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Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity
and mortality. However, it is still uncertain how PE affects neonate metabolism.
We conducted an untargeted metabolomics analysis of cord blood to explore the
metabolic changes in PE neonates. Umbilical cord serum samples from neonates with
preeclampsia (n = 29) and non-preeclampsia (non-PE) (n = 32) pregnancies were
analyzed using the UHPLC-QE-MS metabolomic platform. Different metabolites were
screened, and pathway analysis was conducted. A subgroup analysis was performed
among PE neonates to compare the metabolome between appropriate-for-gestational-
age infants (n = 21) and small-for-gestational-age (SGA) infants (n = 8). A total of
159 different metabolites were detected in PE and non-PE neonates. Creatinine, N4-
acetylcytidine, sphingomyelin (D18:1/16:0), pseudouridine, uric acid, and indolelactic
acid were the most significant differential metabolites in the cord serum of PE neonates.
Differential metabolite levels were elevated in PE neonates and were involved in the
following metabolic pathways: glycine, serine, and threonine metabolism; sphingolipid,
glyoxylate, and dicarboxylate metabolism; and arginine biosynthesis. In PE neonates,
SGA neonates showed increased levels of hexacosanoyl carnitine and decreased
abundance of 3-hydroxybutyric acid and 3-sulfinoalanine. Taurine-related metabolism
and ketone body-related pathways were mainly affected. Based on the UHPLC-QE-MS
metabolomics analysis, we identified the metabolic profiles of PE and SGA neonates.
The abundance of metabolites related to certain amino acid, sphingolipid, and energy
metabolism increased in the umbilical cord serum of PE neonates.

Keywords: preeclampsia, neonate, SGA, metabolomics, pathway

INTRODUCTION

Preeclampsia (PE) is a major multisystem complication in pregnancy, characterized
clinically by new hypertension after 20 weeks of gestation with proteinuria or other
clinical signs of impaired end-organ function, including abnormalities of the kidneys,
liver, brain, and platelets (1). PE is one of the main causes of iatrogenic premature births
(2) and perinatal deaths worldwide, accounting for approximately 10–20% of perinatal
mortality (3). It is commonly accepted that the pathophysiology of PE is attributed to the
abnormal formation of spiral arteries in the maternal placenta, giving rise to placental
oxidative stress and leading to inappropriate and exaggerated maternal responses involving
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endothelial dysfunction and systemic inflammation (4). However,
several studies have shown that preeclampsia has adverse
effects on preterm birth and fetal growth restriction in the
perinatal period and has long-term effects on offspring in
adulthood, manifested as conditions such as an increased risk of
hypertension, cardiovascular disease, neurological diseases, and
Alzheimer’s disease (5).

Metabolomics, a newly developed subject following genomics,
transcriptomics, and proteomics, is an important component
of systems biology. Metabolomics refers to the quantitative
measurement of metabolic changes caused by pathophysiological
changes and the analysis of changes in all endogenous molecule
substances at a certain moment to determine the overall state
of the organism. Metabolites hold huge potential sources of
biomarkers and can also reveal the metabolic process of diseases,
assisting in exploring their pathogenesis.

Several studies have demonstrated the metabolome
perturbation of PE and discovered characteristic metabolites
in the blood, urine, and placenta of pregnant women with PE,
including lipids (6), fatty acids (7, 8), metabolites associated
with lipid transport (9, 10), amino acids and related metabolites
(11, 12), and purine-related metabolites (13). These studies
have mainly focused on pregnant women with preeclampsia;
however, there are relatively few studies on newborns. A previous
study reported an increased level of certain metabolites in
the cord blood of PE neonates, including the urea cycle and
carnitine synthesis (14). A tryptophan-targeted metabolomics
study showed changes in tryptophan metabolites in PE fetal
plasma, and 3-hydroxyanthranilic acid was only present in
fetal circulation and not in the maternal circulation (15).
Youssef et al. (16) found that the lipidomics of PE fetuses was
altered, manifested as increased triglycerides, cholesterol, and
lipoprotein; however, the mechanism by which maternal PE
affects neonatal metabolism is not currently well understood,
and the metabolic profile of neonates with preeclampsia
remains to be refined.

In this study, we conducted a non-targeted metabolomic
analysis of umbilical cord serum of PE and non-PE pregnancies
to elucidate the metabolic changes in PE neonates. Moreover,
the metabolome of small-for-gestational-age (SGA) infants was
compared with that of appropriate-for-gestational-age (AGA)
infants in PE neonates.

MATERIALS AND METHODS

Study Population
This case-control study was approved by the Institutional Review
Board of the Peking Union Medical College Hospital. All women
provided written informed consent. Cord serum samples were
collected from women whose pregnancies were complicated by
PE (n = 29) and those without PE (n = 32). All participants
were singleton pregnancies that delivered their babies at Peking
Union Medical College Hospital, China, between January 2020
and August 2021.

PE was diagnosed according to the criteria published
in Practice Bulletin No. 202 of the American College of

Obstetricians and Gynecologists in 2020. Women in the PE group
had the following characteristics after 20 weeks of gestation: (1)
Systolic blood pressure (SBP) ≥ 140 mmHg and/or diastolic
blood pressure (DBP) ≥ 90 mmHg on two occasions at least
4 h apart; (2) proteinuria ≥ 300 mg/24 h or severe features
(thrombocytopenia, impaired liver function, persistent epigastric
pain, renal insufficiency, pulmonary edema, new-onset headache,
visual disturbances). Given that neonatal metabolic status is
related to gestational age, 10 preterm non-PE neonates were
selected for the non-PE group to match the gestational age
of the two groups. The cause of preterm birth in these 10
cases was a breech presentation complicated by premature
rupture of membranes.

Women with fetal abnormalities, chronic kidney disease, pre-
pregnancy diabetes, immune system disease, or other chronic
medical diseases were excluded.

Sample Collection
Cord blood samples were obtained right immediately after
delivery and were transferred to the laboratory. Samples were
centrifuged at 3,000 rpm for 10 min at 4◦C. The supernatant
serum was extracted, divided into 100 µL aliquots, and stored
at –80◦C.

Metabolites Extraction
The 50 µL samples were transferred to EP tubes. After adding 200
µL of extract solution (acetonitrile:methanol = 1:1, containing
isotopically-labeled internal standard mixture), the samples were
vortexed for 30 s, sonicated for 10 min in an ice-water bath, and
incubated for 1 h at –40◦C to precipitate proteins. The samples
were centrifuged at 12,000 rpm for 15 min at 4◦C. The resulting
supernatant was transferred into a fresh glass vial for further
analysis. A quality control (QC) sample was prepared by mixing
an equal aliquot of the supernatant from all samples.

UHPLC-QE-MS Analysis
LC-MS/MS analyses were performed using a UHPLC system
(Vanquish, Thermo Fisher Scientific) with a UPLC BEH amide
column (2.1 mm × 100 mm, 1.7 µm) coupled to a Q Exactive
HFX mass spectrometer (Orbitrap MS, Thermo). The mobile
phase consisted of 25 mmol/L ammonium acetate and 25 mmol/L
ammonia hydroxide in water (pH = 9.75) (A) and acetonitrile (B).
The auto-sampler temperature was 4◦C, and the injection volume
was 3 µ L.

The QE HFX mass spectrometer was used for continuously
evaluation of the full-scan MS spectrum. The ESI conditions were
set as follows: sheath gas flow rate, 30 Arb; Aux gas flow rate, 25
Arb; capillary temperature, 350◦C; full MS resolution as 60,000,
MS/MS resolution as 7,500, collision energy, 10/30/60 in NCE
mode; spray voltage as 3.6 kV (UHPLC-QE-MS(+), positive)
or –3.2 kV (UHPLC-QE-MS(–), negative), respectively.

Raw data were converted to the mzXML format and processed
with an in-house program developed using R and based on
XCMS for peak detection, extraction, alignment, and integration.
The following steps were taken: Filtering, removing, replacing,
normalizing the features.

Frontiers in Pediatrics | www.frontiersin.org 2 April 2022 | Volume 10 | Article 869381

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/pediatrics#articles


fped-10-869381 April 18, 2022 Time: 13:39 # 3

Wang et al. Metabolomics Applied to Cord Serum

Statistical Analysis
The metabolomic data were analyzed by univariate analysis
(UVA) and multivariate analysis (MVA) on the UHPLC-QE-MS
(+) and UHPLC-QE-MS (–) platforms. For MVA, the dataset was
imported into SIMCA (Version 14.1, Umetrics, Umea, Sweden),
and the principal component analysis (PCA) and orthogonal
partial least squares discriminant analysis (OPLS-DA) models
were created. The PCA model was used to analyze the overall
distribution of each sample, and the OPLS-DA model was used to
analyze the differences in metabolomics between the two groups.
For the OPLS-DA model, cross-validation was performed to
evaluate the model to avoid bias, and a permutation test was
performed to evaluate whether the model was overfitting. Based
on the OPLS-DA model, variable importance to projection (VIP)
values are reported for each variable (17).

Student’s t-test and Mann-Whitney U-test were applied
for UVA to all metabolites, and the false discovery rate
(FDR) was performed to adjust the p-value (18). Differential
metabolites were selected using MVA and UVA: VIP > 1 and
p < 0.05 (adjusted p-value). The metabolites were annotated
using the Human Metabolome Database (HMDB)1 (19) and
online Kyoto Encyclopedia of Genes and Genomes (KEGG)2 (20)
database. MetaboAnalyst 5.03 (21, 22) was used for metabolomic
data analysis, including hierarchical cluster analysis and heat
map visualization.

Based on the summarized differential metabolites screened by
the positive and negative modes, MetaboAnalyst (version 5.0) was
used for comprehensive pathway analysis (including enrichment
and topology analyses). The enrichment of metabolites in the
pathways and the impact factors were analyzed. To select
metabolic pathways with a high correlation with preeclampsia,
the screening criteria were p < 0.05 or impact > 0.2.

Figures were created using GraphPad (version 8.0.2) and
SIMCA (Version 14.1).

RESULTS

Baseline Maternal and Neonatal
Characteristics
The characteristics of mothers and newborns are shown in
Table 1. Between the PE and non-PE groups, there were no
significant differences in maternal age, gravidity, parity, the
proportion of assisted reproductive pregnancy, and gestational
diabetes mellitus (GDM). There was no significant difference
in gestational age at delivery, premature birth rate, cesarean
section rate, neonatal Apgar score, or incidence of neonatal
complications between the two groups. The SBP, DBP, and body
mass index (BMI) of the PE group were significantly higher than
those of the non-PE group. The birth weight of the PE neonates
was significantly lower than that of the non-PE neonates, and the
incidence of SGA was also significantly higher in the PE group.

1https://hmdb.ca/
2https://www.kegg.jp/
3https://www.metaboanalyst.ca/

TABLE 1 | Demographic and clinical characteristics of the mother and baby: PE
vs. non-PE groups.

Parameters PE (n = 29) non-PE
(n = 32)

P-value

Maternal characteristics

Age at delivery, year 33.6 ± 4.3 34.5 ± 5.4 NS

Gravidity 2.3 ± 1.4 2.2 ± 1.2 NS

Parity 1.3 ± 0.6 1.4 ± 0.5 NS

Firstborn 20 (69.0) 18 (56.3) NS

Assisted reproductive
pregnancy, n(%)

4 (13.8) 5 (15.6) NS

Early onset PE, n(%) 10 (34.5) – –

Late onset PE, n(%) 19 (65.5) – –

PE with severe features,
n(%)

18 (62.1) – –

Highest systolic blood
pressure, mmHg

166.3 ± 15.1 128.8 ± 10.6 <0.001

Highest diastolic blood
pressure, mmHg

104.3 ± 9.3 78.9 ± 11 <0.001

Chronic hypertension, n(%) 11 (37.9) – –

GDM class A1, n(%) 6 (20.7) 7 (21.9) NS

BMI, kg/m2(pre-pregnancy) 24 ± 4.2 21.7 ± 3 0.014

BMI, kg/m2(at delivery) 28.7 ± 4 26.5 ± 3.6 0.025

Mgso4 treatment, n(%) 16 (55.2) 3 (9.4) <0.001

Fetal lung maturation
treatment, n(%)

7 (24.1) 4 (12.5) NS

Cesarean section rate, n(%) 26 (89.7) 24 (75) NS

Neonatal characteristics

GA at birth, weeks 35.6 ± 3.1 36.8 ± 2.6 NS

Preterm birth rate, n(%) 16 (55.2) 10 (31.3) NS

Neonatal weight, g 2386.7 ± 916.1 2929.8 ± 639 0.009

Birth weight < 2,500 g,
n(%)

16 (55.2) 6 (18.8) 0.003

Birth weight < 1,500 g,
n(%)

6 (20.7) 1 (3.1) 0.032

Birth weight < 1,000 g,
n(%)

2 (6.9) 1 (3.1) NS

SGA, n(%) 8 (27.6) 0 (0) 0.003

Apgar/1 9.6 ± 1.5 9.8 ± 0.9 NS

Neonatal complications 15 (51.7) 10 (32.3) NS

NRDS, n(%) 5 (18.5) 1 (3.2) NS

NEC, n(%) 0 (0) 2 (6.5) NS

Neonatal
hyperbilirubinemia, n(%)

8 (29.6) 7 (22.6) NS

IVH, n(%) 11 (40.7) 8 (25.8) NS

Neonatal infection, n(%) 5 (18.5) 2 (6.5) NS

Anemia, n(%) 7 (25.9) 4 (12.9) NS

Neonatal asphyxia, n(%) 2 (7.1) 2 (6.5) NS

The results are expressed as mean ± SD or numbers (%) of recruited women;
GA, gestational age. SGA, small for gestational age. NRDS, neonatal respiratory
distress syndrome. NEC, necrotizing enterocolitis. IVH, intraventricular hemorrhage.
NS, not significant.

Umbilical Cord Serum Metabolomics
Analysis in Non-preeclampsia and
Preeclampsia Group
After data processing, 4,698 and 3,621 metabolic characteristics
were detected on the positive [UHPLC-QE-MS (+)] and
negative [UHPLC-QE-MS(–)] platforms, respectively. PCA of
data from the two platforms showed that PE and non-PE
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neonatal metabolomic profiles were separated to some extent
(Figure 1). OPLS-DA analysis on both platforms showed that
the metabolomic profile could significantly distinguish PE and
non-PE groups (Figure 2). In the positive and negative platforms,

the P-values of CV-ANOVA were 1.8 × 10–5 and 6.9 × 10–
9, respectively, indicating good models. Permutation tests on
the two platforms showed no overfitting in the OPLS-DA
models. Combined MVA and UVA analysis (VIP > 1 and

FIGURE 1 | Principle component analysis (PCA) plots show some separation of metabolic profiles between PE (in blue) and non-PE (in green) for
(a)UHPLC-QE-MS(+) and (b)UHPLC-QE-MS(–). (A) POS [UHPLC-QE-MS(+)], 3 components model:R2X = 0.655, Q2 = 0.537. (B) NEG [UHPLC-QE-MS(–)], 9
components model:R2X = 0.503, Q2 = 0.141.

FIGURE 2 | Orthogonal partial least squares discriminant analysis (OPLS-DA) plots show significant separation of metabolic profiles between PE (in blue) and
non-PE (in green) for (a1,b1). (A) UHPLC-QE-MS (+) OPLS-DA model, R2X = 0.209, R2Y = 0.78, Q2 = 0.441. (B) UHPLC-QE-MS(–) OPLS-DA model, R2X = 0.175,
R2Y = 0.805, Q2 = 0.544. (C) A permutation test of UHPLC-QE-MS (+) model. The Y-axis intercepts were: R2Y (0, 0.6), Q2(0, –0.89). (D) A permutation test of
UHPLC-QE-MS(–) model. The Y-axis intercepts were: R2Y (0, 0.7), Q2 (0, –1.01).
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p < 0.05), 1,298 and 838 metabolic characteristics were found to
be different in neonatal cord blood on UHPLC-QE-MS (+) and
UHPLC-QE-MS (–) platforms, respectively. Among these, 113
and 46 differential metabolites were annotated based on several
databases on the UHPLC-QE-MS (+) and UHPLC-QE-MS (–)
platforms, respectively.

Hierarchical cluster analysis was performed on the screened
differential metabolites. The heatmap (Figure 3) showed that
differential metabolites could be clustered into two types,
enriched in umbilical cord serum of PE and non-PE groups. In
the positive platform, 106 metabolites increased in PE (including
59 lipid-related metabolites, 16 amino acid-related metabolites,

FIGURE 3 | The heatmap showing the hierarchical clustering characteristics of metabolites of PE and non-PE neonates. The color blue indicates decreasing
expression, and red indicates increasing expression. The color intensity reflects the corresponding abundance difference. (A) Differential metabolite characteristics of
the UHPLC-QE-MS (+) model. (B) Differential metabolite characteristics of the UHPLC-QE-MS (–) model.
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three nucleotide metabolites, and others), and seven decreased in
PE (including three amino acid-related metabolites and others).
Among these, creatinine, N4-acetylcytidine, and sphingomyelin
(D18:1/16:0) showed significant differences and were enriched
in the PE group. In the negative platform, 42 metabolites
increased (including 13 amino acid-related metabolites, seven
amino acid-related metabolites, four nucleotide metabolites, and
others), and four metabolites decreased (including one lipid
metabolite, one carbohydrate metabolite, and others). Among
these, pseudouridine, uric acid, and indolelactic acid showed
significant differences and were enriched in the PE group.
Important differential metabolites are listed in Table 2.

Pathway Analysis of Preeclampsia
Neonates
To explore the biological functions of differential metabolites,
159 differential metabolites from both UHPLC-QE-MS (+) and
UHPLC-QE-MS (–) platforms were integrated into pathway
analysis. The 10 pathways with the highest correlation are listed
in Table 3. The topological impact factors and enrichment
analysis p-values of the corresponding pathways are shown
in the bubble graph (Figure 4). Screening by the criteria:
p < 0.05 or impact > 0.2, four metabolic pathways with
high influence on PE were selected: glycine, serine, and
threonine metabolism, sphingolipid metabolism, glyoxylate
and dicarboxylate metabolism, and arginine biosynthesis. The
abundance of 10 metabolites in the four pathways above
increased in the PE group (Figure 5).

TABLE 2 | Metabolites observed to be significantly different between PE
and non-PE groups.

Metabolites VIP P-value FC(PE/non-PE) Platform

N4-Acetylcytidine 2.35 0.0039 1.47 UHPLC-QE-MS(+)

Creatinine 2.20 0.0003 1.41 UHPLC-QE-MS(+)

SM(d18:1/16:0) 2.13 0.0046 1.21 UHPLC-QE-MS(+)

Pseudouridine 2.95 0.0001 1.29 UHPLC-QE-MS(–)

Indolelactic acid 2.71 0.0022 1.75 UHPLC-QE-MS(–)

Uric acid 2.49 0.0006 1.43 UHPLC-QE-MS(–)

FC, Fold change.

TABLE 3 | Metabolic pathways related to differential metabolites between PE and
non-PE neonates.

Pathways Hits P-value -ln(p) Impact

Glycine, serine, and threonine metabolism 5 0.014 1.84 0.58

Sphingolipid metabolism 4 0.013 1.89 0.42

Arginine biosynthesis 2 0.129 0.89 0.23

Glyoxylate and dicarboxylate metabolism 4 0.053 1.28 0.23

Pentose and glucuronate interconversions 1 0.567 0.25 0.17

Aminoacyl-tRNA biosynthesis 5 0.062 1.21 0.17

Pyrimidine metabolism 4 0.095 1.02 0.15

Nicotinate and nicotinamide metabolism 1 0.502 0.3 0.14

Inositol phosphate metabolism 1 0.753 0.12 0.13

Glycerophospholipid metabolism 4 0.076 1.12 0.13

FIGURE 4 | Metabolic pathway analysis results related to differential
metabolites between PE and non-PE neonates, presented by bubble plots.
Each bubble represents a metabolic pathway. The x-axis of the bubble and its
size represent the impact factors of the path in topology analysis. The y-axis
of the bubble and its color represent the p-value of enrichment analysis
[represented by the negative natural logarithm, -ln(P)]. The color intensity
reflects the corresponding p-value and the enrichment degree.

Metabolomics Characteristics of
Small-for-Gestational-Age in
Preeclampsia Neonates
None of the newborns in the non-PE group developed SGA,
and the incidence of SGA in the PE group was 27.6%. The PE
group was further divided into two subgroups: appropriate for
gestational age (AGA) subgroup of PE neonates (PE-AGA group,
n = 21) and SGA subgroup of PE neonates (PE-SGA group, n = 8).

MVA showed that metabolomics could clearly distinguish PE-
SGA newborns from AGA newborns on positive and negative ion
platforms, as shown in Figure 6. Therefore, UVA and MVA were
used to screen for metabolites, and the criteria were as follows:
VIP > 1 and p < 0.05. Eighteen and seven differential metabolites
were found on the UHPLC-QE-MS (+) and UHPLC-QE-MS(–)
platforms, respectively (Figure 7).

In the UHPLC-QE-MS (+) platform, 14 metabolites increased
in PE-SGA (including eight lipid-related metabolites, two amino
acid-related metabolites, and others), and four metabolites
decreased in PE-SGA (including two lipid-related metabolites,
one amino acid-related metabolite, and others). Hexacosanoyl
carnitine was the major significant difference. In the UHPLC-
QE-MS (–) platform, three metabolites increased in PE-
SGA (including two lipid-related metabolites and one amino
acid-related metabolite), and four metabolites decreased in
PE-SGA (including one lipid-related metabolite, one amino
acid-related metabolite, and one carbohydrate metabolite).
3-hydroxybutyric acid and 3-sulfinoalanine were the most
significantly different metabolites.
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FIGURE 5 | Abundance of differential metabolites in four metabolic pathways related to PE neonates. (A) Sphingolipid metabolism. (B) Glyoxylate and dicarboxylate
metabolism. (C) Glycine, serine, and threonine metabolism. (D) Arginine biosynthesis. Mean standard deviation and p-values are shown in the graph. ∗represents
p < 0.05, ∗∗represents p < 0.01, ∗∗∗represents p < 0.001.

Metabolic Pathway Analysis of
Small-for-Gestational-Age in
Preeclampsia Neonates
A total of 25 different metabolites from the positive and
negative platforms were integrated. Six metabolites related to
SGA were distributed in eight metabolic pathways, analyzed
by MetaboAnalyst 5.0 (specific results are shown in Figure 8).
Topological analysis showed that taurine and hypotaurine
metabolism had the greatest influence. The metabolic pathways
with the highest enrichment degree were those of synthesis
and degradation of ketone bodies. The abundance of 3-
hydroxybutyric acid and 3-sulfinoalanine, involved in the

two pathways as mentioned above, was reduced in SGA
neonates (Figure 9).

DISCUSSION

Preeclampsia is a complex pregnancy disorder that causes
damage to fetal growth and development. PE neonates have
an average of 5% lower birth weight as compared to children
born after an uncomplicated pregnancy, and PE is a significant
contributor to preterm birth (23). Preterm birth is the world’s
leading cause of neonatal morbidity and mortality. As for short
term outcomes, PE is associated with higher rates of infant
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FIGURE 6 | OPLS-DA plots show a significant separation of metabolic profiles between PE-SGA (in blue) and PE-AGA (in green) for (a,b). (A) UHPLC-QE-MS(+)
OPLS-DA model, R2X = 0.169, R2Y = 0.894. (B) UHPLC-QE-MS(–) OPLS-DA model, R2X = 0.199, R2Y = 0.869.

FIGURE 7 | The volcano map shows the p-values, fold changes, and VIP-values of all metabolic characteristics. The color green indicates decreasing expression,
and red indicates increasing expression. The spot size reflects the corresponding VIP-value. The major metabolites are highlighted in the maps. (A) Metabolite
characteristics of the UHPLC-QE-MS (+) model. (B) Metabolite characteristics of the UHPLC-QE-MS (–) model.

respiratory distress syndrome, intraventricular hemorrhage,
sepsis, bronchopulmonary dysplasia, and neurodevelopmental
disability in childhood (24). For long term outcomes, due
to abnormal placentation, there is elevated cardiovascular
risk in offspring after intrauterine exposure of preeclampsia.
Most studies found in offspring exposed to intrauterine
preeclampsia, at the age of 9–17 years old, higher systolic
blood pressure, other found higher diastolic blood pressure
and some both (25). Therefore, it is of great significance
to explore the metabolic profiles of neonates with PE and
SGA neonates. Based on the UHPLC-QE-MS platform, our
study observed metabolic alterations in cord serum involved
in the metabolism of amino acids, lipids, and nucleosides in
neonates with PE.

Firstly we investigated the metabolites associated with PE
newborns, including 6 metabolites that have highest VIP value.
We found out that creatinine and uric acid were significantly
higher in PE newborns which is consistent with previously
reported (14). Moreover, these metabolites also have long been

considered to be significantly higher in pregnant women with PE
(11). As mentioned before, it is bothering that cord blood might
reflect on maternal values and not only the newborns. Creatinine
and uric acid were generally considered to be associated with
kidney function. It was reported that neonatal creatinine could
reflects the level of maternal renal function (26), and predict the
onset of neonatal acute kidney injury to some extent (27). Uric
acid have effects on fetal growth and kidney development, and
lead to a tendency of low-birth-weight infants (28). High levels of
uric acid can lead to hypertension-like pathological changes such
as arteriole thickening, arteriosclerosis and vasoconstriction in
rats, reflecting the correlation between uric acid and hypertension
(29). The possible molecular mechanism might due to uric acid
can hinder vascular endothelial cell proliferation and function
(30). Therefore, the offspring of PE tend to have an increased
risk of hypertension in the long term. It may be partly related
to the vascular changes resulting from exposure to high levels
creatinine and uric acid in fetal and neonatal periods. However,
the mechanism of long-term impact in adulthood is unclear.
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FIGURE 8 | Metabolic pathway analysis results of SGA newborns, presented
by bubble graph. Each bubble represents a metabolic pathway. The x-axis of
the bubble and its size represent the impact factors of the pathway in the
topology analysis. The y-axis of the bubble and its color represent the p-value
of enrichment analysis [represented by the negative natural logarithm, -ln(P)].
The color intensity reflects the corresponding p-value and the enrichment
degree.

N4-acetylcytidine and pseudouridine also increased in our PE
newborns. Previous studies have found that these metabolites
were elevated in the blood of patients with chronic kidney disease,
uremia, and pediatric acute kidney injury, respectively (31, 32).
These metabolites, cleared by the kidney (33), are related to the
decrease of glomerular filtration rate (34) and may reflect the
renal function of patients to some extent.

Indoleolactic acid is a tryptophan metabolite of an essential
amino acid during pregnancy that meets the needs of fetal
growth and development (35). Consistent with our study,
Jääskeläinen et al. also found that indoleolactic acid increased in
umbilical cord blood of PE newborns (14). In addition, Morita
et al. found that PE can lead to an elevated concentration
of tryptophan metabolites levels, including indoleolactic acid,
in neonatal serum (15). Previous studies have shown that
phenyllactate dehydrogenase and acyl-CoA dehydrogenase in
the placenta can convert indoleolactic acid to indolepropionic
acid and that PE may inhibit the activity of both enzymes,
leading to the accumulation of indoleolactic acid (36). In
addition, indoleolactic acid has been found to help maintain cell
stability in human umbilical vein endothelial cells, antagonizing
the abnormal endothelial function of PE. Besides, indoleolactic
acid show an anti-inflammatory effect in the intestine of
premature infants, and its low level may be implicated in
irritable bowel syndrome and NEC (37). Therefore, increased
indoleolactic acid seems to be a self-protective factor for
newborns with PE.

Further, we use metabolites to conduct pathway analysis and
PE newborns were associated with the following pathways.

(1) Glycine, serine, and threonine metabolism. Glycine is
located at the central position in the glycine, serine, and
threonine pathways. It can also be interconverted with l-serine
and l-threonine. Sarcosine is metabolized to glycine by sarcosine
dehydrogenase. A latest study of neonates also found elevated
glycine in SGA neonates (38). From the perspective of nutrition,
it is speculated that this amino acid alteration, we found,
may reflect the enhanced decomposition of protein to make
up for the insufficient energy supply of PE placenta. Glycine
may alleviate inflammatory injury induced by ischemia and
reperfusion and inhibit interleukin production (39, 40). It was
found that glycine in FGR newborns was relatively increased,
and glycine concentration in umbilical cord blood was inversely
proportional to oxygen content (41). The change in glycine
levels in cord blood may reflect the adaptation of newborns with
PE in the ischemia and hypoxia state. It is generally believed
that abnormal vasculogenesis in the PE placenta may lead to
relative ischemia and hypoxia in the fetal supply. This is the first
study to determine the characteristics of the glycine metabolic
pathway in PE newborns.

(2) Arginine biosynthesis. Our data showed that arginine
biosynthesis was altered in PE neonates due to L-citrulline and
L-glutamine’s increased abundance. Glutamine is a precursor of
citrulline, synthesized in the gut. Citrulline is mainly converted
to arginine in the kidneys in adults (42). In preterm neonates,
citrulline maybe directly converted in the guts due to imperfect
gut-kidney organ circulation (43). A previous study found
that citrulline was slightly higher in PE cord blood than
in non-PE cord blood (44). Some studies have shown that
citrulline antagonizes hypertension and reduces arterial tension
by activating the citrulline-nitric oxide cycle (45). However, a
recent systematic review showed no strong evidence of citrulline
in fighting hypertension, and more clinical studies are needed
(46). In addition, glutamine is a potential marker of brain
injury. In previous studies, among newborns with hypoxic-
ischemic brains, those with poor outcomes had higher glutamine
concentrations (47). Glutamine is also associated with severe
brain edema (48). Therefore, glutamine may help in the early
recognition and treatment of neonatal PE brain injury.

(3) Sphingolipid metabolism. N-Acylsphingosine, a ceramide,
is a sphingolipid with antiangiogenic properties. Ceramide,
sphingomyelin, and sphinganine play important roles in
the pathogenesis of cardiovascular diseases and regulation
of endothelial cell function (49). A study in newborns
found an increase in ceramide in feces before the onset of
NEC, and abnormal sphingolipid metabolism may change the
permeability of intestinal cells, leading to inflammatory diseases
(50). Ceramide also promotes apoptosis (51). The ceramide
concentration is often higher in patients with Alzheimer’s disease,
leading to a wide range of neuronal apoptosis and cognitive
impairments (52). However, the role of ceramide in neonatal
cognition and brain development remains unclear.

PE tend to have a high incidence of low birth weight and
SGA (53). Our study also reflected this feature. As mentioned
above, uric acid is an important risk factor for low birth
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FIGURE 9 | The decreased abundance of differential metabolites in two important metabolic pathways related to PE-SGA neonates. (A) Synthesis and degradation
of ketone bodies. (B) Taurine and hypotaurine metabolism. Mean, standard deviation, and p-values are shown in the graph. ∗represents p < 0.05.

weight infants (28). The free activity of uric acid in maternal-
fetal circulation can hinder the proliferation and function of
endothelial cells, causing interference in the fetal growth and
organ development (30, 54). Another neonatal metabolomics
study has found a correlation between aberrant sphingolipids
and SGA (55). Growth restriction is associated with placental
cell apoptosis, which may be regulated by sphingolipids (56,
57). The abnormal sphingolipid metabolism, observed in our
study, may increase the signaling of apoptosis, limiting the fetal
growth. On the other hand, it is commonly accepted that the main
pathophysiological mechanism of SGA is the reduced uterine-
placenta blood perfusion. Poor formation of spiral arteries,
associated with PE, can also lead to the similar damage, increasing
the incidence of fetal growth restriction (58).

In order to explore the potential molecular mechanism
underling PE associated adverse neonatal outcomes, we
investigated the metabolites associated with SGA neonates.
We observed abnormalities in amino acid, lipid, and ketone
body metabolisms in SGA neonates. Carnitine is a carrier of
lipid transport, and lipids move from the cytoplasm to the
mitochondria, where they are metabolized. Mitochondrial
dysfunction makes it difficult to consume fat, resulting in
carnitine accumulation (59). Beken et al. also found abnormal
carnitine in SGA neonates, including reduced propionyl
carnitine and methylglutaryl carnitine (38). Another study
reported an increased carnitine concentration in neonates with
a high body fat rate (60). Combining our study with other
studies, we speculate that SGA neonates have abnormal lipid
metabolism and fat accumulation. Individuals born SGA are at
high risk of long-term obesity (61). Although long-term growth
is affected by many factors, such as the environment and diet,
metabolic abnormalities originating from newborns may be
one of the reasons.

Previous studies have indicated that fetuses exhibit growing
energy requirements during fetal growth in normal pregnancy,
including increased glucose and fatty acids consumption. Fetal
ketogenesis is a response to the potential risk of hypoglycemia
(62) and is also an important backup supplement for fetal
energy supply, resulting in the accumulation of acetoacetic and

hydroxybutyric acids (63). A positive correlation between birth
weight and hydroxybutyric acid concentration in umbilical cord
blood was also observed in studies by Mansel et al. (64) and Lowe
et al. (65). In this study, the low level of 3-hydroxybutyric acid
indicates that the metabolic pathway of ketone bodies in SGA
neonates was impaired. Inadequate energy supply and placental
nutritional disorders can result in adaptive changes in newborns
that manifest as weight loss.

In the taurine metabolic pathway, 3-sulfinoalanine produces
taurine. Taurine metabolism plays an important role in
facilitating substance exchange and nutrient supply in the
placenta. One study found a positive association between
maternal taurine intake and neonatal height in pregnancy
(66). Previous studies have shown that low taurine levels can
limit neonatal neurodevelopment, retinal development, and
intestinal absorption function (67). Animal experiments have
shown that taurine supplementation may have a protective
effect on neural development in neonatal rats (68). However,
little research has been conducted on human neonates due to
limitations of ethical requirements. The latest meta-analysis of
taurine supplementation did not confirm its role and showed
no significant effects on the growth and development of
newborns (69). On the other hand, taurine is also an important
biomarker of individual neurodegeneration (70). Due to its
antioxidant property, high levels of taurine can reduce cognitive
impairment caused by neurodegeneration lesions (71, 72). It
is observed, children with SGA have a relatively elevated risk
of cognitive impairment, learning difficulties, and even cerebral
palsy in the long term (73). Low abundance of taurine in our
study may partially explain this problem. Therefore, detection
of taurine level may be beneficial for timely evaluation and
prevention of neurological diseases, not only for newborns, but
also for offspring.

The results of our study reflect the value of metabolomics
in evaluating the pathological mechanisms of neonates with PE.
These metabolites have diverse functions. Not only can a single
metabolite reflect the inherent characteristics of the disease,
but a variety of related metabolites can also better reflect the
changes in a certain biochemical mechanism. These findings
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are insufficient to fully reflect all the changes involved in the
pathogenesis of PE neonates; however, they still provide a basis
and perspective for further research on PE neonates. This is
the first metabolomic study of SGA neonates with PE, although
it was not the primary objective of our study. This study
recorded and statistically analyzed metabolic characteristics and
recent complications of PE neonates. However, the long-term
effects of metabolic characteristics on neonates remain unclear.
Further studies on the risk of related metabolic or cardiovascular
diseases based on metabolomic profiles may be needed in
the future.
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