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Preclinical models and emerging translational data suggest that acute kidney injury (AKI)

has far reaching effects on all other major organ systems in the body. Common in

critically ill children and adults, AKI is independently associated with worse short and long

term morbidity, as well as mortality, in these vulnerable populations. Evidence exists in

adult populations regarding the impact AKI has on life course. Recently, non-renal organ

effects of AKI have been highlighted in pediatric AKI survivors. Given the unique pediatric

considerations related to somatic growth and neurodevelopmental consequences,

pediatric AKI has the potential to fundamentally alter life course outcomes. In this

article, we highlight the challenging and complex interplay between AKI and the brain,

heart, lungs, immune system, growth, functional status, and longitudinal outcomes.

Specifically, we discuss the biologic basis for how AKI may contribute to neurologic

injury and neurodevelopment, cardiac dysfunction, acute lung injury, immunoparalysis

and increased risk of infections, diminished somatic growth, worsened functional status

and health related quality of life, and finally the impact on young adult health and life

course outcomes.

Keywords: acute kidney injury, pediatric critical care medicine, acute lung injury, cardiac dysfunction, functional

status, growth, neurologic injury, immunoparalysis

INTRODUCTION

Acute kidney injury (AKI) is common in critically ill children, occurring in up to 25% of the general
pediatric intensive care unit (PICU) population and up to 40–60% of the pediatric cardiac intensive
care unit (CICU) population (1–6). Although most studies are in children from high-income
countries in the context of intensive care settings, AKI is a global problem associated with
considerable morbidity and mortality (7). Once thought to be an isolated syndrome, emerging
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evidence suggests that AKI has far reaching effects in the body
that affect short and long term outcomes in critically ill children.
Recent evidence suggests that, with AKI, molecular and biologic
mediators are involved in organ crosstalk at a cellular and
genomic level in critical illness.

Hospitalized children who develop AKI have increased
morbidity and mortality. Specifically, patients who develop AKI
have longer length of mechanical ventilation, longer ICU and
hospital lengths of stay, as well as increased health resource
utilization (4, 8–13). AKI is an independent risk factor for
mortality in pediatric patients with critical illness, after cardiac
surgery, sepsis, acute respiratory distress syndrome, recent
surgery, and oncologic disorders (6, 9, 14–17). Furthermore, the
risk of mortality extends beyond the hospital admission: patients
with AKI during acute illness have higher mortality rates years
after discharge compared to patients without AKI (18, 19). The
independent association of AKI with morbidity and mortality,
with or without the presence fluid overload, may be mediated by
the effects of AKI on other organ systems.

Current standardized definitions of AKI only focus on rapid
creatinine elevations from baseline and varying degrees of
oliguria with an “or” logic. By the Kidney Disease: Improving
Global Outcomes (KDIGO) criteria, AKI severity is stratified
based on fold-increase of creatinine or duration of oliguria (20).
These definitions are agnostic to etiology, course, rate and degree
of recovery, and timing of onset in relation to critical illness.
Evidence is rapidly accumulating to indicate that severity is not
the only dimension that has outcome implications; rather, timing
of onset, duration, number of episodes, and rate of recovery, have
discrete impacts on organ and global outcomes (21–25).

Renal recovery after AKI episodes is not always complete.
Certain risk factors, such as extent of pre-morbid kidney health,
repeat events, and underlying risk factors contribute to impaired
recovery with long term consequences (22, 23, 25). About 10%
of AKI survivors develop chronic kidney disease (CKD) (26–
29). Emerging preclinical evidence suggests that organ crosstalk
in AKI leads to short and long term adverse events on all
organ systems, with remote consequences (Figure 1) (30). For
the practicing intensivist, an understanding of the non-renal
effects of AKI can help them tailor treatment strategies and
follow-up plans that are focused on preventing these sequelae
and ultimately, death. This review aims to discuss the non-renal
effects of AKI both in the acute critical illness and long-term
recovery phases.

AKI AND THE EFFECTS ON OTHER
ORGAN SYSTEMS

AKI and the Brain
In recent years, an intriguing crosstalk between the kidneys
and the brain has been discovered. In a murine model of
ischemia/reperfusion (I/R) AKI, the blood-brain-barrier was
disrupted with increased levels of proinflammatory chemokines
in the cerebral cortex and corpus callosum, as well hippocampal
neuronal dysfunction and apoptosis 24 h later (31, 32). These
changes translated into reduced cognitive performance and

memory loss in the mice (32, 33). There is accumulating
evidence from diverse pediatric cohorts supporting the concept
of kidney-brain crosstalk leading to long-term neurocognitive
dysfunction that extends beyond critically ill populations and
includes children hospitalized with community-acquired AKI
(29, 32, 34, 35).

Mechanistically, endothelial activation in the context
of AKI may contribute to blood-brain-barrier dysfunction
resulting in brain injury through exposure to uremic toxins
and inflammatory mediators. These changes, in turn, may
contribute to neurodevelopmental delay in critically ill children.
One pathway implicated in AKI-related brain injury is the
angiopoietin (angpt)-Tie-2 axis that regulates endothelial
integrity. Angpt-1 is a growth factor that maintains a quiescent
resting state of the vascular endothelium, whereas its counterpart,
Angpt-2 is rapidly released by activated endothelium (36).
Angpt-2 primes the endothelium to respond to inflammatory
cytokines, upregulates cellular adhesionmolecules, and promotes
remodeling, but can also lead to vascular leak and endothelial
cell apoptosis (37). A higher ratio of Angpt-2/Angpt-1 is thought
to contribute to the pathogenesis of organ injury seen in AKI,
critical illness, cardiopulmonary bypass, and severe malaria
(38–40). Elevated Angpt-2 levels and the resultant altered Angpt-
2/Angpt-1 ratio is linked to increased vascular permeability
and inflammation that compromise the tight junctions of the
blood-brain-barrier (38). This imbalance is independently
associated with worse cognitive function in patients with severe
malaria who develop AKI with deficits in fine and gross motor
skills, visual reception, receptive and expressive language, and
learning (38). Other insults such as inflammatory processes,
neurotransmitter derangement, and oxidative injury that are
associated with cognitive impairment have also been seen in
critically ill children with AKI (41).

Emerging evidence confirms a link between AKI and worse
neurocognitive outcomes. In a large retrospective multicenter
PICU database study of almost 30,000 patients from 24 PICUs,
it was found that cognitive disability was present in 12.2% of
patients who received continuous renal replacement therapy
(CRRT). This was consistent with a decline in cognitive function
at hospital discharge (OR 1.76) (42). Recurrent AKI after distinct
cardiac surgeries in children with congenital heart disease has
been shown to be associated with worse neurodevelopmental
outcomes, specifically in language, motor, and cognitive domains,
and most pronounced in the language domain (34). In a cohort
of pediatric patients with diabetic ketoacidosis, after adjusting
for demographics and severity, those who developed AKI had
lower IQ scores and worse short term memory 6 months after
recovery (35).

AKI is common in patients with malaria and is associated with
neurologic deficits in several patient populations (19, 25, 29, 34).
In prospective cohort studies of children with malaria, 25–37%
of children with AKI had acute neurologic deficits compared to
2–13% of those patients without AKI. Risk factors for neurologic
deficits in children with severe malaria associated AKI include
elevated blood urea nitrogen and persistent AKI (25). In persons
with malaria, AKI, and acute neurologic deficits, neurocognitive
differences persisted for up to 2 years following illness. The
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FIGURE 1 | Short and long term outcomes of pediatric AKI. BBB, blood-brain-barrier; ATP, adenosine triphosphate; CD8+, cluster of differentiation 8; IL-, interleukin;

CKD, chronic kidney disease; ARDS, acute respiratory distress syndrome; BPD, bronchopulmonary dysplasia.

relationship was independent of socioeconomic and nutritional
status, parental and child education, enrichment in the home
environment, and disease severity during hospitalization (29).
Furthermore, in children ≥6 years of age with malaria, those
who developed AKI while hospitalized had worse scores in socio-
emotional function and behavioral regulation up to 2 years
following illness (43).

Finally, AKI is a risk factor for CKDwhich has been associated
with poor neurocognitive outcomes including language and
gross motor skills, as well as executive function and decision
making abilities (28, 44–46). Lower academic achievement is also
present in 34% of children with CKD, with the worst scores in
mathematics (47).

AKI and the Heart
The organ cross-talk between the kidneys and heart has
been well-established, with five distinct cardiorenal syndromes
currently described (48). Cardiorenal syndrome type 3 (CRS3)
specifically encompasses AKI that results in acute cardiac
dysfunction. However, the description of CRS3 has not included
an evaluation on long-term cardiovascular outcomes after
AKI recovery. Growing epidemiological evidence in adults
suggest associations of AKI events with long-term cardiovascular
morbidity and mortality, even in those who have complete
kidney recovery. In adults, after adjusting for confounders,
AKI is associated with cardiovascular events, especially heart
failure by 1 year after hospital discharge (49–52). The effect
of AKI on cardiovascular function in children has not been
reported. There are several ongoing retrospective evaluations in
discrete populations.

A causal mechanism is yet to be established between AKI
and cardiovascular dysfunction in adults (53). Recent reports
using a murine model of bilateral ischemia-reperfusion AKI
in intact adult C57BLK/6J male mice demonstrated diastolic
dysfunction that preceded hypertension and was characterized
by abnormal cardiac metabolism and depleted cardiac adenosine
5’-triphosphate (ATP) reserves (53, 54). In fact, the cardiac
metabolites affected in AKI were noted to be remarkably similar

to that of direct myocardial ischemia (53). Importantly, the
cardiovascular dysfunction demonstrated after I/R AKI in mice
persisted 1 year after the AKI (54). In the long-term murine
AKI model, treatment with ITF2357, a non-specific histone-
deacetylase inhibitor, prevented the development of diastolic
dysfunction, hypertension and reduced cardiac ATP levels (54).
In a secondary analysis of AKI and cardiac outcomes by
sex, female mice maintained normal diastolic function and
cardiac ATP levels compared to male mice with matched AKI
severity. However, female mice developed hypertension and
renal fibrosis comparable to male mice (55). Analysis of the
cardiac metabolome 1 year after injury implicates sex differences
in oxidative stress as a potential mechanism to explain the
differential cardiorenal outcomes between males and females.
Translational studies are needed to establish the mechanistic
derangements of cardiorenal syndrome in humans and to
evaluate if there is a protective effect in women. In pediatric
patients, the potential role of pubertal status on long-term
cardiorenal outcomes also warrants investigation.

AKI and the Lungs
Cellular and molecular mediators of lung injury have been
described in the setting of AKI. The initial response to ischemic
and nephrotoxic renal injury is mediated by macrophages and
neutrophils and may lead to an unchecked pro-inflammatory
state resulting in distant pulmonary injury (56–64). Ischemic
renal injury in mice leads to an increase in circulating CD8+ T-
cells in the lung along with increased markers of T-cell activation.
These mice also had increased levels of caspase-3 which mediates
pulmonary epithelial cell apoptosis (65). The non-cellular pro-
inflammatory mediators of lung injury include interleukin-6 (IL-
6) and interleukin-8 (IL-8). Both molecules are found to be
elevated in the serum of patients with AKI and are also implicated
in lung injury (66–69).

AKI leads to other changes in the concentrations of
circulating mediators that may lead to lung injury as well.
Uremic toxins are increased in the setting of AKI and are
known to cause endothelial cell dysfunction, increased gene
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expression of IL-6, and decreased pulmonary sodium clearance
via downregulation of aquaporins and sodium-channels resulting
in pulmonary edema (66, 70–78). The production of α-Klotho
occurs exclusively in the kidney. The absence of this molecule
has been associated with emphysematous changes in the lung.
Patients with AKI have markedly reduced levels of circulating α-
Klotho suggesting it may play a role in protecting the lung from
kidney mediated injury (79–90).

Newer animal models have also shown increased
markers of inflammatory reactive oxidant species generating
myeloperoxidase activity in subjects with AKI compared to sham
cohorts up to 14 days after initial injury (30). In a secondary
analysis of the Assessment of Worldwide Acute Kidney injury
Epidemiology (AWAKEN) retrospective cohort trial, neonates
born between 29 and 32 weeks gestation who developed AKI
in the Neonatal ICU had a four-fold higher odds of developing
moderate or severe bronchopulmonary dysplasia inmultivariable
analyses (91). Given that premature neonates in this age growth
are at a critical point of pulmonary angiogenesis coupled with
altered vascular growth factors in AKI, it is hypothesized that
the disrupted physiologic processes in AKI may potentiate lung
injury in this fragile cohort of patients (91). Furthermore, in
infants born at ≥32 weeks gestation, AKI is independently
associated with worse lung outcomes including higher likelihood
of chronic lung disease and longer dependence on oxygen
and respiratory support (92). For an in-detail review of the
complex interaction between the lungs and kidney, the readers
are referred to Alge et al. (56).

AKI and the Immune System
More recently, the kidney-immune system cross talk has begun
to take shape such that the development of AKI is considered
to be an immunocompromised state (93). The concept that
the kidney plays a role in immune regulation is not new. In
fact, it has now been nearly 2 decades since it was noted that
there is impaired monocyte cytokine production in critically ill
patients with AKI (94). A secondary analysis of the Program
to Improve Care in Acute Renal Disease (PICARD) (95) and a
single center study in the United Kindom both demonstrated
that patients with AKI experience high rates of infectious
complications, including sepsis, occurring at a median of 5
days after AKI diagnosis (96). More recently, these results have
been recapitulated in homogenous and heterogenous groups of
patients across the age spectrum (97–100). Interestingly, the
immune effect of AKI appears to be prolonged, even in the
presence of complete recovery of AKI. This was demonstrated in
a propensity matched analysis where there was a 4.5-fold greater
odds of infection within 30 days of discharge in critically ill adults
with complete recovery of AKI (100). The association between
AKI and infection remained significant at 31–90 and 91–365
days. In children, the association between AKI and subsequent
infection was assessed after the Norwood operation, the most
complex palliative procedure for newborns with a single ventricle
and ductal dependent systemic blood flow. In this study, after
adjusting for confounding variables, the was a 3.6-fold greater
odds of subsequent infection in neonates with postoperative AKI
(98). In a single center retrospective cohort study, a higher odds

of infection in a single center study of 5,000 critically ill children:
there was a non-linear increase in risk for sepsis based on AKI
severity, with stage 3 AKI patients incurring the greatest risk
for sepsis (99). A small single center study of pediatric patients
receiving CRRT also found an association with infection, that
occurred a median of 11 days after CRRT initiation (101).

Little is known about the mechanisms by which the
inflammatory cascade that results from AKI may contribute
to the development of subsequent sepsis, and this is certainly
the focus of substantial research. In an observational study to
examine the impact of renal disease on patients with critical
illness, patients with AKI developed a reduction in 7 primary
amino acids that have been implicated in endothelial and
immune dysfunction (102). New data suggest an interaction
between the kidney and intestinal microbiome. The intenstinal
microbiota are directy involved in immune homeostasis through
regulation and induction of both arms of the immune system
(103). In addition, in experimental models, neutrophil function
is impaired early on in the evolution of AKI, and uremic toxins,
such as resistin, may contribute to immune dysfunction (104).
More work is needed to enhance our understanding of the the
role AKI plays in the sepsis causal pathway. Until we identify
the mechanistic derangements, therapeutic targets are limited.
Indeed, for now, we can only anticipate the inevitable septic
episodes and provide supportive care.

AKI and Growth
The impact of AKI on long term growth outcomes has been
scarcely described in the pediatric literature. Even after initial
recovery from induced I/R AKI in animal models, growth
parameters in mice with AKI were affected long-term compared
to those without AKI: mice in the AKI cohorts weighed
significantly less than healthy and sham controls, which occurred
irrespective of sex. There was no apparent reduction in muscle
mass, indicating a potential decrease in fat and/or bone (30, 55).
Macro- andmicronutrient derangements, as well as alterations to
vital minerals, vitamins, and growth factors have been described
in AKI (105). In fact, AKI is a risk factor for protein-energy
debt in critically ill children and might be augmented by
extracorporeal kidney support related losses (106–108). A recent
review discusses the deleterious impacts of AKI on dysregulation
of mineral metabolism and its direct effects on bone health
(109). The investigation of anthroprometic outcomes following
pediatric AKI is warranted.

AKI and Sex as a Biological Variable
The NIH released the notice “Consideration of Sex as a Biological
Variable in NIH-funded Research” in 2015; however un-pooled
gender-based investigations of sex as a biological variable in
the study of kidney disease remain lacking. Animal models
demonstrate a protective effect of female sex in ischemia-
reperfusion AKI (110, 111), however conflicting data remain in
humans. Clinically, females do better than males with regards to
AKI development, CKD progression, and the need for dialysis
treatment in hospital-acquired AKI (112–116). Yet controversies
remain—the KDIGO supplemental guidelines state that female
sex confers a higher risk in developing AKI after cardiac surgery
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and nephrotoxin exposure despite several studies by Neugarten
et al. demonstrating improved outcomes in women compared
to men (116–118). Women tend to have slower progression
of CKD compared to men, however some studies present
conflicting data, likely owing to the inclusion of a mix of pre-
and post-menopausal women (119–121). The effect of pubertal
development in boys and girls and its impact on the development
of AKI, recovery from AKI, and progression to CKD have yet to
be determined.

AKI and Functional Status, Health-Related
Quality of Life
Mortality is not the only important metric to assess the impact
of critical illness in childhood. Most children who are admitted
to ICU survive their critical illness, albeit with varying degrees
of acquired morbidity (122). Functional outcomes of survivors
after critical illness are core outcome indicators for clinical care
benchmarking, developmental research, and ensuring adequate
follow-up post ICU stay (123, 124). Children who have new
physical disabilities and limitations may not be able to interact
with their environment or participate in school at the level they
did prior to their illness. This can result in a decline in their
health-related quality of life as well as emotional and social
functioning. Long-term outcome cohort studies in the general
PICU population such as the Wee-Cover (125) and the Survivor
Outcomes Study (126) did not assess the risk of functional
declines due to AKI or kidney support. Current evidence linking
AKI events and functional outcomes are largely restricted to
septic AKI cohorts and CRRT survivors. In a secondary analysis
of the cross-sectional epidemiology of sepsis (SPROUT) study,
24% of patients with severe AKI (KDIGO 2 and 3) developed
new morbidity compared to only 15% of patients without severe
AKI, based on the Pediatric Overall Performance Category
(POPC) scale (127). More recently, the Life After Pediatric Sepsis
Evaluation (LAPSE) study showed similar results using the more
granular Functional Status Scale (FSS). In this study, patients
with severe septic AKI were more likely to have new morbidity
at hospital discharge compared to patients without kidney injury
or stage 1 AKI (8). At the 3-month follow-up, 31% of patients
with severe AKI had a decline in health-related quality of life by
25% or more from baseline and was mostly due to declines in
physical function (8). The association of renal dysfunction and
poor functional outcomes was also seen in a cohort of PICU
patients with respiratory failure. The Randomized Evaluation
of Sedation Titration for Respiratory Failure (RESTORE) study
showed that more patients with global functional decline at 6-
month follow-up had renal dysfunction during admission than
those without decline at 6-month follow-up (11 vs. 5%) (128).

Children who require CRRT during PICU admission may
be at higher risk for developing functional decline after critical
illness than patients with AKI that do not require dialysis.
In a retrospective review of patients who received CRRT at a
single tertiary center, 51% developed new morbidity based on
FSS at hospital discharge. This cohort had high utilization of
rehabilitation therapies and many required new technology at
hospital discharge (129). In a larger cohort including survivors

at 24 different PICUs, 24.8% of patients that required kidney
replacement therapy had a new global functional disability at
hospital discharge as determined by a change in POPC from
baseline (OR 2.43) (42).

Our understanding of how AKI impacts functional outcomes
and health-related quality of life in other at-risk populations,
such as post cardiac surgery, remains incomplete. Pediatric
survivors with low cardiac output post cardiac surgery have
lower functional abilities and worse health-related quality of life
at age 4 compared to those without low cardiac output in the
post-operative period (130, 131). Although there is a known
causal linkage between low cardiac output syndrome and AKI,
there is a paucity of research on the independent association of
AKI and long-term outcomes in survivors of congenital cardiac
surgery. Rigorous ongoing research into long-term functioning
and health-related quality of life for patients with congenital
cardiac disease should include exposure to other risk factors,
such a severity and number of episodes of cardiac surgery
associated AKI.

Longitudinal Impact on Adult Health and
Life Course Outcomes
Young adults, aged 16–25 years, are a unique population whose
physiology is not that of a child nor that of an aging adult.
Unlike neonates, who are often at a higher risk of AKI due to
their immature nephron function, and adults, who are at higher
risk of AKI due to comorbidities, the young adult age group
is typically thought to be healthy. However, it has been shown
that even in critically ill patients aged 16–25 years admitted to a
general adult ICU, the frequency of AKI (40%) exceeds that of the
general PICU population (4, 132). Furthermore, in young adults
the development of AKI in the ICU was found to be a significant
predictor of hospital and ICU mortality, as well as mortality 1
year after discharge (132).

Young adults with congenital heart disease represent a
particularly vulnerable group for AKI and its consequences,
given their risk for repeated AKI events across a lifetime (133,
134). Importantly, the young adult congenital heart disease
population is a growing population due to advances in cardiac
care (135). In young adults with congenital heart disease that
are diagnosed with AKI in the Cardiac ICU and have persistent
kidney dysfunction 7–28 days after hospital discharge, there is
a 12-fold increased odds of mortality at 5 years, independent of
illness severity (134).

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

Pediatric critical illness is frequently a dynamic state of complex
interactions between every organ in the body responding
and reacting to one another. Although once thought to be
an isolated syndrome, it is clear that the implications of
AKI have far reaching consequences that significantly affect
ICU morbidity and mortality, as well as long term quality
of life in survivors. Recent evidence has begun to elucidate
how non-renal organs may be impacted by changes in fluid
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balance and the proinflammatory state secondary to the
resulting AKI in critical illness. AKI is associated with both
an immune dysregulated state and a proinflammatory state.
The altered cytokine signature and endothelial dysfunction
mediate most organ crosstalk in AKI, including brain and
lung dysfunction. Abnormal cellular energy metabolism, similar
to acute myocardial ischemia, can be demonstrated in the
myocardium in AKI. Interestingly, the short and long term
impact of AKI seems to have a sex predilection, with
females being relatively protected from progression to CKD
and dialysis.

In addition to the acute effects of AKI on other organ
function, AKI impacts survivor functional outcomes, health-
related quality of life, growth, and post-discharge mortality.

Survivors of AKI represent a vulnerable population that require

long-term, multi-disciplinary follow-up regardless of their
discharge renal function. Prospective cohort studies designed to
better understand the long-term impact of AKI on childhood
development and growth are needed. Future research should
focus on the identification of the mediators of organ cross-talk
between the kidneys and the brain, heart, lung, and the
immune system.
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