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Oxygen is the most common drug used in the neonatal intensive care. It has a narrow

therapeutic range in preterm infants. Too high (hyperoxemia) or low oxygen (hypoxemia)

is associated with adverse neonatal outcomes. It is not only prudent to maintain oxygen

saturations in the target range, but also to avoid extremes of oxygen saturations. In

routine practice when done manually by the staff, it is challenging to maintain oxygen

saturations within the target range. Automatic control of oxygen delivery is now feasible

and has shown to improve the time spent with in the target range of oxygen saturations.

In addition, it also helps to avoid extremes of oxygen saturation. However, there are no

studies that evaluated the clinical outcomes with automatic control of oxygen delivery. In

this narrative review article, we aim to present the current evidence on automatic oxygen

control and the future directions.
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INTRODUCTION

Oxygen is a drug with a narrow therapeutic range in vulnerable preterm neonates. Avoiding
both hypoxemia and hyperoxemia is important especially in neonates as both are associated
with short-term and long-term adverse outcomes (1, 2). Hypoxemia causes cellular damage,
and this may be associated with poor outcomes such as death or disability (3–5). Hyperoxemia
causes oxygen toxicity and oxidative stress that has been implicated in the development of
bronchopulmonary dysplasia (BPD) and retinopathy of prematurity (ROP) (6–8). Although, there
are recommendations for the oxygen saturation (SpO2) targeting in preterm infant, it is challenging
in the routine practice to keep the SpO2 in the prescribed target range (TR) (9, 10). Traditionally
the Fractional inspired oxygen (FiO2) is often needed to be titrated by the bedside staff (Manual
control, M-FiO2) to try to maintain the SpO2 in the TR. The compliance with manual control
is hugely variable across centers (11). Studies have shown that M-FiO2 results in a considerable
proportion of time spent outside of the TR of SpO2. The preterm infants in view of their
cardiorespiratory instabilities and apnea of prematurity, are prone to fluctuations in SpO2 and
intermittent episodes of hypoxemia (12). In a prospective study, reporting achieved vs. intended
SpO2 targets in preterm infants<28 weeks, only 16–64% of time infants were in the intended range
and above the range 20–73% of time (11). With the advent of automated system in oxygen delivery
(A-FiO2), the challenges to maintain the SpO2 in the TR has been overcome to an extent. A-FiO2
uses real time continuous SpO2 data to makes necessary adjustments in FiO2 based on algorithms
that differ with devices and systems.
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Studies using A-FiO2 have consistently shown to improve
the proportion of time spent in the TR of SpO2, reduce
hypoxemia and hyperoxemia in preterm infants on non-invasive
or invasive respiratory support. Whilst the A-FiO2 systems have
been commercially available, it has not yet established itself in the
routine care in the neonatal ICU (2, 13). This is indicative of the
challenges with its use, and more importantly the lack of clinical
outcome data with the use of A-FiO2.

In this review article we will make a case for importance
of SpO2 targeting in preterm infants, clinical implications of
intermittent hypoxemia/hyperoxemia, current evidence for the
use of A-FiO2, the types of algorithms available in clinical
practice, challenges in implementation of technology and the
future directions.

SPO2 TARGETING IN PRETERM INFANTS

In the last decade, five large randomized controlled trials
(14–18) were conducted to evaluate the optimal SpO2 TR in
preterm infants. Following this, three systematic reviews (19–21)
including Cochrane review (9) and one individual patient meta-
analysis (10) have been published. There was no difference in
the primary composite outcome of death or major disability at
18–24 months corrected age between the lower SpO2 group (85–
89%) and higher SpO2 group (91–95%). The lower SpO2 group
was associated with higher risk of mortality and NEC. The risk
of ROP was higher in the higher SpO2 group. However, there
was no difference in the rates of severe visual impairment (22).
Interestingly, the separation of SpO2 between the two groups
in these studies was less than expected with significant overlap
in SpO2 in the two groups. The current recommendations by
international bodies suggest the use of 90–95% as SpO2 TR in
preterm infants until 36 weeks Post menstrual age (20, 23).

EFFECTS OF HYPOXEMIA AND
HYPEROXEMIA

In post-hoc analysis of Canadian oxygen trial (COT study),
intermittent prolonged hypoxemia (SpO2 < 80%) for at least
1min was associated with increase in composite outcome of
death after 36 weeks or major neuro-disability (RR 1.66, 95% CI:
1.35–2.05) at 18 months corrected age (5). Jensen et al. in their
post-hoc analysis also showed increased risk of severe BPD with
both the frequency of severe hypoxemic episodes and duration
of hypoxemia (4). Compared with infants with lowest decile of
hypoxemic episodes, infants with highest number of hypoxemic
episodes (10th decile) had an adjusted relative risk of 20.40 (95%
CI: 12.88–32.32) for severe BPD.

Oxygen supplementation and hyperoxemia, whilst on
supplemental oxygen, has been associated with ROP, BPD and
PVL (24, 25). Hyperoxemia, mostly an overshoot to the oxygen
supplementation following a hypoxemic event, is a preventable
by strict adherence to the SpO2 target or by the use of A-FiO2.

Whilst it is important to maintain the SpO2 in TR for
preterm infants, it is equally imperative to avoid hypoxemia and
hyperoxemia. Hence it is essential to choose and adhere to the

appropriate alarm limits for the SpO2 TR (26). A-FiO2 studies
have shown an advantage of A-FiO2 over M-FiO2in reducing
extremes of SpO2.

ALGORITHMS FOR A-FIO2

The A-FiO2 works on the principles of continuous SpO2
monitoring using pulse oximeter, regular feedback into the rule-
based algorithms and changes in FiO2 delivery based on this
feedback. The algorithms vary in designs and hence the frequency
and magnitude of changes to FiO2 is variable across the various
A-FiO2 devices. The designs include on adaptive model control
algorithms, proportional integral differential algorithm and state
machine control algorithm (27).

The state machine control algorithm is based on a set of
rules. The algorithm uses the difference between the desired
and the actual SpO2, its velocity and acceleration as input.
The incorporated rules then set out a FiO2 change by the
controller. In the proportional integral differential algorithms,
the controller calculates the difference between the desired and
the actual SpO2 (error), integrates over time and velocity and
determines the oxygen output. The adaptive model algorithms
consider the infant’s physiology that may have the effect on
oxygen dissociation curve. A non-linear model is created based
on FiO2-oxygen saturation relationship. The controller adjusts
its model of this relationship to achieve target saturations (28).

The currently available algorithms include CLiO
TM

2 integral
to the Avear infant ventilator (Figure 1), CLAC (Closed Loop
automatic oxygen control) incorporated into the Leoni ventilator,

IntellO2
TM

in the Oxygen assist module in Vapotherm Precision
Flow (Figure 2), OxyGenie on SLE6000 ventilator, PRICO on
the Fabian acutronic ventilators and SPOC on Sophie neonatal
ventilator (MEDACX).

CURRENT AVAILABLE EVIDENCE FOR
THE USE OF A-FIO2 IN NEONATES

The details of the currently available studies are shown in Table 1

(29–45). Majority of these studies were cross-over RCT. The
SpO2 targets used were variable across the studies, as were
the post-natal age at entry and the algorithms used. All the
studies were of short duration varying from 2 to 48 h. Six of
these studies included infants on invasive ventilation, another six
used a combination of invasive ventilation and nasal continuous
positive airway pressure (NCPAP), and further six studies only
included infants on non-invasive respiratory support (NCPAP
or High Flow therapy). The primary outcome in most was
the proportion of time in SpO2 TR. The studies consistently
reported significantly higher proportion of time in SpO2 TR,
lower proportion of time below & above the SpO2 TR and
reduced need for manual adjustments with A-FiO2. In a recent
systematic review with 13 studies, A-FiO2 resulted in increased
time spent in target SpO2 of 85–96% [MD = 8.96; 95% CI (6.26,
11.67), p<.00001], and 90–95% [MD = 18.25; 95% CI (4.58,
31.65), p = 0.008] (46). A-FiO2 reduced the time in hypoxemia
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TABLE 1 | Characteristics of A-FiO2 studies.

References Study design Study population Primary outcome

(automatic vs. manual)

Other outcomes

(automatic vs. manual)

Claure et al. (29) Randomized cross over trial for

2 h on each mode.

N = 14

Mechanically ventilated Very Low

Birth weight infants

Increase in time spent in TR No significant difference in other

outcomes.

Claure et al. (30) Randomized cross over trial for

two 4-h periods

N = 16

Mechanically ventilated preterm

infants and receiving

supplemental oxygen

Increase in time spent in TR Decrease in time above the TR

Decrease in time SpO2 ≥ 98%

Decreased time with SpO2 < 88%

Claure et al. (31) Randomized cross over trial for 2

consecutive 24-h periods

N = 32

Mechanically ventilated preterm

infants and receiving

supplemental oxygen

Increase in proportion of

time spent in TR

Decrease in time spent in SpO2 > 98%

Decrease in time SpO2 < 87%

Decrease in number of FiO2 changes

No difference in time spent in SpO2 <

80% or <75%

Lal et al. (32) Randomized cross over trial for 2

consecutive 12-h periods

N = 27

Mechanically ventilated Preterm

infants <32 weeks on

supplemental oxygen

Increase in proportion of

time spent in TR

Decrease in proportion of time in SpO2

below the TR

Decrease in proportion of time in SpO2

above the TR

Decrease in proportion of time in SpO2 <

80

Decrease in proportion of time in SpO2

≥ 98

Morozoff et al. (33) Cross over study with three

algorithms with manual control

N = 7

Mechanically ventilated

preterm infants

Increase in proportion of

time spent in TR

Decrease in number of hypoxemic

episodes

Decrease in number of

manual adjustments.

Sturrock et al. (34) Randomized cross over trial for 2

consecutive 12-h periods

N = 24

Mechanically ventilated preterm

infants at a corrected gestation

age < 6 months

Decrease in number of

desaturations with SpO2 <

85% lasting >30 and >60 s

Increase in proportion of time spent in TR.

Decrease in proportion of time in SpO2

below the TR

Decrease in proportion of time in SpO2

above the TR

Hallenberger et al. (35) Randomized cross over trial for

24-h period.

N = 34

Preterm infants either

mechanically ventilated or on

NCPAP and receiving

supplemental oxygen.

Increase in proportion of

time spent in TR

Decrease in proportion of time below the

TR

No difference in time above the TR

Decrease in number of manual

FiO2 adjustments

van Kaam et al. (36) Randomized cross over trial for

24 h each and randomized to

two SpO2 targets

N = 80

Preterm infant < 33 weeks on

invasive or non-invasive

respiratory support

Increase in proportion of

time spent in TR

Decrease in proportion of time spent below

TR and SpO2 < 80%

Decrease in number of episodes with

SpO2 < 80% for >1min

Waitz et al. (37) Randomized cross over trial for

24 h each

N = 15

Preterm ventilated infants

Increase in proportion of

time spent in TR

Decrease in number of prolonged (>60 sec)

episodes with SpO2 < 88%

Decrease in proportion of time spent in

SpO2 > 96%

Gajdos et al. (38) Randomized cross over trial for

12 h period.

N = 12

Very Low Birth weight infants

Increase in proportion of

time spent in TR

Decrease in time spent below the TR

Decrease in number of episodes in SpO2 <

88% for >180 s

No difference in time spent above TR,

median FiO2 and tissue oxygenation.

Schwarz et al. (39) Randomized cross over trial:

Three modes: CLACfast, manual

control only, manual control with

CLAC slow

N = 19

Preterm infants <34+1-week

gestation receiving respiratory

support (invasive or non-invasive)

and supplemental oxygen

Increase in time spent in TR

(CLAC fast vs. manual)

Decrease in time spent below the TR

(CLAC fast vs. manual)

Urschitz et al. (40) Randomized cross over trial of

90min for three group.

- Routine manual control.

- Optimal manual control.

- FiO2 Controller

N = 12

Preterm infants on NCPAP and

receiving supplemental oxygen

Increase in time spent in TR

with A-FiO2 as compared to

routine M-FiO2

Decrease in manual adjustments of FiO2

with A-FiO2

Plottier et al. (41) Non-randomized study with 4-h

intervention with A-FiO2 with

N = 20

Preterm infants on non-invasive

Increase in proportion of

time spent in TR

Decrease in time spent below the TR,

above the TR, SpO2 < 80%. SpO2 > 98%

(Continued)
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TABLE 1 | Continued

References Study design Study population Primary outcome

(automatic vs. manual)

Other outcomes

(automatic vs. manual)

total of 8 h manual control (4 h

before and after automated

oxygen).

support and

supplemental oxygen

Decrease in number of changes to

oxygen therapy

Dargaville et al. (42) Cross over study with 24-h

intervention with automated

oxygen with total of 24 hrs

manual control (12 h before and

after automated oxygen)

N = 35

Preterm infants on non-invasive

respiratory support and

supplemental oxygen

Increase in proportion of

time spent in TR

Decrease in time in SpO2 < 80%.

Decrease in time spent in severe and

prolonged hyperoxemia and hyperoxemia

Zapata et al. (43) Randomized trial with total study

duration of 12 h

N = 20

Preterm infants <30 weeks and

<1,000 grams receiving

supplemental oxygen with

nasal cannula

Increase in time spent in TR Decrease in time spent in SpO2 > 95%

Reduced need for manual adjustments

Reynolds et al. (44) Randomized cross over trial N = 30

Preterm infants on High Flow

Nasal Cannula with FiO2 ≥25%.

Increase in time spent in TR Decreased number of prolonged episodes

of SpO2 < 80%

No difference in number of episodes/hours

of SpO2 >98%

Dijkamn et al. (45) Randomized cross over trial for 2

consecutive 24-h periods

N = 27

Preterm infants < 30 weeks on

High Flow Nasal Cannula and

FiO2 >0.25

Increase in proportion of

time spent in TR

Decrease in proportion of time spent below

TR, above TR and SpO2

No difference in time spent in SpO2

> 98%

[SpO2 < 85%; MD = −1.24; 95% CI (−2.05, −0.43), p = 0.003]
and hyperoxemia [SpO2 > 98%; MD = −0.99; 95% CI (−1.74,
−0.25), p= 0.009].

Various algorithms are available with A-FiO2. Only two
studies compared different A-FiO2 algorithms. Schwarz et al.
compared fast and slow CLAC algorithms (39) and Salverda et al.
compared OxyGenie controller (SLE6000 ventilator) with CLiO2
controller (AVEA ventilator) in randomized cross over trial (47).
In the latter study 15 preterm infants received each intervention
for 24 h in a cross over fashion. Time spent in the SpO2 TR were
higher with OxyGenie with median time of 80.2 (72.6–82.4) % vs.
68.5% (56.7–79.3%) in CLiO2 algorithm. With OxyGenie time
spent above the TR were lower (6.3 vs. 15.9%, p < 0.005) and
time spent below the TR (14.7 vs. 9.3%, p < 0.05) were higher
as compared to CLiO2. The difference in the hypoxemia and
hyperoxemia episodes may be related to the different design of
the algorithm.

Although A-FiO2 has consistently shown to be superior to the
M-FiO2 in maintaining the SpO2 in the TR, we do not know
if this physiological benefit is associated with improved clinical
benefits. It can be hypothesized that better control in maintaining
SpO2 in TR, reduction in hypoxemia and hyperoxemia may
concomitantly result in improved short- and long-term clinical
outcomes. There are currently no studies available that has looked
at use of A-FiO2 to improve clinical outcomes. For a clinical
outcome study with A-FiO2, it is imperative that parallel arm
RCT design is chosen. The study should also capture the entire
period on respiratory support and supplemental oxygen. A large
RCT with aim to recruit 2,340 preterm infants (<28 weeks)
is currently underway (NCT03168516) (48). In this clinical
outcome study, infants are randomized to either A-FiO2 or
M-FiO2, continue to be in randomized arm as much as time

FIGURE 1 | CLiO
TM

2 integral to the Avear infant ventilator.

possible without any crossover. Primary outcome of this RCT is
composite outcome of death or severe ROP, BPD or NEC. This
study has another primary outcome of composite of death or any
of the following: language or cognitive delay, motor impairment,
severe visual impairment or hearing impairment all assessed at 2
years of age.

An improvement in saturation targeting with A-FiO2 was not
associated with improved tissue oxygenation in studies by Dani
et al. and Waitz et al. (37, 49).

Alarms are necessary evils in any intensive care units (50).
Alarm overloads can result in fatigue and desensitization among
staff which in turn could pose a clinical risk. Studies with A-
FiO2 have shown a significant lower alarm rate as compared to
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FIGURE 2 | Oxygen assist module in Vapotherm Precision Flow Device.

M-FiO2 (32). The frequency of alarms in A-FiO2 can be further
reduced with much looser alarm limits (51). The reduction in
alarm frequency may help in reducing the nursing workload and
possibly increase cognitive attention. However, it is imperative to
consider the appropriate alarm threshold for SpO2 and FiO2 so
as to alert the caregivers of a deterioration.

Few centers have implemented A-FiO2 for routine care of
preterm infants. Van Zanten et al. reported outcomes of before
and after implementation of A-FiO2 (52). Although there was a
significant improvement in time spent in the SpO2 TR, there was
no difference in duration of respiratory support and mortality.
Salverda et al. also reported pre (2012–2015; N = 293) and post
(2015–2018; N = 295) implementation of A-FiO2 in preterm
infants (53). There was no difference in any of the clinical
outcomes like ROP, NEC, BPD, and duration of hospital stay.
Both these studies by the nature of their design were not powered
for these outcomes.

Van Zanten et al. also reported that the staff were reluctant
to go back to M-FiO2 after implementation of A-FiO2 as this
reduced their workload (52). To our knowledge, there are no
studies reporting parental experience with use of A-FiO2 either
in clinical or research set-up.

In summary, currently there is good evidence to show that
A-FiO2 is superior to M-FiO2 in maintaining SpO2 in TR and
reducing extremes of SpO2 in preterm infants. However, there
are no studies to support the clinical benefits of A-FiO2.

WHAT IS THE CURRENT POSITION OF
A-FIO2 IN NICUs

Recent survey among UK neonatal units (192 units), showed that
around 19 neonatal units (9.9%) units used A-FiO2 (54). Sixty-
eight percent of the users used it in extreme preterm infants <26
weeks. Most responders to the survey reported higher ability to
achieve proportion of time within the target SpO2 range and
reduced need for manual adjustments. 89% of responders did not

report any adverse outcomes. There were two reports that A-FiO2
resulted in inadvertent higher FiO2when the probe was displaced
and one report of masking event of desaturations.

The main challenges to implementation of A-FiO2 in NICU
are lack of devices delivering A-FiO2, unfamiliarity with the
devices and the lack of clinical outcome studies. Most of the
new neonatal ventilators have A-FiO2 options on them. However,
without appropriate expertise and training, the introduction and
implementation of any change can be a failure. There are few
reports that A-FiO2 can result in inadvertent higher FiO2 when
the probe was displaced and mask desaturations.

POTENTIAL AND/OR PERCEIVED
BARRIERS AND OPPORTUNITIES

Masking of Clinical Deterioration
One of the concerns with regards to use of A-FiO2 is that it
may mask clinical deteriorations. A-FiO2 is better than M-FiO2
at reducing hypoxemic episodes by automatically increasing the
FiO2. However, the hypoxemic events may occur in relation
to clinical deterioration like sepsis and just by increasing the
FiO2 during these episodes, such events may be masked. This
is generally not an issue especially if the staffing level is such
that there is continuous close observation of these infants. This
can also be overcome by appropriate staff training and using
appropriate FiO2 alarms. In our unit we have addressed this by
staff education and training. The CLiO2 system provides base
FiO2 which is a trend, and a trend upwards may be indicative
of deteriorating clinical condition. There is continuous scrutiny
and medical staff are alerted when the there is an upwards trend
of more than 5%.

Hypoxemic Events Related to Apnea
Another potential limitation with A-FiO2 is its inability to
differentiate hypoxemic events secondary to apneic episodes.
A-FiO2 would provide sufficient oxygen to keep the SpO2 in
TR, whereas with severe apneic episodes the infant may need
other intervention like stimulation and positive pressure support.
This issue can be overcome again by close observation of the
infant and appropriate vital parameter alarm limits. Again, in
these scenarios the role of staff education and training cannot be
over emphasized.

Average FiO2
It is often perceived at the bedside that FiO2 tends to be higher
with A-FiO2 than M-FiO2. Some cross over studies with A-
FiO2, did not show any statistical difference in the median FiO2
(32, 36, 42), was lower in A-FiO2 arm in Claure et al.’s study (31)
and higher in Dijkman et al.’s study using PRICO (45).

Lower SpO2 Median
Whilst on M-FiO2, the staff proactively intervene for hypoxia
than hyperoxia episodes (11). Also, in a M-FiO2 set-up there is a
tendency to keep the SpO2 in the upper range of the target (closer
to 95%), whereas automated oxygen devices tend to target middle
of SpO2 TR (close to 92–93%). This could potentially lead to
lowermean/median SpO2with A-FiO2.Whether this would have
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any impact on clinical outcomes needs to be studied and if needed
this issue could be tackled with changes in algorithm. Further
if such subtles of control are found to be warranted, shifting of
A-FiO2 TR and alarm limits can be implemented.

Disparity in SpO2 Readings Between the
Monitors
In most of the A-FiO2 devices, the SpO2 can be monitored on
the device in which the algorithm is incorporated. Some of the
A-FiO2 devices albeit having the monitoring functionality does
not have SpO2 alarms incorporated. This necessitates having
additional SpO2 monitoring system with alarms to alert the
staff of the deviation from TR. Despite using the same SpO2
technology, on occasions there seems to be discrepancy in SpO2
between the two monitoring devices. In our practice, we instruct
our nursing staff to reposition/replace SpO2 probe which seems
to resolve this discrepancy on most occasions. Resolution of
discrepancy on most occasions reassures us that this discrepancy
is not to the extent of clinical significance (hypoxia/hyperoxia),
still it could result in staff and parental anxiety. However, this
can be overcome by incorporating SpO2 monitoring with alarm
limits on the same device.

Cost-Effective and Staff Workload
Cost of the equipment is reported as another major limitation.
Although, most of the newer neonatal ventilators are equipped
with A-FiO2, the older versions may not have this facility. The
discussion around cost-effectiveness should consider the clinical
benefits with this technology. However, we are clearly lacking
clinical studies looking at the short- and long-term outcomes of
A-FiO2. When staff work load is considered, A-FiO2 has shown
to be associated with significant reduction in the number of
manual adjustments required thus allowing staff to focus on other
aspects of clinical care (55).

Customizing TR in Preterm Infants
Not all neonates of the exact same maturity are alike. The
recent AAP guidelines recommends TR between 90 and 95%.
However, it also underlines that there is no ideal TR and that
it is patient specific and vary with gestation, chronological age
and the underlying condition (56). Studies have shown that SGA
are more susceptible to lower SpO2 (57). Also, the outcome data
from individual centers may influence the TR used (58). A-FiO2
offers the potential to individualize TR according to the needs of
the infant.

ROLE OF A-FIO2 IN NEONATAL
RESUSCITATION

At birth, preterm infants slowly transition from fetal to neonatal
life and often need interventions to support with this transition.
Oxygen supplementation is often needed for these infants to
maintain recommended SpO2 levels in the first 10min of life.
Hence use of pulse oximetry is recommended by the resuscitation
council to monitor and titrate oxygen supplementation (59).
With particular focus on reducing hyperoxemia and hypoxemia,

most resuscitation councils recommended use of oxygen ranging
from 21 to 30% for preterm infants at birth (59, 60).

Even with advances in neonatal resuscitation it remains a
challenge to meet the SpO2 targets during the first 10min of
life. In a study with preterm infants ≤30 weeks the median
percentages of time spent above and below the target were
44 and 51%, respectively (61). A-FiO2 could be one of the
solutions to achieve the SpO2 targets at the time of birth.
A study in ventilated preterm lambs showed a significant
reduction in time spent above the SpO2 TR with the use
of A-FiO2 using PRICO technology at birth (3). Use of A-
FiO2 in resuscitation could be potentially useful and needs
further research.

FUTURE DIRECTIONS

• Need for RCTs that are adequately powered for short term
and long-term outcomes. These studies should also report
the cost effectiveness of the intervention, considering all the
health outcomes and staff workload. The future studies should
consider recruitment as soon as possible after birth to limit
extremes of oxygenation during early period of the life.

• Studies are needed with characterization of all the
existing algorithms with both invasive and non-invasive
respiratory support.

• Innovations are needed to provide commercial algorithms that
could support moving SpO2 targets (like during first 10min
of birth).

• Role of automated oxygen during elective neonatal intubation
and reduction in hypoxemia during these procedures.

• Use of automated oxygen in preterm infants receiving nasal
cannula low flow oxygen.

• Establish a role of A-FiO2 in low resource-staff limited settings.

CONCLUSIONS

There is overwhelming evidence that A-FiO2 achieves higher
proportion of time in SpO2 TR, reduces duration and episodes
of hypoxemia and hyperoxemia. Although the impact on clinical
outcomes associated with A-FiO2 is yet to be proven, from the
available studies we can presume that there is no harm. Merely
adopting the recommendations of targeting SpO2 (90–95%) will
not suffice. It is essential that this is achieved. If not, this will be
justice half done and infact we may not see the actual clinical
benefits of SpO2 targeting. A-FiO2 is a promising technology that
helps to achieve this target. However, the clinical benefits of it are
still unknown.
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