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Acute kidney injury (AKI) is a common occurrence in the neonatal intensive care unit
(NICU). In recent years, our knowledge of the incidence and impact of neonatal AKI on
outcomes has expanded exponentially. Neonatal AKI has been shown to be associated
with adverse outcomes including increased length of mechanical ventilation, prolonged
length of stay, and rise in mortality. There has also been increasing work suggesting
that neonates with AKI are at higher risk of chronic kidney disease (CKD). In the past,
AKI had been defined multiple ways. The utilization of the neonatal modified Kidney
Disease: Improving Global Outcomes (KDIGO) criteria as the standard definition for
neonatal AKI in research and clinical care has driven the advances in our understanding
of neonatal AKI over the last 10 years. This definition has allowed researchers and
clinicians to better understand the incidence, risk factors, and outcomes associated
with neonatal AKI across populations through a multitude of single-center studies and
the seminal, multicenter Assessment of Worldwide Acute Kidney Injury Epidemiology in
Neonates (AWAKEN) study. As the impacts of neonatal AKI have become clear, a shift in
efforts toward identifying those at highest risk, protocolizing AKI surveillance, improving
prevention and diagnosis, and expanding kidney support therapy (KST) for neonates
has occurred. These efforts also include improving risk stratification (identifying high risk
populations, including those with nephrotoxic medication exposure) and diagnostics
(novel biomarkers and diagnostic tools). Recent work has also shown that the targeted
use of methylxanthines may prevent AKI in a variety of high-risk populations. One of
the most exciting developments in neonatal AKI is the advancement in technology to
provide KST to neonates with severe AKI. In this comprehensive review we will provide
an overview of recent work and advances in the field of neonatal AKI. This will include
a detailed review of (1) the definition of neonatal AKI, (2) the epidemiology, risk factors,
and outcomes associated with neonatal AKI, (3) improvements in risk stratification and
diagnostics, (4) mitigation and treatment, (5) advancements in the provision of KST to
neonates, and (6) the incidence and risk of subsequent CKD.

Keywords: acute kidney injury, neonatal, continuous renal replacement therapy, fluid overload, premature
(babies), NICU, renal failure, kidney support therapy

INTRODUCTION

Acute kidney injury (AKI) occurs commonly in the neonatal intensive care unit (NICU) and is
associated with increase morbidity and mortality. Furthermore, those who develop neonatal AKI
may be at increased risk for the development of chronic kidney disease (CKD). With ongoing
study, the definition of neonatal AKI has evolved and been standardized, improving our ability
to quantify and describe the epidemiology and outcomes associated with neonatal AKI. Here we
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will review the definition of neonatal AKI, the epidemiology,
risk factors, and outcomes associated with neonatal AKI,
strategies to improve risk stratification, diagnostics, mitigation,
and treatment, recent advances in kidney support therapy (KST)
for neonates, and the incidence and risk for CKD following
AKI in the NICU.

DEFINITION

Over the last 20 years the field of critical care nephrology
and the study of AKI have been driven by the utilization of
agreed upon standardized definitions of AKI. In 2012, Jetton
et al. first put forth a modification of the Acute Kidney Injury
Network AKI definition and subsequently the Kidney Disease:
Improving Global Outcomes (KDIGO) definition was developed
and modified for neonates (1). This definition has since been
adopted as the neonatal modified KDIGO definition and has
served as the consensus definition that should be utilized in
research and clinically to diagnose and stage AKI (Table 1)
(2, 3). This definition was agreed upon as the consensus
definition of neonatal AKI at a multidisciplinary 2013 National
Institutes of Health workshop dedicated to neonatal AKI (2).
The neonatal, modified KDIGO definition represents the first
consensus definition of neonatal AKI and has been validated in
the international multicenter, Assessment of Worldwide Acute
Kidney Injury Epidemiology in Neonates (AWAKEN) study (1).

While the development and utilization of the neonatal
modified KDIGO definition has driven the advancements in the
field over the last 5–10 years, it has also become clear that there
are short-comings of the current definition that will warrant
future refinement. The most obvious issues relate to utilizing the
current thresholds of changes in serum creatinine (SCr) to define
neonatal AKI. A recent secondary analysis of the AWAKEN study
shows that the ideal definition of neonatal AKI may not be the
same across gestational age (GA) groups (4). Similarly, work
by Gupta et al. interrogated the impact of the failure of SCr to
drop over the first postnatal week, which does not qualify as
AKI by the current neonatal modified KDIGO definition (5). In
this study of 106 neonates with hypoxic ischemic encephalopathy
(HIE), a failure of SCr to drop by 50% or fall below 0.6 mg/dL
was associated with adverse outcomes. Additionally, the optimal
definition of oliguria that defines AKI in neonates and the

Abbreviations: AKI, acute kidney injury; NICU, neonatal intensive care
unit; CKD, chronic kidney disease; KST, kidney support therapy; KDIGO,
Kidney Disease: Improving Global Outcomes; AWAKEN, Assessment of
Worldwide Acute Kidney Injury Epidemiology in Neonates; SCr, serum
creatinine; GA, gestational age; HIE, hypoxic ischemic encephalopathy; ACE,
angiotensin converting enzyme; NSAIDs, non-steroidal anti-inflammatory drugs;
kg, kilograms; BW, birth weight; LBW, low birth weight; GFR, glomerular
filtration rate; aOR, adjusted odds ratio; CI, confidence interval; VLBW, very low
birth weight; FO, fluid overload; NTX, nephrotoxic medication; MRI, magnetic
resonance imaging; NEC, necrotizing enterocolitis; IQR, interquartile range;
NINJA, Nephrotoxic Injury Negated by Just-in-time Action; ECLS, extracoporeal
life support; KIDMO, Kidney Intervention during Extracorporeal Membrane
Oxygenation; IVH, intraventricular hemorrhage; BPD, bronchopulmonary
dysplasia; RR, relative risk; NGAL, neutrophil gelatinase associated lipocalin; PD,
peritoneal dialysis; CKST, continuous kidney support therapy; PCR, protein-to-
creatinine ratio; BMI, body mass index; HTN, hypertension; tx, treatment.

incorporation of novel biomarkers (discussed later) into the
definitions of AKI remain active areas of research need in
neonatal AKI. As with all definitions in medicine, the definition
of neonatal AKI represents an iterative process that will be refined
over time with future consensus conferences. At this time, the
neonatal modified KDIGO definition remains the gold-standard
to define neonatal AKI for clinical and research purposes.

EPIDEMIOLOGY, RISK FACTORS, AND
OUTCOMES OF NEONATAL AKI

To understand the unique epidemiology, risk factors, and
outcomes associated with neonatal AKI, it is important to
appreciate the nuances of neonatal renal development and
physiology. Neonatal kidneys are particularly susceptible to
hypoperfusion and ischemia secondary to the dynamic changes
in renal blood flow that occur postnatally. These perfusion
alterations are driven by changes in the renin-angiotensin system
and prostaglandins making neonates susceptible to medications
such as angiotensin-converting enzyme (ACE) inhibitors and
non-steroidal anti-inflammatory drugs (NSAIDS).

In utero nephron development begins at 5 weeks’ gestation
and continues to 34–36 weeks of gestation (6). The majority
of nephrogenesis occurs late in pregnancy with up to 60% of
nephrogenesis occurring in the third trimester (6, 7). While final
nephron number is highly variable, each additional kilogram (kg)
increase in birth weight (BW) confers nearly 200,000 additional
nephrons (8–10). As a result, premature birth and low birth
weight (LBW) both alter final nephron number and development
increasing the risk for AKI and subsequent CKD (11–18). The
neonatal kidney continues to mature over the first two postnatal
years as renal vascular resistance falls, cardiac output to the
kidney increases, and the adult-level glomerular filtration rate
(GFR) is established (19).

Over the last decade, our understanding of the epidemiology
of neonatal AKI has expanded exponentially with the utilization
of the neonatal modified KDIGO consensus definition of
neonatal AKI. In the largest study to date, the AWAKEN study,
investigators evaluated the incidence and impact of neonatal
AKI in an international, multicenter cohort study of 2022
neonates admitted to 24 NICUs over a 3-month period. In this
study, incidence of AKI was 30%, with variation by GA (≥22
to <29 weeks’: 48%; ≥29 to <36 weeks’: 18%; ≥36 weeks’: 37%)
(1). This study showed that AKI in neonates was independently
associated with increased mortality (9.7 vs. 1.4%; p < 0.001;
adjusted odds ratio (aOR) 4.6 [95% confidence interval (CI)
2.5–8.3; p < 0.0001] and length of stay [adjusted parameter
estimate 8.8 days (95% CI 6.1–11.5); p < 0.0001] after adjustment
for 16 variables.

Though the incidence of neonatal AKI is high among NICU
patients, specific sub-populations are at particularly high risk and
warrant further discussion (Table 2). Several of these populations
are discussed in detail below.

Prematurity and Low Birth Weight
There has been a considerable amount of work highlighting
the high incidence and impact of AKI in premature infants.
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TABLE 1 | Neonatal acute kidney injury diagnostic criteria.

AKI stage Serum creatinine (SCr) criteria Urine output criteria (hourly rate)

0 No change in SCr or SCr rise < 0.3 mg/dL ≥0.5 ml/kg/h

1 SCr rise ≥ 0.3 mg/dL rise within 48 h or SCr rise ≥ 1.5–1.9 × baseline SCra <0.5 ml/kg/h × 6–12 h

2 SCr rise ≥ 2.0–2.9 × baseline SCra <0.5 ml/kg/h for >12 h

3 SCr rise ≥ 3 × baseline SCra or SCr ≥ 2.5 mg/dLb or Kidney support therapy utilization <0.3 ml/kg/h for ≥24 h or Anuria for ≥12 h

Modified, neonatal Kidney Disease: Improving Global Outcomes (KDIGO) criteria. aBaseline SCr defined as lowest previous SCr value. bSCr value of 2.5 mg/dL represents
glomerular filtration rate of <10 mL/min/1.73 m2. SCr, serum creatinine; mg/dL, milligrams per deciliter; h, hours. Adapted from Kidney Disease: Improving Global
Outcomes (KDIGO) Acute Kidney Injury Workgroup. KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl 2012;2:1–138.

This work has confirmed a significant association between LBW,
early GA, and AKI (11–16). In a single retrospective study
of 455 very LBW neonates (VLBW, i.e., ≤1,500 g), Carmody
et al. showed that AKI occurred in 40% of neonates with 16.5%
of infants experiencing multiple episodes of AKI (20). In this
cohort, AKI was associated with increased mortality (aOR, 4.0;
95% CI 1.4–11.5) and length of stay (11.7 days; 95% CI 5.1–
18.4 days). This group also noted that AKI was only present
as a diagnosis in 13.5% of discharges, highlighting the need for
continued education of providers. More recently, a secondary
analysis of the Preterm Erythropoietin Neuroprotection Trial
evaluated the incidence and impact of neonatal AKI in a cohort of
932 extremely low GA neonates (13). In this study the incidence
of AKI was 38% and differed significantly by GA, with AKI rates
being significantly higher with decreasing GA and BW. In 2021,
Wu et al. published a meta-analysis of 50 articles including over
10,000 premature and LBW neonates evaluating the incidence
and impact of neonatal AKI (21). This study showed a pooled
incidence of AKI of 25% (95% CI 20–30%), and those with
AKI had significantly higher odds of mortality (OR 7.1; 95% CI
5.9–8.6; p < 0.01).

Congenital Heart Disease
Neonates and infants undergoing cardiac surgery are among the
highest risk patients for developing AKI (22, 23). This results
from the complex interaction of a multitude of risk factors
including but not limited to low cardiac output, single ventricle
physiology, ischemic-reperfusion injury, fluid overload (FO), and
nephrotoxic medication (NTX) receipt (17, 24, 25). Despite these
factors, the incidence and impact of AKI in this population
remains varied in the literature. In a single center retrospective
study of 430 infants < 90 days of age undergoing surgical
correction, AKI occurred in 52% of the cohort (22). In this study,
stage 2 and 3 AKI were associated with increased mortality. More
recently the Neonatal and Pediatric Heart and Renal Outcomes
in Newborns (NEPHRON) collaborative evaluated the incidence
and impact of AKI in a multicenter (22 centers) cohort of
neonates (n = 2,240) undergoing congenital heart surgery (26).
The overall incidence of AKI in this study was 53.8%, and the
prevalence of AKI peaked on postoperative day 1; only stage 3
AKI was associated with increased mortality (aOR 2.44; 95% CI
1.3–4.61). A novel finding in this study is the incidence of AKI
amongst infants undergoing cardiac surgery varied by institution
from 27 to 86%, and a significant amount of AKI was transient
in nature. The authors suggest the current definition of neonatal

AKI may need to be adjusted to capture truly meaningful
phenotypes of cardiac surgery-associated AKI in neonates.

Hypoxic Ischemic Encephalopathy
Neonates with perinatal asphyxia, also known as HIE, often
develop multiorgan failure, which impacts virtually every organ
system. AKI has been shown to occur commonly in infants
with HIE with an incidence ranging from 38 to 72% (27–32).
In a single center study of 96 neonates with HIE undergoing
therapeutic hypothermia, AKI occurred in 38% of neonates
and independently predicted prolonged duration of mechanical
ventilation and NICU stay (28). In a follow-up study, AKI during
therapeutic hypothermia was found to be associated with the
development of abnormal magnetic resonance imaging (MRI)
findings at 7–10 postnatal days (33). The impact of therapeutic
hypothermia on the incidence of AKI in HIE remains unclear,
with trials and retrospective studies demonstrating conflicting
results (34, 35).

Necrotizing Enterocolitis
Necrotizing enterocolitis (NEC) occurs in 2–5% of NICU
admissions and represents a significant cause of morbidity and
mortality. Infants with NEC have multiple risk factors for AKI
including sepsis, hemodynamic instability, NTX receipt, systemic
inflammation, increased intrabdominal pressure, and frequently
prematurity (36, 37). In a single center retrospective study of
202 neonates with NEC, the overall incidence of severe AKI was
32.6% and in those requiring surgical intervention, the incidence
was 58.7% (36). This study also showed that severe AKI was
associated with a longer length of stay {124 days [interquartile
range (IQR) 88–187] vs. 82 days (42–126); p < 0.001}. Criss et al.
reported a similar incidence of any AKI of 54% in a single center
cohort of 181 neonates with NEC (38). Studies in neonates with
NEC have consistently shown that AKI occurs commonly and is
associated with increased morbidity and mortality (11, 38, 39).

Nephrotoxic Medications
Critically ill neonates are frequently exposed to NTX during their
NICU stay. Table 3 outlines the mechanism and nephrotoxicity of
commonly encountered NTX in neonates. In older children NTX
exposure has been shown to be a potentially modifiable cause of
AKI (40, 41). As a result, there has been an increased interest in
understanding the epidemiology of NTX exposures in neonates.
Rhone et al. evaluated 107 VLBW neonates and described the
epidemiology of NTX exposure (42). In this study 87% of all
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TABLE 2 | Epidemiology of high risk populations for neonatal acute kidney injury.

NICU sub-population Study details AKI incidence Significant findings

Premature and low birth weight
(LBW) neonates

Hingorani et al. (n = 900) (14) 19% severe AKI† • Stage 3: AKI occurring 7 days before death
independently associated with death
• Severe AKI associated with increased hazard of death

Askenazi et al. (n = 923) (13) 38% • 18% had 1 episode of severe† AKI
• Rates of severe† AKI:

◦ 24 weeks GA: 27.8%
◦ 25 weeks GA: 21.9%
◦ 26 weeks GA: 13.6%
◦ 27 weeks GA: 9.4%

• AKI rates significantly higher with decreasing GA and BW

Lee et al. (n = 276) (15) 56%
(Stage 1: 30%; Stage 2: 17%;
Stage 3: 9%)

• High-frequency ventilation support, PDA, lower GA, and
inotropic agent utilization independently associated with AKI
• Maternal pre-eclampsia is protective against neonatal
AKI
• AKI associated with higher mortality before 36 weeks
PMA

Carmody et al. (n = 455) (20) 39.8%
(16.5% multiple episodes)

• GA < 28 weeks’ associated with AKI
• AKI independently associated with increased mortality
and increased length of hospital stay

Koralkar et al. (n = 229) (87) 18% • AKI was independently associated with increased
mortality

Askenazi et al. (n = 195) (88) Case–control study

Congenital heart disease (CHD)
and cardiac surgery

Sasaki et al. (n = 582) (89) 38% • AKI prevalence peaked on post-operative day 1 (17%)
• No stage of AKI was associated with ventilation hours or
length of stay

Alten et al. (n = 22,400) (26) CS-AKI 53.8%
(Stage 1: 31%; Stage 2:
13.5%; Stage 3: 9.1%)

• CS-AKI varied greatly across institutions
• Pre-operative enteral feeding and open sternum were
associated with less CS-AKI
• CPB was associated with increased CS-AKI
• Stage 3: CS-AKI independently associated with mortality

Alabbas et al. (n = 122) (90) 62% • Severe AKI (stage 3) was independently associated with
increased mortality and length of stay

Blinder et al. (n = 430) (22) 52%
(Stage 1: 31%; Stage 2: 14%;
Stage 3: 7%)

• Single ventricle status, CPB, and higher reference SCr
were associated with post-operative AKI
• Post-operative AKI (all stages) associated with longer
intensive care stay
• More severe AKI associated with in-hospital mortality,
longer duration of mechanical ventilation, longer duration of
inotropic support
• Stage 3: AKI associated with systemic ventricular
dysfunction at hospital discharge

Hypoxic ischemic
encephalopathy (HIE)

Kirkley et al. (n = 113) (91) 41.6% • Outside hospital birth, IUGR, and meconium at delivery
associated with increased odds of AKI
• Infants with AKI had longer duration of stay compared to
those without AKI

Chock et al. (n = 38) (92) 39% • Those with AKI had higher renal artery saturations (Rsat;
via NIRS) compared to those without AKI after 24 h of life
• Rsat > 75% by 24–48 h predicted AKI with sensitivity
79% and specificity 82% (AUC 0.76)

Tanigasalam et al. (n = 120) (35) 32% in TH;
60% in standard tx

AKI incidence in TH vs. standard tx groups:
• Stage 1: 22 vs. 52%
• Stage 2: 5 vs. 5%
• Stage 3: 5 vs. 3%

Sarkar et al. (n = 88) (33) 39% • AKI independently associated with abnormal brain MRI

Selewski et al. (n = 96) (28) 38% • AKI predicted prolonged duration of mechanical
ventilation and length of stay

Necrotizing enterocolitis (NEC) Garg et al. (n = 202) (36) 32.6% severe AKI NEC dx;
58.7% after surgical NEC

• Surgical NEC, outborn status, exposure to antenatal
steroids, and positive blood culture sepsis had increased
odds of severe AKI
• Severe AKI associated with longer duration of
hospitalization

(Continued)
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TABLE 2 | (Continued)

NICU sub-population Study details AKI incidence Significant findings

Bakhoum et al. (n = 77) (39) 42.9%
(Stage 1: 18.2%;
Stage 2: 13%;
Stage 3: 11.7%)

• Bell’s stage II NEC with AKI: 63.6%
• Bell’s stage III NEC with AKI: 36.4%
• Bell’s Stage III NEC, lower GA, maternal
pre-eclampsia/eclampsia, gentamicin/vancomycin
exposure, and empiric antibiotic use independently
associated with AKI
• AKI independently associated with mortality

Criss et al. (n = 181) (38) 54%
(Stage 1: 22%; Stage 2: 18%;
Stage 3: 16%)

• Neonates with AKI had higher mortality and higher
chance of death

Nephrotoxic medications (NTX) Salerno et al. (n = 8,286) (43) 17% • Sepsis, lower baseline SCr, and duration of combination
therapy were associated with increased odds of AKI
• [Furosemide + tobramycin] and
[vancomycin + piperacillin-tazobactam] were associated
with decreased risk of AKI relative to
[gentamicin + indomethacin]

Rhone et al. (n = 107) (42) Infants with AKI received more
NTX per than those without AKI

• Exposure to 1 NTX occurred in 87% of VLBW infants
◦ Gentamicin: 86%
◦ Indomethacin: 43%
◦ Vancomycin: 25%

• Inverse relationship between BW and NTX received per
day

Extracorporeal Life support
(ECLS)

Murphy et al. (n = 446) (49) 51% • AKI most common in those with cardiac disease but
varies by underlying diagnosis
• Risk of mortality differed by diagnostic category in the
presence or absence of AKI

◦ Without AKI, CDH independently predicts mortality

Fleming et al. (n = 832) (48) 74% • AKI during ECLS was associated with longer duration of
ECLS support and increased adjusted odds for mortality

Zwiers et al. (n = 242) (45) 64% • Increased risk of mortality at highest stage of AKI

NICU, neonatal intensive care unit; AKI, acute kidney injury; GA, gestational age; BW, birth weight; PDA, patent ductus arteriosus; PMA, post menstrual age; CS-AKI,
cardiac surgery-associated AKI; CPB, cardiopulmonary bypass; SCr, serum creatinine; IUGR, intrauterine growth restriction; Rsat, renal saturations; NIRS, near-infrared
spectroscopy; AUC, area under the curve; TH, therapeutic hypothermia; MRI, magnetic resonance imaging; NEC, necrotizing enterocolitis; NTX, nephrotoxic medication;
CDH, congenital diaphragmatic hernia; ECLS, extracorporeal life support; tx, treatment. †Severe AKI defined as = stage 2 AKI.

neonates received at least one NTX, with gentamicin (86%),
indomethacin (43%) and vancomycin (25%) most commonly
administered. Neonates in this study received NTX for a median
8 days (IQR 3–21) with a significant difference in mean days of
NTX exposure in those with AKI compared to those without AKI
(23.9 vs. 9.9 days; p < 0.001).

Since the publication of this seminal work, there have been
further studies evaluating NTX exposure in neonates. In 2021,
Salerno et al. evaluated the impact of combinations of NTX in
a database including 268 NICUs (43). In this study of 8,286
neonates exposed to NTX, the incidence of AKI was 17%,
and increased duration of NTX exposure was associated with
increased risk of AKI. An interesting finding in this study is
that 23,399 neonates were exposed to NTX during the study
period, but 15,113 neonates were excluded from the analysis
because they did not have 2 SCr measured. This highlights
the potential need for improved surveillance strategies, such as
Nephrotoxic Injury Negated by Just-in-time Action (NINJA)
(discussed below) (44).

Extracorporeal Life Support
Neonates treated with extracorporeal life support (ECLS) are
the sickest patients in the NICU and are at increased risk

of AKI for a multitude of reasons including hypotension,
underlying disease etiology, systemic inflammation, hemolysis
and hemoglobinuria, micro-emboli, non-pulsatile flow, and
NTX exposure. The incidence of AKI in this population is
as high as 70% (45–48). In a retrospective single-center study
of 242 neonates treated with ECLS, Zwiers et al. found the
incidence of AKI was 64% with the most severe stage of AKI
associated with increased mortality (45). In a recent report
from the multicenter Kidney Interventions During Membrane
Oxygenation (KIDMO) study group about 446 neonates treated
with ECLS, the incidence of AKI in the overall cohort was 51%,
but the AKI incidence varied by underlying diagnosis (cardiac
68%, congenital diaphragmatic hernia 38%, respiratory 33%)
(49). The association of AKI with outcomes varied significantly
by underlying diagnosis as well.

Impact of Acute Kidney Injury on Other
Organ Systems
Across medicine, the paradigm surrounding AKI has shifted
from an isolated disease process impacting one organ to a
multisystem disease process that impacts distant organs. Recent
work in neonates has begun to highlight this. Studies in neonates
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TABLE 3 | Nephrotoxic medications frequently used in neonates.

Medication Mechanism of action Site of kidney damage Nephrotoxicity Notes

Acyclovir Inhibits DNA synthesis and viral
replication via inhibition of viral
DNA polymerase

Tubule Crystallization and obstruction
occur causing tubular damage,
particularly when in low urinary
flow state

Can be used for prophylaxis
(CMV, HSV, varicella, herpes
zoster), suppression (HSV), and
treatment (varicella zoster,
herpes zoster, HSV, varicella).
Dosage adjustment for renal
impairment available (93).

Amikacin Inhibits protein synthesis via
binding to 30S ribosomal
subunits

Proximal tubule, S1 and S2
segments, late changes in S3

Proximal tubular damage after
accumulation of
aminoglycoside

Dosage adjustment for renal
impairment as well as
augmented renal clearance
available (93).

Amphotericin B Disrupts fungal cell wall
synthesis and cell membrane
permeability via binding to
ergosterol which causes
leakage of cellular components
and subsequent cell death

Distal tubule Vasoconstriction and direct
distal tubular toxicity

Hydration and sodium repletion
prior to administration of
amphotericin B may reduce risk
of renal toxicity. Dosage
adjustment for renal impairment
available (93).

Gentamicin Disrupts bacterial protein
synthesis and cell membrane
integrity via biding to 30S
ribosomal subunit

Proximal tubule, S1 and S2
segments, late changes in S3

Proximal tubular damage after
accumulation of
aminoglycoside

Dosage adjustment for renal
impairment available (93).

Indomethacin Non-selective cyclooxygenase
inhibitor decreasing
prostaglandin synthesis

Afferent arteriole Hemodynamically mediated:
causes afferent arteriole
vasoconstriction and reduced
GFR

Dosage adjustment for renal
impairment available (93).

Piperacillin/Tazobactam Inhibits bacterial cell wall
synthesis leading to bacteria
lysis

Tubule, particularly proximal
tubule

Inhibits tubular secretion and
clearance, direct toxicity

Dosage adjustment for renal
impairment available (93).

Vancomycin Inhibits cell wall synthesis of
gram-positive bacteria via
blocking glycol-peptide
polymerization

Proximal tubule Direct toxicity, otherwise
unclear

Dosage adjustment for renal
impairment available (93).

DNA, deoxyribonucleic acid; CMV, cytomegalovirus; HSV, herpes simplex virus; GFR, glomerular filtration rate.

report associations between neonatal AKI and intraventricular
hemorrhage (IVH) and abnormal brain MRI (33, 50). In a
secondary evaluation of 866 premature neonates from the
AWAKEN study, AKI was associated with increased odds of
IVH (aOR, 95% CI 1.04–2.56) (50). Multiple recent single center
studies have confirmed this association of AKI with IVH in
premature infants (51, 52). AKI during HIE has also been shown
to be associated with increased odds of abnormal brain MRI
findings at 7–10 postnatal days (33). In a recent 2-year follow-
up study of 101 neonates with HIE, AKI was associated with an
unfavorable outcome (death or disability according to Griffiths
Mental Development Scales) at 24 months (53).

Recent work has also begun to establish a link between
AKI in neonates and respiratory outcomes including length of
mechanical ventilation and bronchopulmonary dysplasia (BPD).
Starr et al. reported findings from the AWAKEN study which
showed that neonates 29–32 weeks’ GA with AKI were more
likely to have a poor composite outcome of moderate to severe
BPD and/or death (aOR 4.2, 95% CI: 2.1–8.6; p < 0.001)
(54). This confirmed previous single center work by Askenazi
et al. which showed a higher risk of oxygen requirement or of
dying at 28 days of life [relative risk (RR) 1.7, 95% CI 1.2–2.4;
p < 0.002] in a single center cohort of 122 premature infants
with AKI (55).

ADVANCES IN DIAGNOSIS,
PREVENTION AND MITIGATION, AND
TREATMENT OF SEQUELAE

There are currently no proven treatments for established AKI.
Despite multiple clinical trials across critical care nephrology,
no therapeutic interventions have been shown to be effective in
patients once AKI has occurred. As a result, efforts to advance the
field have shifted toward improved diagnostics, prevention and
mitigation strategies, and treatment of sequelae in neonatal AKI.

Diagnostics
SCr is currently the “gold-standard” of biomarkers to identify
AKI, but there are a multitude of challenges with SCr as a
biomarker. Most importantly, SCr serves as a measure of kidney
function, rather than injury (56). Furthermore, SCr is a delayed
(up to 48–72 h) marker of kidney function, which may not
change until 25–50% of the kidney function has been lost (6, 57).
These impediments taken together may explain the challenges
faced with the development of successful clinical trials and
interventions in AKI. Efforts to detect AKI earlier have led to the
development of novel biomarkers that lead to the timely diagnosis
of AKI, improved clinical trials, and improved outcomes.
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These novel biomarkers were identified and developed initially
in high-risk populations such as those undergoing cardiac
surgery, where the incidence of AKI is high and the timing of
the insult is known. Many of these biomarkers show promise
in the early and accurate diagnosis of neonatal AKI (Table 4).
Neutrophil gelatinase associated lipocalin (NGAL) is perhaps
the most studied novel biomarker in neonates and as described
in Table 4, may predict AKI earlier than changes in SCr in a
variety of neonatal populations. Studies to validate its use are
ongoing, and consensus on how best to utilize NGAL is lacking.
Understanding how to best utilize these novel biomarkers in
clinical practice is the subject of ongoing research.

Prevention and Mitigation
Risk Stratification
A critical step in improving outcomes in AKI is the early
identification of populations that are at the highest risk for the
development of AKI. The concept of risk stratification is an active
area of research across critical care nephrology and is embodied
by the concept of “renal angina.” In pediatric patients, the “Renal
Angina Index” has been developed based on clinical risk factors
and signs of injury. This work has parlayed into thoughtful
utilization of biomarkers to identify patients early on that are
at the highest risk of developing severe AKI (58). Recently, a
similar scoring system has been developed in a multicenter cohort
of critically ill neonates in India termed the “STARZ” study
(59). Utilization of this scoring system allowed for the successful
prediction of AKI in the first 7 postnatal days. Further research
is needed to develop and validate such scoring tools in other
neonatal populations.

Nephrotoxic Medication
The contribution of NTX receipt to the incidence of AKI has been
increasingly recognized among hospitalized children. This led to
the development of the NINJA study designed to mitigate NTX-
associated AKI in older children. This was initially studied as a
single center experience and validated in a multicenter study in
hospitalized children (40, 41). This strategy utilizes the electronic
medical record to identify patients at high risk of nephrotoxic
AKI (based on receipt of intravenous aminoglycosides ≥3 days
or ≥3 NTX given concurrently) and subsequently trigger kidney
function monitoring with daily SCr. Stoops et al. has extended
this work to critically ill neonates in the “Baby NINJA” study
(44). This study identified neonates at high risk of nephrotoxic
AKI (defined as ≥3 NTX within 24 h or ≥4 calendar days
of an intravenous aminoglycoside) and triggered daily SCr
measurement until 2 days after end of exposure or end of AKI.
This study showed implementation was feasible and associated
with improved AKI metrics including reduced NTX exposure,
reduced nephrotoxic AKI, and reduced AKI intensity.

Methylxanthine Therapy: Theophylline and Caffeine
Methylxanthines are adenosine-receptor antagonists. In
high risk populations methylxanthines have been shown to
prevent the development of AKI by preventing adenosine
driven pre-glomerular vasoconstriction and post-glomerular
vasodilation (60).

Theophylline has been extensively studied in neonates with
HIE. There are now nine randomized controlled trials in term
neonates with HIE comparing a single dose of theophylline (5–
8 mg/kg) vs. placebo (60–67). These studies have consistently
shown that theophylline is safe and reduces AKI rates,
protects the renal tubule, and improves fluid balance, GFR and
urine output. The current KDIGO clinical practice guidelines
“suggest that a single dose of theophylline may be given
in neonates with severe perinatal asphyxia who are at high
risk for AKI” (3). To date there have not been any studies
evaluating the impact of theophylline in neonates undergoing
therapeutic hypothermia.

In premature neonates, caffeine is often utilized to prevent
or treat apnea of prematurity. Carmody et al. first evaluated
the impact of caffeine administration during the first postnatal
week on the incidence of AKI in a single center cohort of
140 VLBW neonates (68). This study showed that caffeine
exposure in the first postnatal week was associated with decreased
odds of AKI (aOR 0.22, 95% CI 0.07–0.75; p = 0.02). These
findings were subsequently confirmed in a secondary analysis
of the AWAKEN study (69). More recently, caffeine has been
shown to be associated with lower incidence of AKI in neonates
with NEC (70).

Treatment of Sequelae: Kidney Support Therapy
The indications for KST in neonates are similar to those in
older children and include uremia, electrolyte abnormalities,
metabolic syndromes, inability to provide adequate nutrition,
and the pathologic state of FO. The two modalities of KST
commonly utilized in neonates are peritoneal dialysis (PD)
and continuous kidney support therapy (CKST). The choice
between these two modalities is often driven by clinical
scenario, institutional expertise, and available resources. PD is
generally less resource intensive and may be performed with
the placement of a chronic catheter or a temporary catheter.
A detailed discussion of the utilization of PD in AKI has recently
been published by the International Society for Peritoneal
Dialysis (71).

In recent years there have been extraordinary advances in
the ability to provide CKST to critically ill neonates. Prior to
this time, CKST was provided utilizing machines and filters
that were designed for adults, and significant hemodynamic
instability was common and often prohibitive. More recently,
smaller filters such as the Prismaflex HF-20 (Baxter Healthcare
Corporation, Deerfield, IL; extracorporeal volume 60 mL) have
been developed which can be utilized to provide CKST in
neonates. One of the most exciting advancements has been
the development of CKST devices designed specifically for
utilization in neonates. In 2014, Ronco et al. first reported
the use of the Cardio-Renal Pediatric Dialysis Emergency
Machine (CARPEDIEM R©; Bellco Medtronic, Mirandola, Italy)
device (72). Since, then, similar devices include the Nidus R©

(Allmed, London, England) and the Aquadex R© (CHF Solutions,
Eden Prarie, MN) have been developed with circuit volumes
less than half of that of other available CKST circuits (73,
74). These devices are specifically designed for neonatal
patients to decrease hemodynamic instability and improve CKST
delivery and tolerance.
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TABLE 4 | Neonatal acute kidney injury biomarkers.

Biomarker Properties and production Notable Studies

Authors and year Findings

Cystatin C (CysC) Cysteine protease produced at a
constant rate by all nucleated
cells

Hidayati et al. (94) • Cys-C based estimated GFR to diagnose AKI
◦ Sensitivity: 84.8%
◦ Specific: 61.8%
◦ PPV: 41.8%
◦ NPV: 89.7%

• AUC for CyC: 84.9%
• Optimal cut-off for CysC: 1.605 mg/L

Lagos-Arevalo et al. (95) • Early ICU CysC predicted SCr-based AKI development
• AUC 0.70; 95% CI 0.53–0.89

Li et al. (96) • uCysC independently associated with AKI
• OR 2.07, AUC 0.92

Sarafidis et al. (97) • Asphyxiated neonates had significantly higher
◦ sCysC on DOL 1 (2.86 mg/L (IQR 2.1–3.0) vs. 2.23 (1.75–2.62);
p = 0.049)
◦ uCysC at all time points

Compared to non-asphyxiated infants
• Urine CysC cut-off > 476 ng/mg:

◦ AUC 0.927, p < 0.001
◦ Sensitivity 100%
◦ Specificity 83.3%

• Urine CysC cut-off > 204.4 ng/mL:
◦ AUC 0.937, p < 0.001
◦ Sensitivity 100%
◦ Specificity 91.7%

Askenazi et al. (98) Maximum CysC levels did not differ between those with and without AKI nor
between survivors and non-survivors

Neutrophil
gelatinase-associated
lipocalin (NGAL)

Protein expressed by multiple
tissues including kidney

Sarafidis et al. (99) • uNGAL significantly higher in those with AKI compared to those without
AKI on day AKI diagnosed by SCr
• uNGAL had no significant ability to predict AKI in 1–2 days prior to AKI
development

Tabel et al. (100) • Median uNGAL significantly higher in preterm infants with AKI than those
without AKI on DOL 1 and 7
• uNGAL independently associated with AKI

Sarafidis et al. (97) • Asphyxiated neonates had significantly higher sNGAL and uNGAL at all
time points compared to non-asphyxiated neonates
• sNGAL was significantly higher in asphyxiated infants with AKI compared
to non-asphyxiated neonates at all time points, asphyxiated infants with AKI
and asphyxiated infants without AKI on DOL 1 and 3
• Serum NGAL cut-off > 89.6 ng/mL:

◦ AUC: 0.942, p < 0.001
◦ Sensitivity 100%
◦ Specificity 92.3%

• uNGAL was significantly higher in asphyxiated infants with AKI compared
to non-asphyxiated infants at all time points and in asphyxiated infants without
AKI and non-asphyxiated infants at DOL 10
• uNGAL cut-off > 39.3 ng/mg:

◦ AUC 0.896, p < 0.001
◦ Sensitivity 100%
◦ Specificity 83.3%

• uNGAL cut-off > 18.61 ng/mL:
◦ AUC 0.865, p < 0.001
◦ Sensitivity 100%
◦ Specificity 83.3%

Krawczeski et al. (101) • In term neonates requiring CPB, pNGAL and uNGAL significantly higher at
2 h after CPB and remained elevated for 48 h post-operatively in patients with
AKI
• NGAL 2-hour after CPB the earliest and strongest predictor of AKI

Askenazi et al. (98) • Compared to those without AKI, those with AKI had higher max NGAL
• AKI: 985 ng/mL (95% CI 452, 1,398)
• No AKI: 458 ng/mL (95% CI 210, 587)
• For every 100 ng/mL rise in NGAL, the odds of AKI increased by 20%

◦ OR 1.2 (1.0–1.6), p < 0.01
◦ AUC 0.80

• Combining NGAL and OPN improved ability to detect AKI
◦ AUC 0.90

• No difference in NGAL concentrations between survivors and non-survivors

(Continued)
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TABLE 4 | (Continued)

Biomarker Properties and production Notable Studies

Authors and year Findings

Interleukin-18 (IL-18) Pro-inflammatory cytokine
induced in proximal tubule after
AKI and renal tubular injury

Li et al. (96) • uIL-18 independently associated with AKI in non-septic critically ill
neonates

◦ OR 2.27, AUC 0.72

Askenazi et al. (98) Maximum IL-18 levels did not differ between those with and without AKI nor
between non-survivors vs. survivors

Kidney injury molecule-1
(KIM-1)

type 1 transmembrane protein
that has been found to be highly
upregulated in the proximal
tubule epithelial cells; secreted in
urine after AKI

Askenazi et al. (98) • Maximum KIM-1 levels did not differ between those with and without AKI
• Compared to survivors, non-survivors had higher KIM-1

◦ Non-survivors: 385 pg/mL (95% CI 231, 1,028)
◦ Survivors: 264 (95% CI 147, 549)
◦ For every 100 pg/mL rise in KIM-1, there was a 10% higher odds of
death (OR 1.1 (1.0–1.2), p < 0.02; AUC 0.64)

Sarafidis et al. (97) • Higher absolute uKIM-1 levels in asphyxiated neonates on DOL 10
• uKIM-1 was comparable between those with asphyxia and AKI, those with
asphyxia but no AKI, and non-asphyxiated infants at all time points

Osteopontin (OPN) Cytokine expressed and
upregulated during inflammation
and AKI

Askenazi et al. (98) • Compared to subjects without AKI, those with AKI had higher OPN
◦ AKI: 468 ng/mL (95% CI 247, 655)
◦ No AKI: 217 ng/mL (95% CI 115, 280)
◦ For every 100 ng/mL rise in OPN, the odds of AKI increased by 220%
(OR 3.2 (1.5–9.9), p < 0.01; AUC 0.83)
◦ Combining NGAL and OPN improved ability to detect AKI (AUC 0.90)

• Compared to survivors, non-survivors had higher maximum OPN
◦ Non-survivors: 482 ng/mL (95% CI 281, 631)
◦ Survivors: 20 ng/mL (95% CI 112, 371)
◦ For every 100 ng/mL rise in OPN, there was a 80% higher odds of
death (OR 1.8 (1.2–2.7), p < 0.001; AUC 0.78)

Beta-2 microglobulin
(B2mG)

Peptide produce from cellular
membrane turnover, particularly
elevated with tubular dysfunction
or injury

Abdullah et al. (102) • In term asphyxiated neonates, uB2mG levels were significantly higher in
infants with AKI compared to those without AKI and were found to be
predictive of AKI within the first 24 h after asphyxiation

◦ AKI: 6.8 mg/L vs. no AKI: 2.6 mg/L, p < 0.001
◦ AUC: 0.944
◦ Ideal cut off: 3.8 mg/L

� 81% sensitive
� 81.6% specific

Askenazi et al. (98) Maximum B2mG levels did not differ between those with and without AKI nor
between non-survivors vs. survivors

GFR, glomerular filtration rate; AKI, acute kidney injury; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve; mg/L, milligrams per
liter; ICU, intensive care unit; SCr, serum creatinine; uCysC, urine Cystatin C; sCysC, serum Cystatin C; DOL, day of life; IQR, interquartile range; uNGAL, urine neutrophil
gelatinase lipocalin; sNGAL, serum neutrophil gelatinase lipocalin; CPB, cardiopulmonary bypass; pNGAL, plasma neutrophil gelatinase lipocalin; h, hours; ng/mL,
nanograms per milliliter; CI, confidence interval; uIL-18, urine interleukin-18; OR, odds ratio; pg/mL, picograms per milliliter; uKIM-1, urinary kidney injury molecule-1;
uB2mG, urine Beta-2 microglobulin.

LONG-TERM FOLLOW UP

In the US, a 21% increase in preterm birth rates was noted from
1980 to 2000 (75–77). Survival rates have similarly improved
with those born as early as 25 weeks’ GA now having a >80%
chance of survival (78). With these improved survival rates, risks
for long-term complications of prematurity, including develop
of CKD after AKI, have increased and warrant follow-up. CKD
is increasingly prevalent, particularly in infants born <2.5 kg,
presenting as decreased renal volume, hypertension (HTN),
and/or microalbuminuria (78).

Data from both animal and human models suggest AKI likely
leads to permanent kidney damage (78–83). In a review of
eight longitudinal studies from 1978 to 2014 examining long-
term kidney outcomes following neonatal AKI, rates of CKD in
survivors of neonatal AKI were as high at 66% (78). In a follow-up
study of AKI in VLBW infants at median age of 5 years, children
with a history of AKI had a higher risk of kidney dysfunction
than those who never had AKI (65 vs. 14%, RR 4.5 (1.2–17.1);

p = 0.01) (84). Subjects with kidney dysfunction were more likely
to have had a higher stage of AKI, msore episodes of AKI, higher
peak SCr, and more days with SCr >1 mg/dl. In a long term
follow-up study of extremely premature infants with significant
AKI (SCr > 2.0 mg/dl), Abitbol et al. found that at median follow
up of 6.6 years, 85% of patients had either a reduced GFR or an
elevated urine protein:creatinine ratio (PCR); a SCr > 0.6 mg/dl
and urine PCR > 0.6 mg/mg at 1 year of age were most predictive
of CKD progression (85). They also found an association with
body mass index (BMI) > 85th percentile at 3 years of age and
increased risk of kidney dysfunction.

Although current evidence of significant risk of CKD
following neonatal AKI is largely based on small observational
studies, it is expert opinion that all neonates with an identified
AKI episode should have longitudinal follow-up (78). KDIGO
guidelines recommend patients with a history of AKI have a CKD
evaluation 3 months after their AKI event (3). Aside from this
and recommendations from the American Academy of Pediatrics
to begin blood pressure monitoring earlier in infants born LBW
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(prior to the typical 3 years of age in infants born at term), there
are currently no evidence-based guidelines governing who should
follow neonates after AKI or how frequently they should be
screened for HTN and CKD (86). Chaturvedi et al. recommends
screening of all patients with history of AKI for HTN and
albuminuria at least annually, with more invasive testing (e.g.,
SCr) recommended for patients at higher risk (e.g., more severe
AKI, KDIGO stages 2 and 3) (78). Counseling should also be
performed regarding healthy weight and lifestyle choices given
the association between elevated BMI and kidney dysfunction.
These recommendations underscore the importance of proper
AKI diagnosis in the neonatal period to identify patients in need
of follow-up prior to discharge from the NICU.

CONCLUSIVE RESULTS

Neonatal AKI is prevalent, particularly in high risk populations,
including those born prematurely or with LBW, those with
congenital heart disease, HIE, NEC, and in neonates who receive

NTX or require ECLS. With ever-increasing study and the
utilization of the expert-endorsed, modified, neonatal KDIGO
criteria, the consequences of neonatal AKI are becoming clear.
Identification of those infants at highest risk for AKI using
protocolized surveillance and novel biomarkers is an area of
active study. Avoidance of NTX and treatment of specific, at-
risk populations with methylxanthines may improve AKI rates
or mitigate AKI that has already occurred. With a lack of specific
treatments currently available, prevention and prompt diagnosis
are key. Emerging evidence suggests innovative KST technologies
may improve survival and that long-term follow-up is necessary
given the risk of HTN and potentially CKD after neonatal AKI.
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