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Background: Preterm birth is associated with the development of both acute and

chronic disease, and the disruption of normal gut microbiome development. Recent

studies have sought to both characterize and understand the links between disease and

the microbiome. Probiotic treatment may correct for these microbial imbalances and,

in turn, mitigate disease. However, the criteria for probiotic supplementation in NICU’s in

North Queensland, Australia limits its usage to themost premature (<32weeks gestation)

and small for gestational age infants (<1,500 g). Here we use a combination of amplicon

and shotgun metagenomic sequencing to compare the gut microbiome of infants who

fulfill the criteria for probiotic-treatment and those who do not. The aims of this study

were to determine if probiotic-supplemented preterm infants have significantly different

taxonomic and functional profiles when compared to non-supplemented preterm infants

at discharge.

Methods: Preterm infants were recruited in North Queensland, Australia, with fecal

samples collected just prior to discharge (36± 0.5 weeks gestation), to capture potential

changes that could be probiotic induced. All samples underwent 16S rRNA gene

amplicon sequencing, with a subset also used for shotgun metagenomics. Mixed effects

models were used to assess the effect of probiotics on alpha diversity, beta diversity and

taxonomic abundance, whilst accounting for other known covariates.

Results: Mixed effects modeling demonstrated that probiotic treatment

had a significant effect on overall community composition (beta diversity),

characterized by greater alpha diversity and differing abundances of several

taxa, including Bifidobacterium and Lactobacillus, in supplemented infants.
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Conclusion: Late preterm-infants who go without probiotic-supplementation may be

missing out on stabilizing-effects provided through increased alpha diversity and the

presence of commensal microbes, via the use of probiotic-treatment. These findings

suggest that late-preterm infants may benefit from probiotic supplementation. More

research is needed to both understand the consequences of the differences observed

and the long-term effects of this probiotic-treatment.

Keywords: neonatal, microbiome, preterm (birth), probiotics, gut microbiome, metagenomics

INTRODUCTION

The development of the gut microbiome is an important
regulator of lifelong health (1–5). Being born preterm disrupts
the gut microbiome’s natural development (6). Probiotics are
increasingly used as supplements, particularly as adjunctive
therapies to prolonged antibiotic treatment. In neonatal intensive
care units (NICU) across Australia, probiotic supplementation
is becoming the standard of care for the most premature
(<32 weeks gestation) and small for gestational age infants
(<1,500 g).This is in response to clinical trial validated evidence,
that demonstrates effective probiotic supplementation against
Necrotising Enterocolitis (NEC) and Late-onset sepsis (LoS) (7–
9), in combination with an increased risk of acquiring the disease
in very-preterm infants (10). It is now well-recognized that there
may be other wide ranging health benefits stemming from early
and appropriate gut colonization with bacterial probiotic-species.
Although targeted probiotic treatment of the most premature of
infants may be justified, those who do not meet the treatment-
criteria may be missing out on potential health benefits (11, 12).
Preterm infants not supplemented with probiotics may have a
disadvantaged start to life (8, 13, 14).

The gut microbiome plays a critical role in the healthy
development of the infant, particularly for immunological and
metabolic programming (15–17). The disruption of normal
gut microbial colonization caused by preterm birth can be
associated with acute life-threatening diseases (18, 19), such as
necrotising enterocolitis (NEC) and sepsis (20–22). Additionally,
a growing body of evidence now suggests disrupted development
of the gut microbiome is associated with chronic lifelong
conditions, such as asthma (23), type 1 diabetes (24) and
metabolic derangements (25). These diseases are more common
in those born prematurely, infants who harbor a gut microbiome
characterized by low diversity (26) and commensal microbe

Abbreviations: ABR, antibiotic resistance; ASV, amplicon sequence variant; B,

Bifidobacterium; CHHS, Cairns and Hinterland Hospital and Health Service;

DNA, deoxyribonucleic acid; E, Escherichia; EC, Enzyme Commission; EC,

Enzyme Commission Number; HMO, human milk oligosaccharide; K, Klebsiella;

L, Lactobacillus; LoS, Lat-onset sepsis; MetaCyc, metabolic pathway database;

MPA, Metagenomics Analysis Platform; MPA, Metagenomics Analysis Platform;

NEC, necrotising enterocolitis; NICU, neonatal intensive care unit; NMDS, Non-

Metric Multidimensional Scaling; NQLD, North Queensland; NT, non-treated;

PCA, Principal component analysis; PCoA, Principal coordinate analysis; PCR,

polymerase chain reaction; PERMANOVA, permutational analysis of variance; PT,

probiotic-treated; ROP, retinopathy of prematurity; rRNA, ribosomal ribonucleic

acid; SCN, Special care nursery; TCDB, Membrane Transport Proteins; TCDB,

Transport Proteins; THHS, Townsville Hospital and Health Service; V, Veillonella.

abundance (27–29), in combination with the presence of a greater
number of pathogens (28, 30). Probiotic treatment may provide a
solution for improving gut microbiome diversity and commensal
microbe abundance, and, in turn, reduce the significant health
burden placed on preterm infants.

Despite some heterogeneity between studies reported in
the literature (31, 86), probiotics have demonstrated efficacy
in reducing the incidence of diseases, such as NEC (7–9),
as well as positively modulating the infant gut microbiome
(13, 14), in the most premature of infants. The heterogeneity
observed could result from the use of different probiotic
species (8), variability in the microbiome detection methods
used (32) or the many confounding variables that influence
the developing gut microbiome. Nonetheless, several countries,
such as Japan and Australia, use probiotic-treatment as part
of standard care for the most premature of infants, and those
at high risk of NEC. Although treatment protocols may vary
between countries and neonatal units, here in North Queensland
(NQLD) Australia, standard protocol dictates that all infants
born <32 weeks gestation and < 1,500 g are supplemented with
Infloran R©, a probiotic containing Bifidobacterium bifidum and
Lactobacillus acidophilus, as approved by the Therapeutic Goods
Administration of Australia (33). However, the specificity of this
criterion means that preterm infants who fall outside of this
criteria, infants who may also suffer from irregular microbial
colonization, go without treatment.What significance this has for
these non-supplemented preterm infants remains unclear.

Very little is known about the implications of limiting
probiotic-treatment to the most premature for the developing
microbiome of older preterm infants. Unfortunately, research
exploring probiotic-treatment in older preterm infants is lacking,
with a 2017 meta-analysis showing the average age for clinical
trials is <33 weeks (8). This is not unjustified when considering
the previously mentioned inverse correlation of NEC with both
gestational age and birth weight (34, 35). Thus, probiotics are
targeted at this younger preterm demographic and, in turn, the
research as well. Late-preterm infants could be missing out on
the benefits provided through probiotic-treatment.

This study was designed to investigate the effect of probiotic
treatment on the developing preterm infant gut microbiome, by
comparing the gut microbiome of probiotic-supplemented (born
< 32 weeks gestation) and non-supplemented (born >32 weeks
& <37 weeks gestation) preterm infants. The aim of the study
was to determine if these two groups have significantly different
taxonomic and functional profiles when leaving care, at 36 weeks
corrected gestational age. Additionally, we also collected data on
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TABLE 1 | Overview of the demographic data for the preterm-infant cohort that

underwent 16 rRNA gene amplicon sequencing.

Categorical variables

Variables Levels Count %

Probiotic supplementation Yes 63 67.0

No 31 33.0

Diet Formula 23 24.5

Breastmilk 38 40.4

Formula and Breastmilk 33 35.1

Delivery Vaginal 32 34.0

Cesarean 62 66.0

NEC Yes 5 5.3

No 89 94.7

Sepsis Yes 3 3.2

No 91 96.8

Antenatal antibiotics Yes 52 55.3

No 42 44.7

Neonatal antibiotics Yes 83 88.3

No 11 11.7

Chorioamnionitis Yes 28 29.8

No 66 70.2

Preeclampsia Yes 13 13.8

No 81 86.2

Maternal diabetes Yes 19 20.2

No 75 79.8

Continuous variables

Variable Mean/median

Gestational age at birth 30.8/30.1 weeks

Gestational age at collection 36.0/36.0 weeks

known microbiome-covariates so that they could be controlled
for using mixed effects modeling. Gut microbiome health at
discharge is an important end goal so as to not leave the child
at a lifelong disadvantage.

MATERIALS AND METHODS

Study Population
A combination of 16S rRNA gene amplicon and shotgun
metagenomic sequencing was used to characterize the
microbiome of preterm infants from North Queensland
(NQLD), Australia. Where 16S rRNA gene amplicon was applied
to the entire cohort, and shotgunmetagenomics to a small subset.
NQLD is burdened disproportionately by preterm birth, with
the North West experiencing the highest rate (12%) of pre-term
births (36), and the Torres and Cape the highest proportion
(11.7%) of low birth weight infants (36). NQLD also has a
large indigenous population, who are more likely to experience
prematurity (13%), representing one in ten premature births
in Queensland (36). As the prevalence of premature birth in
NQLD is increasing, 5% over the last decade (36), the burden

that preterm birth places on the families and healthcare system
in this region of Australia is significant.

Recruitment sites were the Townsville University Hospital’s
(TUH) Neonatal Intensive Care Unit (NICU) and Special
Care Nurseries (SCN), as well as the Cairns and Hinterland
Hospital and Health Service’s (CHHHS) SCN. Samples from
the probiotic-supplemented infants were all collected from
the TUH NICU, as this is the only level six tertiary referral
unit in NQLD, which is a specialized unit for dealing with
complex pregnancies. All high risk premature infants (<32 weeks
gestation and/or <1,500 g) received the probiotic Infloran R©

(37), containing Lactobacillus acidophilus (1 × 109 CFU) and
Bifidobacterium bifidum (1 × 109 CFU) on a daily basis.
Use of this probiotic is approved by the Therapeutic Goods
Administration (TGA) of Australia. Infloran R© treatment is
commenced on the first day of feeding and ceased once the
infant is >34–36 weeks gestation. Inclusion criteria for the
cohort included: born <32 weeks’ gestation and admitted
to the NICU at the TUH for the probiotic-supplemented
group, and <37 weeks but >32 and admitted to the SCN
at the TUH or CHHHS for the non-supplemented group.
The exclusion criteria were no parental consent, gestational
age of >32 weeks and contraindication to enteral feeds for
the probiotic-supplemented group, and no parental consent
and gestational age of >37 weeks for the non-supplemented
group. Ethics was obtained from the Townsville Hospital and
Health Service Human Research Ethics, (HREC/17/QTHS/7).
Recruitment and collection were conducted by neonatal nurses,
who work in the nurseries, between October of 2017 and October
of 2018.

Sample Collection, Storage, and DNA
Extraction
Collection was carried out just prior to discharge (x =

36 ± 0.5 weeks gestation), to capture potential probiotic-
induced changes, using collection kits (biohazard bag, sterile
swab and storage container), with samples sent via pneumatic
tube systems to Pathology Queensland for storage at −80◦C.
DNA extraction for both the 16S rRNA gene amplicon and
shotgun metagenomic sequencing was carried out using the
Bioline ISOLATE Fecal DNA Kit, which includes mechanical
bead-beating (38). Modifications were made in consultation
with the manufacturer to increase DNA yield. This included
increased beta-mercaptoethanol (from 0.5 to 1% to increase
DNA solubility and reduce secondary structure formation),
addition of an extra wash step (to improve purity) and
decreased elution buffer volume from 100 µl to 50µl (to
increase final DNA concentration), for overall increased DNA
yield and purity. The extracted DNA was then stored frozen
at−80◦C.

Clinical information was also collected for downstream
analyses. This included both maternal data – antenatal
antibiotics, chorioamnionitis (clinically diagnosed),
preeclampsia (clinically diagnosed), and diabetes (type 1
& 2) and infant data – mode of delivery (vaginal birth vs.
cesarean section), diet, gestation, NEC (stage 2 or greater),
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sepsis (confirmed through culture), neonatal antibiotics and
Retinopathy of Prematurity (ROP) (stage 1 or greater). This
information can be seen in Table 1.

16S RRNA Short Amplicon Sequencing
The Illumina metagenomics library preparation protocol was
used for library preparation (39), using the Index Kit v2C
(40), along with PlatinumTM SuperFiTM PCR Master Mix (41).
Sequencing was performed on the Illumina MiSeq system
using the MiSeq Reagent Kit V3 600 cycles (40), targeting
the V3 and V4 regions with the S-D-Bact-0431-b-S-17/S-
D-Bact-0785-a-A-21primer combination (39). Pre-analytical
bioinformatics were conducted in R Studio Version 3.6.1 (42)
with a pipeline adapted from Workflow for Microbiome Data
Analysis: from raw reads to community analyses (43), which
can found under Additional File 1 or at https://github.com/
JacobAFW/SCN_vs_NICU_probiotic_study. DADA2 (44)
was used for quality filtering and trimming, demultiplexing,
denoising and taxonomic assignment (using the SILVA
Database), and the microDecon package (45) used to remove
homogenous contamination from samples using blanks
originating in extraction.

Shotgun Metagenomics
A subset of the samples (n = 6) was selected on the basis of
suitability for shotgun metagenomics analysis (performed by
Microba Life Sciences), with samples with the highest extracted
DNA concentrations chosen. Six samples, three from probiotic-
supplemented and three from non-supplemented infants, were
chosen to make species-level and functional comparisons.
Other demographic data specific to these infants can be
found in Supplementary File 2. These selected samples were
shipped to Microba on dry ice. Sequencing was conducted
on the Illumina NovaSeq6000 system with 300 bp, paired-
end reads. Microba provided an end-to-end service, also
conducting the bioinformatics and statistical analysis. This was
done using Microba’s Metagenomics Analysis Platform (MPA),
which includes the Microba Genome Database, the Microba
Community Profiler, and theMicroba Gene and Pathway Profiler
(46). Microba’s MPA produces taxonomic and functional profiles.
Functional profiles include Enzyme Commission (EC) Number,
Membrane Transport Proteins (TCDB) and MetaCyc (database)
Pathways and MetaCyc Groups.

Statistical Analyses
To assess the difference between the probiotic and non-
supplemented preterm infants across the entire cohort,
while accounting for known associates to the infant gut
microbiome, we assessed alpha diversity, beta diversity and
taxonomic abundance using mixed effects models. The
covariates included; maternal antibiotics (47), maternal diabetes
(48, 49), chorioamnionitis (50), preeclampsia (51), maternal
diabetes (48), mode of delivery (50, 52), infant diet (53, 54),
gestational age, NEC (55, 56), infant sepsis (57, 58), neonatal
antibiotics (59) and ROP (60). For beta diversity, we performed
an EnvFit analysis from the Vegan package (61), which compares
the differences in the centroids relative to total variation. A

Bray-Curtis dissimilarity matrix (62) based on data normalized
through Total Sum Scaling (TSS) (63) was used for the EnvFit
analysis. The significance was based on 10,000 permutations
and was transformed using the Benjamini-Hochberg (BH)
procedure (64).

For alpha diversity (Shannon Index), we used the package
lme4 (65) to perform a generalized linear mixed effects model.
Diversity was calculated at the ASV level. Multicollinearity was
assessed using the AED package (66) and collinear variables
removed. Backwards selection (67) was implemented to find the
least complex, yet adequate, model. Significance was determined
using an analysis of deviance (Type II Wald Chi-square test)
from the car package (68), and subsequent post-hoc pairwise
Tukey comparisons, correcting for multiple comparisons, using
the emmeans package (69).

DESeq2 (70), which uses a negative binomial generalized
linear model and variance stabilizing transformation, was used
for comparing taxonomic abundances between probiotic and
non-supplemented groups. Taxa were agglomerated and assessed
at the genus level. To identify taxa that were significantly
differentially abundance, a Wald Test with the BH multiple
inference correction was used. The pre-analytical bioinformatics
and statistical analyses can be found in the GitHub link in the
Supplementary Material.

To compare probiotic supplemented and non-supplemented
infants in the subset of the cohort that underwent shotgun
metagenomics, comparisons were again made for alpha diversity,
beta diversity and taxonomic abundance. Standard t-tests were
used for comparing alpha diversity (richness and the Shannon
Index), Redundancy analysis (multiple linear regression) for beta
diversity, and ALDEx2, with a Welch’s t-test, for differential
abundance. P-values were corrected with the BH procedure.

RESULTS

The aim of the study was to determine if probiotic-supplemented
(born <32 weeks gestation) and non-supplemented (born
>32 weeks & <37 weeks gestation) preterm infants have
significantly different taxonomic and functional profiles when
leaving care, at 36 weeks corrected gestational age. The study
recruited 94 preterm infants, 63 of which were supplemented
with probiotics and 31 not supplemented (other cohort
demographic data are available in Supplementary File 2), and
collected 94 stool samples (one for each infant). All samples
underwent 16S rRNA gene amplicon sequencing, and a
subset, 3 probiotic-supplemented and 3 non-supplemented, also
underwent shotgun metagenomics.

16S RRNA Gene Amplicon Sequencing
Analysis
16S rRNA gene amplicon sequencing showed probiotic
treatment influences the preterm-infant gut microbiome,
having a significant effect across all three metrics measured:
alpha and beta diversity, and taxonomic abundance. Probiotic
supplementation, along with sepsis, were the only covariates
found to have a significant association (P < 0.05) with ASV
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FIGURE 1 | (A) Significance and the amount of variance in gut microbiome composition explained by several microbiome covariates modeled with EnvFit on an

NMDS ordination based on Bray-Curtis distances from the 16S rRNA short amplicon sequencing data. The x axis describes the explained variance (r2) and the color

the p-value (adjusted for false discovery rate with the Benjamani-Hochberg method). Annotation for necrotising enterocolitis, NEC; retinopathy of prematurity, ROP. P

< 0.05 = *. (B) Principle coordinate analysis (PCoA) plot based on ASV level taxonomy obtained through 16S rRNA short amplicons sequencing describing the

dissimilarity of probiotic-supplemented (n = 63) and non-supplemented groups (n = 31) based on taxonomy.

FIGURE 2 | (A) Dot whisker plot of the estimates for the probiotic-treatment covariate resulting from a generalized linear mixed effects regression model, exploring the

effect of several known microbiome covariates on the Shannon diversity index derived from 16S rRNA short amplicon sequencing, and based on ASVs, (B) Table

describing significantly differentially abundant taxa between probiotic-treated (base-level) and non-treated infants, using 16S rRNA short amplicon sequencing, as

determined by DESeq2 analysis, based on data transformed through DESeq2’s variance stabilizing transformation. Annotation for probiotic-supplemented, PS;

non-supplemented, NS; p-adj: adjusted p-value; lfc, log2-fold change; lfcSE, log2-fold change standard error; NT. P < 0.05 = *, P < 0.01 = **, P < 0.001 = ***.

Sample sizes; probiotic supplemented = 63, and non-supplemented = 31.

level bacterial profiles (Figures 1A,B), with sepsis explaining
more variation (r2 = 0.33). In addition, infants supplemented
with probiotics had significantly higher alpha diversity (P <

0.05) than non-supplemented infants (Figure 2A), as well as
significantly differential abundance of several taxa. This included
higher abundance of Enterobacter, Cronobacter, Klebsiella,
Veillonella and Clostridium Sensu Stricto 1, as well as the
probiotic-genera Bifidobacterium and Lactobacillus, and lower
abundances of Streptococcus (Figure 2B). Bifidobacterium and
Lactobacillus were observed in 55 and 39 of the 63 discharge
infants, in contrast to 10 and 6 in the non-supplemented group
(Supplementary File 2).

Shotgun Metagenomic Sequencing
Analysis
The results from the shotgun metagenomics showed that there
was a high rate of colonization with Enterococcus faecalis, as
well as other aerobic species from the Proteobacteria phylum
across all samples. Infants were also commonly colonized with
skin dwellingmicrobes, such as Streptococcus spp., Staphylococcus
spp., and Veilonella spp. However, despite these cohort-wide
trends, probiotic supplementation still appeared to have some
effect on the gut microbiome. Although, not significantly
different, samples clustered by supplementation-group for
species-level taxonomy, MetaCyc pathway, MetaCyc group and
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FIGURE 3 | Area chart of species level abundances (top 30-most abundant)across the subset of samples that underwent shotgun metagenomics (n =6). PS,

probiotic-supplemented; NS, not supplemented; sqrt, square root transformation.

EC number profiles (Supplementary File 2), suggesting distinct
taxonomic and metabolic profiles. Due to the small sample
size, we were unable to account for other covariates with the
shotgun metagenomics analysis. However, no infants in this
subset were diagnosed with sepsis, the only other significant
covariate identified through 16S metabarcoding. Alpha diversity
metrics were supportive of what was observed at the genus
level (Supplementary File 2), with significantly higher species-
level alpha diversity in probiotic supplemented infants (Shannon
index, P < 0.05), which also translated into significantly higher
MetaCyc pathway diversity (Richness, P < 0.05).

When comparing species and functional profile abundance

between the probiotic-supplemented and non-supplemented

groups, there were no significant differences when adjusting for
multiple comparisons. However, there were several taxa that
were only present in one group or the other, resulting in their
ranking as top associations. The top associations (by p-value)
in species level abundances were Staphylococcus lugdunensis,
Veilonella parvula and Klebsiella pneumoniae. S. lugdunensis
was only observed in non-supplemented infants and the latter
two species only in probiotic-supplemented infants (Figure 3),
supporting what was observed at the genus level. Additionally,
probiotic-supplemented infants showed a different probiotic
species colonization pattern compared with non-supplemented
infants. With the exception for B. bifidum and B. longum in a
single non-supplemented infant, no Lactobacillus spp. or other
Bifidobacterium spp. were observed in the non-supplemented

infants. In contrast, Bifidobacterium bifidum was observed in all
three of the probiotic-supplemented infants and one of the non-
treated individuals. The species made up 9.8%, on average, of the
total species relative abundance in the treated group and only
0.12% in the non-supplemented. Lactobacillus acidophilus was
observed in only two of the probiotic-treated infants, but with
only 0.23% of the total species abundance. Despite the different
colonization patterns between the two groups, neither univariate
comparison resulted in a significant difference.

There were no significant differences between the
supplemented and non-supplemented probiotic groups for
functional genetic groups. However, there were several note-
worthy differences observed within the MetaCyc group profile
(Figure 4). This includes the presence of Antibiotic Resistance
and Hydrogen Production groups in all three probiotic-treated
infants relative to one non-supplemeneted infant, and the top
associations of Reactive Oxygen Species Degradation (greater
in probiotic-treated) and Carboxylate Degradation (greater in
non-supplemented) (Figure 4).

DISCUSSION

We explored the gut microbiome of preterm infants, comparing
microbial populations between infants who received probiotic-
supplementation and those who did not. Specifically, a
combination of 16S rRNA gene amplicon (full cohort) and
shotgun metagenomic sequencing (a subset of the cohort) was
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FIGURE 4 | Scaled heatmap of MetaCyc groups for the subset of samples that underwent shotgun metagenomics across probiotic-supplemented (n = 3) and

non-supplemented (n = 3). Color scale shows not-detected (white), and abundances ranging from low (black) to high (yellow).
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used to determine if differences exist in the gut microbiome
between probiotic-supplementation groups. The results suggest
that a significant difference does exist in the bacterial profiles of
probiotic-supplemented and non-supplemented preterm infants
at discharge from the hospital (36 ± 0.5 weeks gestation),
and that these differences in taxonomy may translate into
differences in functional profiles. In addition, the probiotic-taxa
contained within Infloran R© may colonize most infants. Although
these findings may currently have limited direct translation
in the clinic, they add weight to the argument for expanding
the probiotic supplementation criteria in Australia, which is
currently limited to those infants born <32 weeks gestation and
<1,500 g.

Probiotic treatment groups have distinct microbiomes,
characterized by greater alpha diversity in those supplemented.

Probiotic supplementation may contribute to differences in
gut microbiome diversity. The results suggest that there was
significant variation in the alpha diversity of the gut microbiome
between the two groups, with probiotic supplemented infants
having significantly greater alpha diversity. This suggests Infloran
may be contributing to the establishment of a more diverse, and
in turn, healthier gut microbiome. In addition, these results run
counter to what one would expect when comparing early- and
late-preterm infants not supplemented with probiotics, as lower
alpha diversity is typically associated with lower gestational age
(26, 30). However, there is evidence to support increased diversity
in response to probiotic supplementation in extremely preterm
infants (71), which may also be compounded by the widespread
use of antibiotics in our cohort, and the ability of probiotics
to correct for this (72). With greater gestational age, microbial
diversity increases, and the microbiome becomes more stable
(73). This increase in diversity is protective against instability
(74, 75), meaning protective against overgrowth by opportunistic
pathogens, as seen in diseases such as NEC and LoS (21, 76). As
a result, non-supplemented late-preterm infants may, therefore,
be missing out on protection provided through higher diversity
afforded via probiotic supplementation. However, it is worth
noting that although higher diversity can be indicative of greater
microbiome health, it may not always be the case. A prime
example of this is the significant association previously shown
between breastfeeding and low alpha diversity (53, 77). Thus,
caution should be taken when interpreting these results, and
more broadly, when using alpha diversity metrics as a proxy for
gut microbiome health.

Higher Rate of Colonization and
Abundance of Probiotic-Taxa in Those
Supplemented
Taken together, the 16S rRNA short amplicon and
shotgun metagenomic sequencing suggest the probiotic-
taxa, Lactobacillus acidophilus and Lactobacillus bifidus
(Bifidobacterium bifidum), colonize the infant microbiome, but
not consistently. This pattern of probiotic-species colonization is
supported by previous work (13, 14). The shotgun metagenomic
sequencing, that was performed on a subset of the cohort,
was able to identify B. bifidum across all three supplemented

infants and L. acidophilus in one. The low level of L. acidophilus
colonization has been reported previously (13, 14), and
unfortunately, may result from poor product-quality. These
quality assurance concerns are highlighted by an inability to
produce robust quantification of L. acidophilus in the past
(14), and our 16S rRNA sequencing of the probiotic itself,
which found uneven proportions of taxa within the probiotic
InfloranTM at the genus level, dominated by Bifidobacterium
(Supplementary File 2). The cause of these irregularities is
unclear, however, this is not the first time irregularities in
the microbial profiles of probiotic supplements have been
observed (78).

With 16S rRNA short amplicon sequencing, both
Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.001)
were in significantly greater abundance in the probiotic
supplemented group and were observed in 55 and 39 of the
supplemented infants, respectively. In contrast we identified
only 10 infants with Bifidobacterium and 6 with Lactobacillus in
the non-supplemented group. Although this does not provide
direct evidence for widespread probiotic-species colonization,
the higher frequency and abundance of these genera suggests
that treatment with Infloran R© promotes the growth of these
commensals, which may aid in the fight against pathogenic
infection and in immune and metabolic system development
(79, 80). The significance of this greater presence of common
commensal microbes in a very-preterm demographic is
compounded by the contrasting observations suggesting a
negative relationship between birth gestational age and limited
or delayed colonization with Lactobacillus and Bifidobacterium
(81, 82). However, not all supplemented infants were colonized
by Lactobacillus and Bifidobacterium. The lack of colonization
seen for the Lactobacillus, may be due, at least in part, to issues
with the probiotic, outlined above. However, the reason for
low colonization with Bifidobacterium, remains unclear, as
no clinical variable included in our analyses had a negative
association with either genus, and all probiotic-supplemented
infants that had samples collected at > 36 weeks gestation
(post-supplementation) still had Bifidobacterium present
(Supplementary File 2). Whether Bifidobacterium colonizes the
probiotic-supplemented infant gut may be dependent on the
complex interaction of multiple factors.

The greater abundance of Bifidobacterium colonization may
persist beyond probiotic treatment. As previously mentioned,
probiotic treatment for infants at TUH ceases between 34-
and 36-weeks gestational age. However, our results suggest
that Bifidobacterium persists beyond this time point, as the
genus was present in all 23 infants with samples collected
> 36-weeks gestation. This supports previous studies that
have observed long-term probiotic-species colonization, at
least with Bifidobacterium (14, 83). As moderate to late-
preterm infants are at a lower risk of acute disorders
than those born very-preterm (34, 35), long-term benefits
provided through probiotic-treatment may be more significant
for the moderate to late-preterm demographic. Further work
needs to be done to explore long-term differences between
supplemented early- and non-supplemented moderate/late-
preterm infants.
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Probiotic Supplementation Associated
With Differences in Non-probiotic Taxa
Enterobacter, Cronobacter, Klebsiella, Veillonella and Clostridium
Sensu Stricto 1 were all higher in probiotic supplemented
infants, whilst Streptococcus had a greater abundance in those
not supplemented. The significance of such modulation is
unclear, as despite several notable pathogens within these
genera, many other species can be considered normal flora.
As early-life microbial colonization occurs concomitantly
with development of the immune system, immune-system
maturation is influenced by the presence of commensal
microbes (84), therefore, fewer commensal microbes at
this stage of life may be detrimental long-term. Although
it is unclear whether these specific taxa play a role in
morphological or functional development of the immune
system (84), their presence will at least lead to preferential
development of immune tolerance, reducing the likelihood
of such taxa reaching their “pathogen-potential” later in life.
In addition, if these taxonomic differences persist, specifically
reduced levels of Veillonella, non-supplemented infants
may be at a greater risk of chronic diseases like asthma,
which has previously been shown to be associated with such
differences (23).

At the species level, there were notable differences in
Veilonella parvula, Klebsiella pneumoniae and Staphylococcus
lugdunensis. S. lugdunensis was found in all non-supplemented
but not in probiotic-supplemented infants, and V. parvula and
K. pneumoniae across all probiotic-supplemented but not in non-
supplemented infants. Although this appears to align, in part,
to the difference in probiotic-supplemented at the genus level,
these differences may be better explained by other variables.
For instance, K. pneumoniae was one of the most abundant
taxa in probiotic-supplemented infants. However, it is possible
that this species was selected for through antibiotic treatment
(85), which seems likely when considering all three of the
probiotic-supplemented infants received antibiotics and that K.
pneumoniae had the greatest abundance of ABR genes across
all species (Supplementary File 3). Unfortunately, the sample
size of the shotgun analysis was too small to draw conclusions,
and future work should apply shotgun methods to a greater
sample size to elucidate why we are seeing differences in
given taxa.

Differences in Functional Profiles Between
Treatment Groups
These limited statistically significant taxa, including a negligible,
non-significant difference in the probiotic taxa, may not be
physiologically insignificant. From both an ecological and
physiological perspective, several small changes in what may
be critical taxa, may have significant consequences, especially
if these differences are in taxa that harbor genes critical to
key environmental processes. Although not significant, and as
previously mentioned, ABR genes were in higher abundance
across the probiotic-supplemented group, whilst only present in
a single non-supplemented infant, with Hydrogen Production
following the same pattern. The presence of ABR and Hydrogen

Production genes in the probiotic-supplemented infants is also
closely linked to specific species. The previously mentioned
abundances of K. pneumonia and V. parvula, along with E.
flexneri (in one infant), were the only species across all probiotic-
supplemented infants to have these pathways present. Although
this example may not have any significant implications, it
highlights the functional importance the presence of a single
species can have. Another example of this importance is
highlighted by the lower abundance of 1.3-beta-galactosyl-N-
acetylhexosamine phosphorylase in the non-supplemented group
(Supplementary File 1). The enzyme is a critical component
of an enzymatic system within Bifidobacterium spp. that
metabolizes human milk oligosaccharides. Thus, without species
like B. bifidum, the non-supplemented infants have less
capacity to reap the benefits of breast feeding. Thus, although
differences may be subtle and temporary for species like
B. bifidum, these differences could have larger, long lasting
physiological consequences.

Limitations
This study has several limitations. This includes the different ages
in the treatment-groups, the distribution of samples across two
sequencing runs, the limited taxonomic depth provided through
16S rRNA gene amplicon sequencing, and the small samples size
that underwent shotgun metagenomics. To mitigate the effect
of the different ages between the treatment groups, and the
batch-effect introduced through multiple sequencing runs, both
variables were included in all three of the mixed effects models.
As for the limited taxonomic depth and limited sample size of the
sub-cohort that underwent shotgun metagenomics, this could be
overcome using shotgun metagenomics across the entire cohort.
However, this technique, and others of similar resolution, are cost
prohibitive at present (32).

CONCLUSION

There was a significant difference in overall gut microbiome
community composition between probiotic-supplemented
and non-supplemented infants, with alpha diversity greater
in the supplemented infants. Moderate to late preterm-
infants who go without probiotic-supplementation may be
missing out on stabilizing-effects provided through probiotic-
supplementation, which may help to prevent disease. These
results suggest that there could be a role for probiotic
supplementation in the treatment of late-preterm infants
in North Queensland, Australia. However, caution should
be taken when extrapolating from single-center studies to
other locations. In addition, rather than provide answers, the
differences in taxonomy prompt more questions. Significant
differences exist at the genus level, but what are the consequences
of these differences? Additionally, differences observed at
both the species and functional level highlight the power
of shotgun metagenomic sequencing, and we suggest that
as the cost of this technology continues to decrease, that
future work should adopt this approach. Obtaining species-
level and functional profiles in this cohort would provide
us with a better understanding of the physiological and
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ecological consequences of withholding probiotic-treatment
from late-preterm infants.
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