hematological system development and function (score 31, focus
molecules 24) (Figure 2).

Tox Functions
Twenty-nine tox functions are potentially altered with COVID-
19 exposure during pregnancy. Top tox functions related to
cardiotoxicity include cardiac arrythmia, cardiac dilation, cardiac
enlargement, congenital heart anomaly and congestive cardiac
failure. Top potentially altered hepatotoxic functions are liver
hyperplasia/ hyperproliferation, hepatocellular carcinoma, liver
failure, and liver fibrosis. Top potentially altered tox functions
related to nephrotoxicity are glomerular injury, renal fibrosis,
nephrosis, kidney failure and renal damage. The potentially
altered tox functions are listed in Table 5.

Upstream Regulators
Upstream regulator analysis by IPA identified five key regulators
of which one is a phosphatase (PDCD1), three are transcriptional
regulators (E2F3, NUPR1 and LARP1) and one mitotic spindle
protein (CKAP2L). E2F3, CKAP2L and LARP1 are identified to
be activated regulators (z-scores 2.12, 2.24 and 2.24, respectively)

and PDCD1 and NUPR1 are inhibited regulators (z-scores−2.24
and−2.4, respectively). The upstream regulators and their target
molecules are depicted in Table 6.

DISCUSSION

COVID-19 infection during pregnancy could potentially have
deleterious short- and long-term consequences in offspring.
Maternal COVID-19 infection during pregnancy leads to a
maternal systemic inflammatory response and inflammatory,
thrombotic, and vascular changes in the placenta. This can incite
a fetal inflammatory response, immune dysregulation, epigenetic
changes and differential gene expression that could portray short-
and long-term effects in offspring. To our knowledge, this is
the first study reporting differential gene expression profile in
cord blood cells in term infants exposed to COVID-19 infection
during pregnancy. We identified 510 differentially expressed
genes (374 genes up-regulated, 136 genes down-regulated) in
cord blood cells after exposure to COVID-19 during pregnancy.
IPA identified important canonical pathways associated with
diseases such as cardiovascular disease, hematological disease,
cancer, embryonic and cellular development. Tox functions
related to cardiotoxicity, hepatotoxicity and nephrotoxicity were
also altered after exposure to COVID-19 during pregnancy. Our
findings add to literature on further understanding the effects
of COVID-19 exposure at an early stage of life and its potential
short- and long-term consequences.

The top up-regulated genes after exposure to COVID-19
during pregnancy included ras-associated protein-1 GTPase-
activating-protein (RAP1GAP), pro-platelet basic protein
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FIGURE 1 | This figure shows the IPA canonical TREM1 signaling pathway. TREM1 is an important signaling receptor that plays role in systemic infections,

inflammation, neurological development and coagulation. Seven genes involved in TREM-1 signaling pathways were modified with exposure to COVID-19, red filled

path designer shapes are upregulated genes and green filled path designer shapes are downregulated genes.
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TABLE 3 | Important canonical pathways picked-up by ingenuity pathway analysis of the differentially expressed genes between Covid and control group.

Ingenuity canonical pathways -log (p-value) Number of

genes involved

Molecules involved in pathways

Sirtuin signaling pathway 4.28 18 ACADL,CLOCK,DUSP6,H1-5, H3C3, H4C11, MAPK15,

NDUFA1, NDUFB3, NR1H2,REL, SLC2A1, TOMM70,

TUBA1B, TUBA1C, UCP2,VDAC1,VDAC3

DNA methylation and transcriptional Repression

Signaling

3.11 5 H4C11,H4C12,H4C15,H4C8,H4C9

TREM1 Signaling 3.03 7 CD86,CIITA,IL1RL1,REL,TLR1,TLR6, TYROBP

Transcriptional regulatory network in embryonic stem

cells

2.21 5 H4C11,H4C12,H4C15,H4C8,H4C9

Kinetochore metaphase signaling pathway 2.15 7 ARPP19,ENSA,H2AC18/H2AC19,KIF2C, MAD2L1,

PLK1,ZW10

BAG2 signaling pathway 2.08 6 ANXA2,HSP90AA1,HSPA1A/HSPA1B,

PSMD6,PSMD8,REL

Gα12/13 signaling 2.07 8 BTK, CDH12,GNA13,MEF2C,MEF2D,PTK2,

RASA1,REL

Toll-like receptor signaling 1.59 5 IL1RL1,REL,TICAM2,TLR1,TLR6

B cell development 1.37 3 CD86, HLA-DPA1,HLA-DPB1

Antigen presentation pathway 1.31 3 CIITA, HLA-DPA1,HLA-DPB1

Remodeling of epithelial adherens junctions 1.26 4 ARPC2, DNM3,TUBA1B,TUBA1C

Natural killer cell signaling 1.22 8 CFL2,HSPA1A/HSPA1B,KLRB1,KLRC2,

KLRD1,REL,STAT4,TYROBP

Neuroinflammation signaling pathway 1.16 11 CCL5, CD86,CX3CR1,HLA-DPA1, HLA-DPB1,

MAPK15, REL, TICAM2, TLR1,TLR6,TYROBP

Th1 pathway 0.955 5 CD86, HLA-DPA1,HLA-DPB1, KLRD1, STAT4

Th1 and Th2 activation pathway 0.807 6 CD86,HLA-DPA1,HLA-DPB1, IL1RL1, KLRD1,STAT4

Granulocyte adhesion and diapedesis 0.752 6 CCL5, CXCL5,GNAI3,IL1RL1,PPBP,RDX

Hypoxia signaling in the cardiovascular system 0.688 3 HSP90AA1, P4HB,UBE2T

Role of pattern recognition receptors in recognition of

bacteria and viruses

0.676 5 CCL5, REL,TLR1,TLR6,TNFSF14

Phagosome maturation 0.393 4 CTSH, NSF,TUBA1B,TUBA1C

(PPBP), and histone cluster 1, H1b (HIST1H1B). RAP1GAP
plays a key role in the control of adherens junctions at
different levels that takes part in cell adhesion and cell-cell
junction formation (24) and neuronal differentiation (25). In
animal models, RAP1GAP mediates angiotensin II-induced
cardiomyocyte hypertrophy by inhibiting autophagy and
increasing oxidative stress (26). PPBP is a potent chemoattractant
and activator of neutrophils. It also stimulates DNA synthesis,
mitosis and glycolysis (https://www.genecards.org/cgi-bin/
carddisp.pl?gene = PPBP) (27). HIST1H1B takes part in
regulating individual gene transcription through chromatin
remodeling, nucleosome spacing and DNA methylation (28, 29).
The top down-regulated genes included; hemoglobin zeta
(HBZ), cytochrome c oxidase subunit VIIb (COX7B), atypical
chemokine receptor 1 (Duffy blood group) (ACKR1). HBZ is
a novel hemoglobin that takes part in heme binding, iron ion
binding, cellular oxidant detoxification (30) and represses viral
transcription (31). COX7B plays an important role in proper
central nervous system (CNS) development in vertebrates and
mitochondrial electron transport (32). ACKR1 binds to several
proinflammatory chemokines to control chemokine levels and
regulates neutrophil counts in blood. Neutropenia in healthy
individuals of African ancestry has been linked with the variant

rs2814778(G) of the gene encoding ACKR1 (33). Absence
of erythroid ACKR1 changes the steady-state hematopoiesis
and may impact the bone marrow response during infection,
inflammation, injury and cancer (33).

Understanding the effects of COVID-19 exposure on
genes involved in canonical pathways could lead to better
understanding of short- and long-term consequences in
offspring. We have identified several key canonical pathways
that are potentially modified after exposure to COVID-19
infection during pregnancy. 18 genes involved in sirtuin
signaling pathways were modified with exposure to COVID-19.
The sirtuin family are nicotinamide dinucleotide (NAD+)-
dependent deacylases involved in metabolic regulation and are
an essential factor in delaying cellular senescence and extending
organismal lifespan (34). The sirtuin family is also a key
regulator of acute and chronic inflammation. Multiple authors
have reported the association of Sirtuin-1 (SIRT1) with COVID-
19 infection and its capability to affect multi-organ failure. Miller
et al. have reported that activation of SIRT1 may be a crucial
factor in the prevention of the hyperinflammatory response
and may be necessary for a successful defense against viral
infections (35). The two other key signaling pathways modified
with exposure to COVID-19 infection during pregnancy include
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TABLE 4 | Modified diseases and functions obtained from ingenuity pathway

analysis for the differentially expressed genes between Covid and control group.

Modified diseases and

functions

Range of p-values

for genes involved

Number

of

genes

involved

Cancer 3.31E-07-6.63E-03 438

Organismal injury and

abnormalities

3.31E-07-6.63E-03 438

Cellular assembly and

organization

6.39E-07-6.47E-03 32

DNA replication,

recombination, and repair

6.39E-07-6.47E-03 28

Cardiovascular disease 3.98E-05-5.42E-03 20

Connective tissue disorders 3.98E-05-1.39E-03 7

Hematological disease 3.98E-05-6.63E-03 125

Immunological disease 3.98E-05-6.63E-03 77

Cellular movement 6.75E-05-6.25E-03 26

Hematological system

development and function

6.75E-05-5.94E-03 50

Immune cell trafficking 6.75E-05-5.94E-03 29

Inflammatory response 6.75E-05-5.94E-03 74

Cellular development 1.41E-04-4.89E-03 12

Cellular growth and

proliferation

1.41E-04-6.12E-04 11

Embryonic development 1.41E-04-1.41E-04 10

Hematopoiesis 1.41E-04-6.12E-04 11

Lymphoid tissue structure

and development

1.41E-04-1.92E-03 13

Cellular compromise 1.51E-04-2.37E-04 29

Cell death and survival 1.87E-04-2.07E-03 92

Cellular function and

maintenance

1.93E-04-6.63E-03 41

Cell-to-cell signaling and

interaction

3.02E-04-4.44E-03 33

Cell cycle 5.07E-04-6.25E-03 29

Inflammatory disease 5.22E-04-4.69E-03 8

Protein synthesis 7.05E-04-4.39E-03 45

Metabolic disease 2.32E-03-5.96E-03 15

DNA methylation and transcription repression signaling and
TREM1 signaling. DNA methylation and histone modifications,
two important epigenetic mechanisms, have frequently been
reported to facilitate or oppose the pathogenicity of SARS-
CoV-2 in human cells (36). TREM-1 is an important signaling
receptor expressed on neutrophils and monocytes that plays an
important role in systemic infections, inflammation, neurological
development and coagulation (37). Resende et al. reported that
TREM-1 and its soluble form may play a pivotal role in the
pathogenesis of SARS-CoV-2 infection (38). Kerget et al. have
shown that TREM-1 and TREM-2 have an important role in
inflammation and may serve as biomarkers and therapeutic
targets in the early treatment and follow-up of COVID-19 (39).

IPA of 510 differentially expressed genes after exposure
to COVID-19 has identified several networks. Network 1
is associated with cardiovascular disease, connective tissue

disorders, organismal injury and abnormalities. Cardiovascular
comorbidities are commonly reported in patients with COVID-
19 infection. Myocardial injury is reported in >25% of critical
cases and could manifest in 2 patterns: acute myocardial injury
and dysfunction on presentation and myocardial injury that
develops with severity of illness (40). Cardiac complications
reported in children with MIS-C include: abnormal cardiac
enzymes, abnormal electrocardiographs, decreased cardiac
function, coronary artery dilation and aneurysms, mitral and
tricuspid valve regurgitation, aortic valve insufficiency and
pericardial effusion (41). Network 2 is associated with cellular
development, cellular growth and proliferation, and cellular
movement. Network 3 is associated with cancer, neurological
disease, organismal injury and abnormalities. Exposure to
COVID-19 infection differentially expressed genes involved in
cellular replication, DNA damage, metabolism, and epigenetic
regulation that are also implicated in cancer pathogenesis (42–
44). It is too early to suggest if COVID-19 infection increases the
risk for cancer. However, emerging evidence suggest COVID-19
infection may reactivate dormant cancer cells (43).

COVID-19 exposure altered 29 tox functions in cord
blood cells in our study. The top tox functions are related to
cardiotoxicity (cardiac arrythmia, cardiac dilation, cardiac
enlargement, congenital heart anomaly and congestive
cardiac failure), hepatotoxic functions (liver hyperplasia/
hyperproliferation, hepatocellular carcinoma, liver failure
and liver fibrosis), nephrotoxicity (glomerular injury, renal
fibrosis, nephrosis, kidney failure and renal damage). MIS-C, a
life-threatening hyperinflammatory condition is a complication
of COVID-19 infection in children with multi-system organ
involvement (45). Our data indicates that exposure to COVID-
19 during pregnancy is associated with altered toxic functions
related to cardiac, hepatic and renal dysfunction, the common
organ dysfunctions seen in children with MIS-C. In an animal
model of COVID-19 infection, Li et al. reported that the SARS-
CoV-2 virus can shut down energy production in cells of the
heart, kidneys, spleen and other organs (46).

Upstream regulator analysis identified five key regulators after
exposure to COVID-19 in our study, one phosphatase (PDCD1),
3 transcriptional regulators (E2F3, NUPR1 and LARP1) and one
mitotic spindle protein (CKAP2L). Of these, 3 are identified
to be activated regulators (E2F3, CKAP2L and LARP1) and 2
are inhibited regulators (PDCD1 and NUPR1). Gao and co-
workers have reported that programmed cell death protein 1
(PDCD1) expression in T cells, B cells, myeloid dendritic cells,
and macrophages were upregulated in COVID-19 patients and
correlated with the severity of infection (47). NUPR1 is a stress
protein and plays a critical role in regulating the antioxidant
system (48). Inactivation of NUPR1 impairs mitochondrial
function and energy metabolism, increases ROS levels, and
triggers a variety of cell death pathways, including apoptosis,
autophagy, and necroptosis (48). NUPRI is an inhibited regulator
after exposure to COVID-19 infection and may trigger cell death
pathways in the fetus with potential long-term consequences. La-
related protein 1 (LARP1), which is a strongly enriched viral
RNA binder, restricts SARS-CoV-2 replication in infected cells
and provide a global map of their direct RNA contact sites (49).
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FIGURE 2 | Top 4 networks that are picked up by pathway analysis are presented in this figure (A–D). Pathway analysis was performed using Ingenuity Pathway

Analysis (IPA) software (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA) by loading the 510 probe sets that were differentially expressed with exposure to

COVID-19. The red filled path designer shapes are upregulated genes and green filled path designer shapes are downregulated genes after exposure to COVID-19.
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Our study has several strengths. To our knowledge, this is
the first study reporting differential gene expression in cord
blood cells from neonates exposed to COVID-19 infection
during pregnancy. We have reported earlier and acknowledged
that histological chorioamnionitis can alter gene expression in
cord blood monocytes. We excluded infants with histological
chorioamnionitis from this study. The classes of gene function
identified play a role in known adult COVID-19 related
pathology providing support that these findings may be
implicated in downstream pediatric disease from maternal
COVID-19 exposure. Our study also has several limitations. Our

TABLE 5 | Top tox functions modified with Covid-19 exposure.

Top tox

functions

Category Range of p-values

for genes involved

Number

of

molecules

Cardiac arrythmia Cardiotoxicity 2.17E-02-1E00 6

Cardiac dilation 2.17E-02-5.36E-01 5

Cardiac

enlargement

2.17E-02-5.36E-01 5

Congenital heart

anomaly

2.17E-02-3.83E-01 2

Cardiac

congestive cardiac

failure

1.04E-01-1.04E-01 1

Liver hyperplasia/

hyperproliferation

Hepatotoxicity 9.79E-05-5.84E-01 192

Hepatocellular

carcinoma

2.23E-03-5.65E-01 52

Liver failure 2.17E-02-2.48E-01 1

Liver fibrosis 2.68E-02-1E00 7

Liver proliferation 2.68E-02-2.68E-02 2

Glomerular injury Nephrotoxicity 4.08E-02-5.46E-01 2

Renal fibrosis 4.08E-02-1.97E-01 2

Nephrosis 4.29E-02-5.9E-01 2

Kidney failure 1.97E-01-2.39E-01 4

Renal damage 2.48E-01-2.48E-01 1

sample size of 16 neonates is small, but similar sample size
have been used commonly in studies investigating differential
gene expression using microarray (50, 51). There is an inherent
chance of finding differences in the gene expression due
to multiple comparison; however, we used 1.5 fold change
(50, 52), and most significant genes/pathways identified had
a much higher fold change than our a priori established
threshold. We did not analyze data based on the severity of
COVID-19 infection and the length of time between infection
and birth due to limited sample size. We are planning to
address these questions in our ongoing study using a larger
sample size.

In conclusion, COVID-19 infection during pregnancy
induces differential gene expression in cord blood cells from
term neonates. We identified 510 differentially expressed
genes, important canonical pathways, and tox functions related
to cardiotoxicity, hepatotoxicity and nephrotoxicity in cord
blood cells of infants exposed to COVID-19 infection during
pregnancy. Future studies can further validate differential
expression of target genes in a larger cohort of neonates
exposed to COVID-19 infection during pregnancy. Our
data may lead to understanding the role of key genes and
pathways identified on the long-term sequelae related to
exposure to COVID-19 infection during pregnancy. Functional
studies on the identified genes and pathways could lead to
the development of potential markers for the diseases caused
by in utero exposure to COVID-19 infection and possible
interventions to prevent those complications. Finally, our
results highlight the importance of exploring downstream
neonatal/pediatric consequences of maternal COVID-19
exposure even in the absence of direct vertical transmission
of disease.
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LARP1 translation
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NUPR1 transcription
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