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Bartter syndrome (BS) is a rare tubulopathy that causes polyuria, hypokalemia,
hypochloremic metabolic alkalosis, and normotensive hyperreninemic
hyperaldosteronism. It is characterized by locus, clinical, and allelic heterogeneity.
Types 1–4 of BS are inherited according to an autosomal recessive pattern, while type
5, which is transient, is X linked. There are specific correlations between the clinical
expression and the molecular defect, but since it is a rare disease, such studies are
rare. Therapeutic interventions are different, being correlated with types of BS.
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INTRODUCTION

Bartter syndrome (BS) is a rare tubulopathy characterized by polyuria, hypokalemia,
hypochloremic metabolic alkalosis, and normotensive hyperreninemic hyperaldosteronism (1).
Incidence is 0.1/100,000 (2).

The main mechanism is the defective reabsorption of salt, mainly at the thick ascending limb
(TAL) of the loop of Henle (3). TAL intervenes in the homeostasis of extracellular fluid by sodium
reabsorption; homeostasis of calcium, magnesium, bicarbonate, and ammonium; and synthesis
of uromodulin (Tamm-Horsfall protein) with a role in maintaining the composition of urinary
proteins (4).

Hereditary diseases involving proteins of the TAL are classified into three categories according
to the TAL function affected: sodium reabsorption, calcium and magnesium reabsorption,
and uromodulin synthesis. The first category includes BS types 1–5 and HELIX syndrome
(hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia)
(produced by mutations in CLDN10 gene). The second category includes familial hypomagnesemia
with hypercalciuria and nephrocalcinosis (produced by mutations in CLDN16 or CLDN19 genes),

Abbreviations: CLDN10, claudin 10; CLDN16, claudin 16; CLDN19, claudin 19; CASR, calcium sensing receptor; AP2S1,
adaptor related protein complex 2 subunit sigma 1; GNA11, G protein subunit alpha 11; UMOD, uromodulin; SLC12A1,
solute carrier family 12 member 1; KCNJ1, potassium inwardly rectifying channel subfamily J member 1; CLCNKB, chloride
voltage-gated channel Kb; CLCNKA, chloride voltage-gated channel Ka; BSND, barttin CLCNK type accessory subunit
beta; MAGED2, MAGE family member D2; SLC12A3, solute carrier family 12 member 3; CASR, calcium sensing receptor;
KCNJ10, potassium inwardly rectifying channel subfamily J member 10; SLC26A3, solute carrier family 26 member 3;
CLDN10, claudin 10; SCNN1A, sodium channel epithelial 1 subunit alpha; SCNN1B, sodium channel epithelial 1 subunit
beta; SCNN1G, sodium channel epithelial 1 subunit gamma; NR3C2, nuclear receptor subfamily 3 group C member 2;
HSD11B2, hydroxysteroid 11-beta dehydrogenase 2; CYP11B1, cytochrome P450 family 11 subfamily B member 1; CLCN2,
chloride voltage-gated channel 2; KCNJ5, potassium inwardly rectifying channel subfamily J member 5; CACNA1H, calcium
voltage-gated channel subunit alpha1 H.
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familial hypercalcemia hypocalciuric types 1–3 (produced by
mutations in CASR, GNA11, AP2S1 genes), and autosomal
dominant hypocalcemia types 1–2 (produced by mutations
in CASR, GNA11 genes). Hyperuricemic nephropathy, familial
juvenile 1 (produced by UMOD gene) belongs to the third
category (4).

GENES AND PROTEINS IN BARTTER
SYNDROME

Bartter syndrome is caused by mutations in genes encoding K+
channel (KCNJ1 gene), Cl− channel (CLCNKA and CLCNKB
genes), their cotransporters (SLC12A1 gene), subunits of these
channels (BSND gene), or regulators of the expression of certain
transport channels (MAGE-D2 gene).

Table 1 summarizes the genes implied in the pathogeny
of various types of BS. Figure 1 describes the gene
expressions in different segments of the nephron and
correspondent type of the BS.

PATHOPHYSIOLOGY

At the descending limb of the loop of Henle, the urine becomes
more and more hypertonic because this segment is permeable to
water that passes extraluminal (passive transport) (8). At the level
of the thin segment of the ascending limb, NaCl is reabsorbed
according to the laws of osmosis. At the thick segment of the
ascending limb and distal convoluted tubules (initial segment),
Cl−, Na+, and K+ are actively reabsorbed (Figure 2). The result
is a hypotonic urine. The collecting duct level is permeable to
urea and water, and finally urine becomes hypertonic. These final
changes at the nephron level are controlled by the antidiuretic
hormone (ADH) that acts on the terminal segment of the distal
tube and on the collecting duct (1). An important role in its
regulation is played by the juxtaglomerular apparatus (JGA)
which mediates the tubuloglomerular feedback (TGF). Under
normal conditions, a decrease of intracellular concentration of
Cl− in JGA cells indicates a reduced filtration which determines
an activation of TGF, with the stimulation of renin synthesis
and hyperfiltration. In patients with BS, TGF is uncoupled
because Cl− is not reabsorbed into the macula densa. The
cyclooxygenases are activated and large amounts of prostaglandin
E2 are synthesized regardless of volume status, and this produces
an excess of renin and aldosterone (1, 9).

Hypovolemia activates the renin-aldosterone system, with
elevation of renin and aldosterone levels in blood and urine (10).
The effects of aldosterone on the distal tubule are as follows: the
increase of Na+ reabsorption from the lumen in exchange with
K+ and the stimulation of exchange between the intracellular
H+ and the intraluminal K+. In the first case, Na+/K+-ATPase
pumps increase the intracellular K+ which results in an increase
in the gradient with respect to the lumen. In this way, K+ will
leave the cell in the lumen and in the urine (10). In the second
case, metabolic alkalosis increases due to the loss of H+ in
urine (10).

Thick ascending limb cells are responsible for 25–30% of the
reabsorbed NaCl in the kidneys (4, 11).

The segments of the Henle loop (proximal straight tubule, thin
descending, thin ascending limb, and TAL) are differentiated by
the thickness of the walls and the properties of the epithelium.
The descending and ascending segments are placed in the renal
medulla, while the TAL is located distally. In the kidney medulla,
the Na+/K+-ATPase has low levels and low transport activity.
There are also differences between different cells and segments
in terms of Na+/K+-ATPase activity, SLC12A1 splicing, and
phosphorylation (11).

SLC12A1

SLC12A1 is the major renal sodium, potassium, and chloride
ion cotransporter expressed on the luminal membrane of renal
epithelial cells of the TAL and macula densa. Its physiological
functions are urine concentration, regulation of Ca2+ excretion,
and reabsorption of NaCl in TAL (12). It is responsible for most
of the NaCl absorption (6, 7).

All 12 solute carrier family proteins have some common
properties: transport-coupled one cation per each transported
anion (in the case of SLC12A1, for each one K+ and one
Na+ that leave the cell enter two Cl−) which determines an
electric balance; the anion is always the chlorine ion; their
activity is modified by the changes in the cell volume; and
the intracellular concentration of the chlorine ion; activity
regulation is done by phosphorylation and dephosphorylation
(12). It is positively regulated by WNK3 serine/threonine-
protein kinase that activates SLC12A1 by phosphorylation and
inhibits by dephosphorylation (12). This action is mediated
by cation-chloride cotransporters (CCCs) dependent on cell
tonicity (13). A decreased cell volume leads to phosphorylation
of cotransporters by Serine/threonine-protein kinase STE20 (12,
14, 15).

Three full-length SLC12A1 isoforms exist in humans: isoform
A, isoform B, and isoform F. Isoform A is the most intensely
expressed (16, 17). However, there are differences in gene
expression between different segments of TAL: isoforms A
and F are mostly expressed in the outer stripe of the outer
medulla, while isoform B is active in the cortex (16, 17). In
addition, the affinity for Cl− of isoforms decreases in this order:
isoform B, isoform F, and isoform A, a feature concordant
with spatial localization of these isoforms. Thus, the isoforms
with higher affinity are expressed in C-TAL where there is a
higher concentration of Cl−, while in M-TAL, the lower-affinity
isoforms are present and concordant with low levels of Cl−
(16, 17).

ClC-K

ClC-Ka and ClC-Kb are expressed differently in the epithelial
cells of the nephron, inner ear, and salivary glands (18). The ClC-
K channels have the largest protopore conductance values. These
values range from 15 to 22 ps (18).
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TABLE 1 | Genes and proteins in Bartter syndrome (5–7).

Gene
(Anterior/
alias symbol)

Approved name Chromosomal
location

Protein—Recommended name
(Anterior/alternative name)

Bartter syndrome
type

SLC12A1
(NKCC2)

Solute carrier family 12
member 1

15q21.1 Solute carrier family 12 member 1
(Bumetanide-sensitive
sodium-(potassium)-chloride
cotransporter 2; Kidney-specific
Na-K-Cl symporter)

Type 1

KCNJ1
(Kir1.1
ROMK1)

Potassium inwardly
rectifying channel subfamily

J member 1

11q24.3 ATP-sensitive inward rectifier
potassium channel 1
(ATP-regulated potassium channel
ROM-Kş Inward rectifier K (+) channel
Kir1.1; Potassium channel, inwardly
rectifying subfamily J member 1)

Type 2

CLCNKB
(hClC-Kb)

Chloride voltage-gated
channel Kb

1p36.13 Chloride channel protein ClC-Kb
(ClC-K2)

Type 3

BSND
(BART
DFNB73)

Barttin CLCNK type
accessory subunit beta

1p32.3 Barttin Type 4a

CLCNKA
(hClC-Ka)

Chloride voltage-gated
channel Ka

1p36.13 Chloride channel protein ClC-Ka
(ClC-K1)

Type 4b

CLCNKB
(hClC-Kb)

Chloride voltage-gated
channel Kb

1p36.13 Chloride channel protein ClC-Kb
(ClC-K2)

Type 4b

MAGE-D2
(JCL-1, BCG1, 11B6,
MAGE-D2, HCA10,
MAGED, MGC8386)

MAGE family member D2 Xp11.21 Melanoma-associated antigen D2
(11B6, Breast cancer-associated gene
1 protein, Hepatocellular
carcinoma-associated protein JCL-1,
MAGE-D2 antigen)

Type 5
(Transient BS)

CASR Calcium sensing receptor 3q13.33-q21.1 Extracellular calcium-sensing
receptor

AD hypocalcemic
hypercalciuria

FIGURE 1 | Gene expressions in different segments of the nephron and correspondent type of the Bartter syndrome. Created with BioRender.com.
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FIGURE 2 | Main mechanisms of kidney reabsorption and secretion. 1—Proximal convoluted tubule; 2—Descending limb of loop of Henle; 3—Thin segment of
ascending limb; 4—Thick segment of ascending limb; 5—Distal convoluted tubule; 6—Collecting duct; magenta arrow—active transport; blue arrow—passive
transport. Adapted from “Kidney Reabsorption and Secretion,” by BioRender.com (2022). Retrieved from: https://app.biorender.com/biorender-templates (accessed
on 22 March 2022).

The ClC-K channels inserted in the basolateral membrane of
nephron epithelia require a barttin subunit for proper function.
Lack of barttin causes BS type 4a with renal loss of NaCl (7).
ClC-Kb inactivating mutations cause BS type 3 (7, 17). ClC-Ka
is expressed mainly in the thin limb of the Henle loop, while
ClC-Kb is expressed in the TAL, distal-convoluted tubules, and
in collecting duct-intercalated cells (7, 19). ClC-Ka, ClC-Kb, and
barttin are also expressed in the ear where they are involved in the
endolymph secretion. Both modified isoforms or their common
beta subunit (barttin) cause deafness in BS type 4 (18).

CLCNKA and CLCNKB

CLCNKA and CLCNKB are neighboring genes, present similar
sequences, and probably result from the duplication of an
ancestral gene. Deletions/non-sense mutations in CLCNKB

produce loss of channel function which affects the response of
the ClC-Kb complex to pH and Ca2+.

ROM-K

ROM-K is an ATP-sensitive channel with low conductance,
located at the apical pole of the cells. There is no difference
between the expression ROM-K in M-TAL and C-TAL; it is
expressed from the inner stripe of the outer medulla to the macula
densa (17).

MAGE-D2

MAGE-D2 is a nucleolar protein that increases SLC12A1
expression in the human TAL and in the distal convoluted
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tubules. MAGE-D2 interacts with HSP40 allowing the protection
of proteins. Also, MAGE-D2 in association with Gs-alpha
promotes the insertion of SLC12A1 and NCC (NaCl-co-
transporter) into the plasma membrane. In Barter type 5, due
to the existence of an abnormal MAGE-D2, protein degradation
is amplified, associated with low levels of SLC12A1 and NCC
(4, 20).

CLINICAL SIGNS

The typical symptoms in children with BS are polyhydramnios,
premature delivery, polyuria, polydipsia, signs of hypovolemia,
failure to thrive, and poor growth (21).

The age of presentation is different according to the type of
mutation. For the BS types 4 and 5, polyhydramnios is earlier
compared to BS types 1 and 2. The onset of BS type 3 is later in
life and only rarely in the antenatal period (22).

There are rare cases of asymptomatic children diagnosed
with BS. These cases presented hypokalemia metabolic alkalosis,
normal blood pressure, and nephrocalcinosis, and usually such
patients are discovered after a screening applied in a family with
positive history of BS (23–26).

Antenatal Symptomatology
The most frequent feature is the polyhydramnios detected during
pregnancy, starting at 22 weeks of gestation (3). The onset of
polyhydramnios is earlier in fetuses with BS types 4 and 5 (BSND
or MAGED2 variants) and represent the most severe forms.
In BS type 1 (SLC12A1) and BS type 2 (KCNJ1), the onset
of polyhydramnios is much tardive, concordant with a lower
severity. In BS type 3 (CLCNKB), polyhydramnios is either absent
or mild (3, 20).

Antenatal genetic testing and biochemical analysis of amniotic
fluid, the concentration of total protein and alpha-fetoprotein
(decreased in BS), the Bartter index (which is defined
corresponding to the multiplication of total protein and of
AFP, both expressed in multiple of median—MoM) with 86%
sensitivity and 84% specificity, can be used to confirm the
diagnosis (27, 28).

Neonatal Symptomatology
All BS types, except BS type 3, have a neonatal onset with preterm
birth (median gestational age between 29 and 33 weeks) and
massive polyuria which lead to dehydration and rapid weight loss.
Infants with BS type 4 have supplementary sensorineural hearing
loss (22, 29).

The diagnosis can be confirmed using a next-generation
sequencing (NGS) testing with gene panels that contain
SLC12A1, KCNJ1, BSND, CLCNKA, CLCNKB, MAGED2, and
SLC12A3 gene. These tests have 75% sensitivity and 90–100%
specificity (30).

Childhood Symptomatology
Older infants and young children with BS type 3 fail to thrive,
growth retardation, and present polyuria/polydipsia that lead

to hypovolemia, persistent thirst, salt craving, constipation,
unexplained fever, hypotonia, and recurrent vomiting (23–25).

Teenage Symptomatology
Older children and adolescents with BS type 3 can present
thirst, salt craving, fatigue, muscle weakness, cramps, nocturia,
constipation, poor growth, and pubertal delay.

In BS type 4, there is a risk for chronic kidney disease (CKD)
and end stage renal disease (ESRD) (22).

Bartter syndrome type 5 (transient type) has some
extrarenal clinical features: frontal bone cyst, dysmorphic
facies, hydrocephalus and Chiari malformation, Marfanoid
habitus with arachnodactyly and mitral insufficiency, pyloric
stenosis, high blood pressure, interauricular communication,
left ventricle hypertrophy, right aortic arch, retroesophageal left
subclavian artery, moderate pulmonary stenosis, enteropathic
acrodermatitis zinc deficiency type, angioma, thrombocytopenia,
and deafness after the age of 2 (3, 4, 31).

The laboratory findings constant in all forms of BS
are hypochloremic metabolic alkalosis, elevated renin and
aldosterone levels, low to normal blood pressure due to chronic
hypovolemia, low urine osmolality due to impaired concentrating
ability, and hypokalemia (potassium levels that are less than
3 mmol/L). Transient neonatal hyperkalemia may be present only
in patients with BS type 2. Hypercalciuria is present in patients
with BS types 1 and 2 (associated with nephrocalcinosis) and also
in BS type 5 (the nephrocalcinosis is rare and mild in this type).
The normocalciuria is present in patients with BS types 3 and
4, and the hypocalciuria in patients with BS type 3. The mild
hypomagnesemia may be present in some patients with BS type 3.
Plasma Cl/Na ratio can be normal in BS types 1 and 2, decreased
in BS types 3 and 4, and increased in BS type 5 (1, 21, 32–35).

GENETIC TESTING

Genetic testing is recommended in any clinical suspicion of
BS. The European Rare Kidney Disease Reference Network
Working Group for Tubular Disorders recommends a gene
panel testing. This panel must contain not only all genes
that cause BS and Gitelman syndrome but also genes that
overlap phenotypically with BS and should be considered in
differential diagnosis with BS: SLC12A1, KCNJ1, CLCNKB,
CLCNKA, BSND, MAGED2, SLC12A3, CASR, KCNJ10, SLC26A3,
CLDN10, SCNN1A, SCNN1B, SCNN1G, NR3C2, HSD11B2,
CYP11B1, CLCN2, KCNJ5, and CACNA1H (1). Genetic testing
is required for several reasons: confirmation of clinical diagnosis,
adequate genetic counseling, adequate management of diseases
with overlapping phenotypes, screening for deafness in BS type 4,
and avoidance of aggressive treatment in transient BS type 5 (1).

Mutational heterogeneity is important in BS. According
to the Human Gene Mutation Database Professional HGMD
Professional 2021.4 (accessed in February 2022), 350 pathogenic
variants were described. Figure 3 shows the implication in BS
of different types of genetic modifications. The most common
was missense/non-sense mutation, splicing substitution, small
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FIGURE 3 | Different types of pathogenic variants in genes implied in Bartter syndrome (36).

deletions, and gross deletion especially in SLC12A1, CLCNKB,
and KCNJ1 genes.

DIFFERENTIAL DIAGNOSIS

The differential diagnosis of BS should be made with conditions
where the main signs are poyhydramnios, salt loss, salt loss with
hypokalemic alkalosis, hypokalemic alkalosis without salt loss,
and nephrocalcinosis (1, 22).

The polyhydramnios may be a sign present in aneuploidia
(the karyotype is abnormal), different gastrointestinal
malformations, and congenital chloride diarrhea (dilated
intestinal loops present).

The salt loss can be a manifestation in
pseudohypoaldosteronism type I, but in this case is associated
with metabolic acidosis and hyperkalemia.

The salt loss with hypokalemic alkalosis can be a sign
in congenital chloride diarrhea, pseudo-BS (in cystic fibrosis,
for example), surreptitious vomiting, surreptitious laxative
use (in these entities, the additional finding is low urinary
chloride), Gitelman syndrome (associated hypocalciuria and
hypomagnesemia), HNF1B (hepatocyte nuclear factor 1 beta),
nephropathy (associates renal malformation, MODY5—maturity
onset diabetes of the young type 5, hypomagnesemia), HELIX
syndrome (hypercalcemia is present), autosomal dominant

hypocalcemia, EAST/SeSAME syndrome (seizures, sensorineural
deafness, ataxia, mental retardation, and electrolyte imbalance),
and surreptitious diuretic use (1, 22).

Hypokalemic alkalosis without salt loss associated
hypertension with low renin/aldosterone and can be found
in primary hyperaldosteronism, apparent mineralocorticoid
excess, and Liddle syndrome (1, 22).

The nephrocalcinosis can also be found in distal renal
tubular acidosis (metabolic acidosis), medical conditions
without metabolic alkalosis (proximal tubular defects,
familial hypomagnesemia/hypercalciuria), and apparent
mineralocorticoid excess (1, 22).

THERAPY OF BARTTER SYNDROME

The antenatal therapy consists of repeated amniocentesis
and/or maternal administration of NSAID (non-steroidal anti-
inflammatory drug) in order to reduce the amniotic fluid volume.
There are potential risks for the fetus (such as necrotizing
enterocolitis or premature closure of the ductus arteriosus). The
evidence is not sufficient to show that the benefit outweighs the
potential adverse effects (1). The main therapeutic interventions
are summarized in Table 2.

The postnatal therapy consists of maximal caloric intake in
order to facilitate optimal growth (1), fluid repletion, sodium
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TABLE 2 | Treatment in Bartter syndrome (1, 40).

Therapeutic intervention Doses Evidence quality,
strength of

recommendation *

Comments

Na Cl supplementation 5–10 mEq/kg/d
(mmol/kg/d)

Grade C (moderate
recommendation)

Should be avoided in patients with BS
types 1 and 2 who have secondary
nephrogenic diabetes insipidus

KCl supplementation 2 mEq/d
(mmol/kg/d)

Grade C (moderate
recommendation)

The goal of therapy is to achieve a
target of ≥ 3 mEq/L (mmol/L),

NSAID Indomethacin
(1–4 mg/kg/d divided in 3–4 doses)

ibuprofen (15–30 mg/kg daily in 3 doses)
celecoxib (2–10 mg/kg/d in 2 doses)

Grade B (moderate
recommendation)

Should be accompanied by gastric acid
suppression (for non-selective Cox
inhibitors)

Nutrition
Maximal caloric intake

Grade D (weak
recommendation)

Mg supplementation oral organic magnesium salts (aspartate, citrate,
lactate)

5 mg/kg (0.2 mmol/kg)

Grade D (weak
recommendation)

The goal of therapy is to achieve a
target of 1.46 mg/dL (0.6 mmol/L).

Potassium-sparing
diuretics,
angiotensin-converting
enzyme inhibitors, and
angiotensin receptor
blockers

Diuretics (Spironolactone 1 mg/kg daily bid;
Eplerenone 50 mg daily; Amiloride 10 mg daily);

titrated to high doses Angiotensin-converting
enzyme inhibitors (captopril 0.3–0.5 mg/kc bid-tid;

enalapril 0.08–0.6 mg/kc qd; lizinopril 0.08–0.6
mg/kc qd)

Angiotensin receptor blockers (candesartan
0.16–0.5 mg/kc qd; irbesartan 75–150 mg qd)

Grade D (weak
recommendation)

May exacerbate renal salt wasting and
increased polyuria

*Grade (B/C/D)—Evidence Quality; bid, bis in die (twice daily); tid, ter in die (three times a day); qd, quaque die (one a day).

TABLE 3 | Follow-up in Bartter syndrome (1, 22).

Frequency of
visits in
centers

Clinical work
up

Biochemical
work up

Cardiac work
up

Renal
ultrasound

Infants 3–6 months At each follow
up visit

At each follow
up visit

12–24 months

Young children 3–6 months At each follow
up visit

At each follow
up visit

12–24 months

Older children 6–12 months At each follow
up visit

At each follow
up visit

12–24 months

Adult patients 6–12 months At each follow
up visit

At each follow
up visit

In case of
palpitations or

syncope

12–24 months

Level of recommendation Grade C Grade C Grade C Grade C Grade C

chloride (NaCl) supplementation of at least 5–10 mEq/kg/d, and
potassium chloride (KCl) 1–2 mEq/d, spread out in frequent
doses throughout the day, in order to compensate the urinary
losses (1, 37).

Non-steroidal anti-inflammatory drugs that inhibit
prostaglandin E2, which contributes to high urinary NaCl
losses, are recommended in case of inadequate response in
symptomatic patients with BS, especially in early childhood
(38). Oral magnesium supplementation is recommended in
case of hypomagnesemia [<1.70 mg/dl (0.7 mmol/L)] (37, 39).
In case of symptomatic hypokalemia despite the supplements,
potassium-sparing diuretics (such as spironolactone, eplerenone,
or amiloride), angiotensin-converting enzyme inhibitors, and
angiotensin receptor blockers can be used (1, 37).

FOLLOW-UP IN BARTTER SYNDROME

The patients with BS should be followed in pediatric or adult
centers experienced in tubular disorders. The recommended
frequency of hospital visits is 3–6 months for infants and young
children and 6–12 months for adults. All the recommendations
are summarized in Table 3. A clinical work on hydration status,
degree of polyuria, muscular weakness, growth, and psychomotor
development is recommended at each follow-up visit (1, 22).

A biochemical work focused on metabolic acid-base status
(either blood gas or by measurement of venous total CO2), serum
electrolytes (natremia, potassium, chloride, magnesium, and
bicarbonate levels), renal function, microalbuminuria, urinary
calcium excretion, PTH, and urine osmolality for the detection of
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nephrogenic diabetes insipidus is recommended at each follow-
up visit (1, 22).

Growth hormone deficiency may be considered for children
with growth retardation despite treatment.

Renal ultrasound is recommended to be performed at least
every 12–24 months to monitor the occurrence of kidney stones,
nephrocalcinosis, and obstructive uropathy.

Cardiac work out is recommended for patients (particularly
adults) with palpitations or syncope. The physician can use the
drugs that slow the sinus rhythm (beta-blockers, calcium channel
blockers as verapamil, diltiazem, digoxin) or drugs that influence
the QT interval (proton pump inhibitors, fluoroquinolones,
macrolides, gentamicin, or antiviral drugs). Electrocardiography,
Holter, and stress electrocardiography are recommended to
detect cardiac arrhythmias which are determined by a prolonged
QT interval in the context of hypokalemia and hypomagnesemia
(1, 22).

The quality of life is important to be assessed by using
age-specific standardized questionnaires. The quality-of-life
scores are related by biochemical parameters (potassium and
aldosterone) (1, 41).

Sports can be performed with a good hydration and additional
salt and electrolytes.

Anesthesia for patients with BS must be performed
after improvement of hypokalemia and hypomagnesemia,
which in addition with anesthetic agents can lead to
neuromuscular blockage. Potassium levels > 3.0 mmol/L and
magnesium > 0.5 mmol/are suggested by guidelines (42).

Kidney Disease
Renal disease is characterized by urolithiasis, obstructive
uropathy, and nephrocalcinosis. Nephrotic-range proteinuria has
also been reported in patients with BS (21, 24, 43). Renal biopsy
can show diffuse glomerular and tubule-interstitial lesions with
enlarged glomeruli and focal segmental glomerulosclerosis (23).

Only some patients have an evolution to end-stage kidney
disease. CKD can occur as a late manifestation in patients with

BS, particularly types 1, 4a, and 4b (21, 23, 44). The CKD in
BS seems to have several mechanisms: chronic stimulation of
the renin–angiotensin system, periodic dehydration, prematurity,
nephrocalcinosis, long-term NSAID drug treatment, and chronic
hypokalemia (4).

There are few reported cases of kidney transplants (23, 45–50).
The electrolytes and urinary concentrating abnormalities were
corrected. No evidence of recurrent disease was observed.

Few studies reported growth failure with growth hormone
(GH) deficiency in patients with BS, particularly type 3 who have
severe metabolic abnormalities. The poor growth explanation is
unclear: acid-base or electrolyte disturbances in BS or whether
it is an intrinsic part of the disorder. After metabolic control,
recombinant human GH supplementation can be performed (21,
24, 51–53).

CONCLUSION

Knowledge of clinical heterogeneity in BS is important for
initiating genetic investigations and proper management. Early
molecular diagnosis is desirable for personalized therapy.
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