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With the markedly increased cure rate for children with newly diagnosed pediatric B-cell
acute lymphoblastic leukemia (B-ALL), relapse and refractory B-ALL (R/R B-ALL) remain
the primary cause of death worldwide due to the limitations of multidrug chemotherapy.
As we now have a more profound understanding of R/R ALL, including the mechanism
of recurrence and drug resistance, prognostic indicators, genotypic changes and so
on, we can use newly emerging technologies to identify operational molecular targets
and find sensitive drugs for individualized treatment. In addition, more promising and
innovative immunotherapies and molecular targeted drugs that are expected to kill
leukemic cells more effectively while maintaining low toxicity to achieve minimal residual
disease (MRD) negativity and better bridge hematopoietic stem cell transplantation
(HSCT) have also been widely developed. To date, the prognosis of pediatric patients
with R/R B-ALL has been enhanced markedly thanks to the development of novel drugs.
This article reviews the new advancements of several promising strategies for pediatric
R/R B-ALL.

Keywords: relapsed or refractory acute lymphoblastic leukemia (R/R ALL), pediatrics, immunotherapy, targeted
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INTRODUCTION

Acute lymphoblastic leukemia (ALL), particularly B-cell lineage ALL (B-ALL), which has been the
most prevalent childhood tumor, is a malignant disease characterized by uncontrolled proliferation
of immature lymphoid cells that can invade bone marrow, blood, and extramedullary (EM) sites
(1), especially in the central nervous system (CNS) or testicle. Since 1960, with the application
of combined chemotherapy, risk stratification, CNS prevention strategies and minimal residual
disease (MRD) monitoring, the cure rate of newly diagnosed pediatric ALL has improved steadily.
At present, the 5-year overall survival (OS) rate of children with ALL has reached over 90% (2–4);
the cumulative recurrence rate has been reduced to less than 10% (5).

Although there have been some significant developments during the past few decades,
the outcome of patients with relapsed or refractory (R/R) ALL remains static (6–8).
The relapse rate has been reported to be 15–20% in developed countries over the last
two decades. However, there has been no standard treatment for patients with R/R ALL, and
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the long-term survival rate after recurrence is approximately
30∼60% (9–14), depending on the duration of follow-up and the
risk groups involved. The 10-year OS and EFS rates were 36 and
30%, respectively, for children treated in the Acute Lymphoblastic
Leukemia Relapse Berlin-Frankfurt-Munster (ALL-REZ-BFM)
90 trial (9). Similarly, the 5-year OS and EFS rates of children with
first-relapsing ALL treated on the United Kingdom (UK) ALL R2
protocol were 56 and 47%, respectively (15). In Nordic countries,
the 5-year OS was 44.7% during 1992–2001 and 57.5% during
2002–2011 (16). With the first relapse of ALL, fewer than 50% of
children survive long-term, and the prognosis is even worse for
relapses two or later, with a survival rate of approximately 20%.

Of note, R/R ALL is frequently associated with treatment
resistance, possibly arising from enrichment of preexisting
resistant subclones and/or from mutation acquisition during
chemotherapy exposure (2, 17). A comprehensive genomic
characterization of the diagnosis-relapse pair observed a dynamic
clonal evolution in all cases, with relapse almost exclusively
originating from a subclone at diagnosis (18).

Considering that the cause of relapse is related to
chemoresistance (19) and that modern chemotherapy regimens
have reached the limits of their tolerance, which can no longer
improve, it is vital to combine chemotherapy with accurate
individualized therapy based on immunotherapy and targeted
therapy to amplify the cure rates and quality of life in the future.
To date, the continuous development of newly emerging targeted
immunotherapies has proven to lead to superior disease-free
survival and OS rates, markedly lower toxicities and better MRD
clearance. This article focuses on new advancements in several
promising strategies for choosing the most proper and effective
treatments for R/R B-ALL.

OVERVIEW

Diagnosis of Relapse and Refractory
B-Cell Acute Lymphoblastic Leukemia
Refractory ALL is characterized by poor sensitivity to commonly
used chemotherapeutic drugs, a low clinical remission rate
and a significantly shortened survival cycle. Schmid et al. (20)
stated that refractory acute leukemia can be defined as having
at least one of the following conditions: (1) Failure of initial
induction therapy after two or more courses of treatment; (2)
early recurrence less than 6 months after the first remission;
(3) inefficacy to response to induction chemotherapy after
recurrence; and (4) multiple relapses.

Relapse of ALL is defined as recurrence of the disease at
any site after a period of complete remission, either while
still on or after completion of front-line therapy (21). In
the BFM group study, very early was defined as less than
18 months from diagnosis; early as more than 18 months
from diagnosis and less than 6 months from treatment
discontinuation; and late as more than 6 months from treatment
discontinuation (22). In the Children’s Oncology Group (COG)
study, early diagnosis was less than 36 months from initial
diagnosis; late diagnosis was 36 months or more from initial
diagnosis. In the St Jude’s Children’s Research Hospital study,

early was less than 6 months from completion of frontline
therapy; late was 6 months or more from completion of
frontline therapy.

Risk Stratification of Relapse and
Refractory B-Cell Acute Lymphoblastic
Leukemia
The current treatment protocols for relapsed ALL stratify patients
according to their clinical characteristics at diagnosis and relapse
and offer different therapeutic options (23).

Previous trials have revealed that the site of relapse (9) and
duration of first CR indeed influence both event-free survival
(EFS) and OS in childhood ALL (24, 25). In general, isolated
bone marrow and early relapse (26) are associated with worse
prognoses than isolated extramedullary or late relapse (12,
24, 26).

Nguyen et al. substantiated that the time to relapse, age
over 10 years old, presence of CNS disease at diagnosis and
male sex were significant predictors of inferior post-relapse (27).
Patients suffering very early BM relapse had a particularly terrible
outcome, with a survival rate of 0–20% (27, 28), while those
experiencing early BM relapses had survival rates from 10 to 40%
(29). For late BM relapse patients, survival rates range from 14 to
50% (30).

In addition, persistence of a negative measurable MRD at
the end of induction or consolidation therapy correlates with
a better chance of surviving after hematopoietic stem cell
transplant (HSCT) (31–33), as a number of previous studies have
proved that the risk of relapse after transplantation is higher in
patients with MRD positivity before HSCT than in those without
detectable MRD (34–36).

Moreover, a study conducted by Irving et al. confirmed that
TP53 alterations and NR3C1/BTG1 deletions were associated
with a higher risk of progression (37). Additionally, DNA
methylation, which is a worthy factor, holds prognostic
information in relapsed B-ALL (38). Thus, screening relapse
patients for key genetic abnormalities will improve prognosis and
risk stratification.

TREATMENT STRATEGIES

Multidrug Chemotherapy
Modern R/R B-ALL therapy continues to be based on
standard principles, including induction chemotherapy, stem
cell transplantation and analogous supportive care (6, 39, 40),
particularly the prevention and treatment of infections. Most
ALL relapses occur during treatment or within the first 2 years
after treatment completion (41). The traditional strategy is to
administer chemotherapy drugs at the maximum tolerated dose
(MTD), which aims to kill as many tumor cells as possible.
However, modern protocols, such as the BFM ALL 2000 protocol,
allow for lower treatment dose intensity to improve quality of
life, especially for low-risk pediatric patients, while maintaining
a high cure rate (42, 43). Moreover, only specific subgroups of
patients could rebound from low-intensity chemotherapy (43).
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However, some studies have confirmed that low-dose
cytarabine and Accra-Adriamycin combined with granulocyte
colony-stimulating factor cannot improve the survival prognosis
of patients with R/R ALL compared to the Hyper-CVAD regimen
(44). A retrospective study evaluated the safety and efficacy of
a salvage regimen consisting of G-CSF, low-dose cytarabine,
aclarubicin, L-asparaginase and prednisone among R/R ALL
patients. The incidence of 2-year OS was approximately 30%, the
disease-free survival rate was 15%, and the drug-related mortality
rate was 5.6% (45).

Clofarabine, a second-generation purine nucleoside analog,
has been approved by the United States Food and Drug
Administration (FDA) for treating pediatric R/R ALL patients
based on prior phase II studies, with an overall remission
rate of 45–55% (46–48). A phase II trial of clofarabine in
combination with etoposide and cyclophosphamide conducted
in pediatric R/R ALL patients showed encouraging response
rates and sustained remission, with an overall remission rate of
44% (39).

Due to multidrug chemotherapy, 70–98% of first-relapse
patients achieve a second CR, depending on the risk stratification
group (15, 24, 27, 49). Pediatric patients with second or third
bone marrow relapse have even poorer outcomes, with only 44
and 27%, respectively, achieving a subsequent CR (50).

Nevertheless, according to the trials carried out by St. Jude
Children’s Hospital, OS rates have been similar recently without
a notable upgrade (3, 42, 51), which indicates that the existing
treatment has been pushed to its limit. In addition, the prevailing
view about the emergence of ALL relapse is that it might originate
from a chemoresistant clone (52). These quiescent dormant cells
are less sensitive to cytotoxic drugs and hide in niches where
the microenvironment confers protection from chemotherapy,
escaping therapeutic killing (53–55). Thus, new antileukemic
agents are urgently needed. The origin of relapse and the
simple mechanism of several promising drugs are displayed in
Figure 1 below.

Immunotherapies
Blinatumomab
Blinatumomab, a bispecific monoclonal antibody construct,
enables CD3-positive T cells to recognize and eliminate
CD19-positive ALL cells (56, 57). It was approved for the
treatment of R/R B-cell ALL by the FDA on July 11, 2017
(58). Current studies have demonstrated that blinatumomab
has significant monotherapy activity, which induces superior
remission among refractory and relapsed patients with markedly
lower toxicities in adult patients (59, 60). The main toxicities of
blinatumomab are central nervous system injury and cytokine
release syndrome (CRS).

Pediatric data using blinatumomab are still quite scarce,
and the results of most adult trials and many adult reviews
cannot simply be transferred to the pediatric environment
due to differences in biology and prognosis between adults
and children. According to the existing clinical trials in
children, we can obtain such results that regardless of the
single-arm test or compared with the current chemotherapy
regimen, blinatumomab also shows good efficacy and tolerability.

The relevant clinical trials and their results are shown in
Table 1.

Astonishingly, blinatumomab has particular value in
fragile children, such as those with Down Syndrome, or
children carrying poor-risk molecular/cytogenetic features
(including TCF3-HLF-positive B-ALL) (63, 65), which has
greatly encouraged us to apply it to some rare refractory ALL
subtypes and as a bridge tool to HSCT.

Instead, patients treated with blinatumomab had fewer side
effects of hematological toxicity and infection, whereas central
nervous system events, such as encephalopathy, tremor and
depression, were more frequent. Clinical trials suggest that the
low reactivity of blinatumomab is related to high tumor burden
(68). It seems to be a poor choice for patients with bone marrow
blasts over 50%, a previous history of leukemia or concurrent
extramedullary leukemia.

Of note, to solve the problem of the rapid occurrence
of chemoresistance and easy relapse, an innovative treatment
without chemotherapy is being studied. To date, in a phase
II trial, researchers have treated patients with dasatinib plus
glucocorticoids, followed by two cycles of blinatumomab without
chemotherapy (69). Of the 63 patients selected, the incidences
of CR and OS were 98 and 95%, respectively, with a disease-
free survival rate of 88%. This new regimen is feasible, effective
and safe, the treatment-related mortality rate is very low, and the
overall and disease-free survival outcomes are very promising.

Inotuzumab Ozogamicin
Inotuzumab ozogamicin (InO) is an antibody–drug conjugate
(ADC) composed of a humanized anti-CD22 monoclonal
antibody conjugated with calicheamicin that can induce double-
stranded DNA breakage and subsequent cell death. The FDA
approved InO for the treatment of R/R B-ALL in February 2017.
Presently, in vitro experiments have confirmed that the drug is
safe and effective against B-line ALL in children, and its main side
effect is hepatotoxicity, especially sinus obstruction syndrome
after transplantation (70–73).

It was reported that CD22 is expressed in the vast majority
of childhood B-cell precursor ALL (BCP-ALL), but pediatric
experience with InO is limited. Nevertheless, existing clinical
trials have implied that InO can induce deep remission, maximize
EFS and OS, and potentially minimize treatment-associated
toxicity in patients with R/R ALL, along with a superior CR
rate ranging from 45 to 67%, and promote subsequent HSCT or
other treatments.

Although most studies have shown that patients receiving
InO have better quality of life and superior disease-free survival,
hepatotoxicity is more frequent in the InO arm (51% vs.
34%); the incidence of sinusoidal obstruction syndrome (SOS),
drug-induced liver injuries (DILI) and venous occlusive disease
after InO treatment was 1.5, 7.9, and 11%, respectively, which
were seen more frequently than in the control group receiving
standardized chemotherapy (1, 1, and 1%) (74). Table 2 lists
several relevant InO results applied to pediatrics.

Chimeric Antigen Receptor-T Cells
Chimeric antigen receptor modified T (CAR-T) cell therapy has
recently emerged as a promising tactic for treating B-lineage
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FIGURE 1 | The origin of relapse and the mechanism of novel drugs (BLIN, blinatumomab; InO, inotuzumab ozogamicin; CAR-T therapy, chimeric antigen receptor
modified T-cell therapy; TKI, tyrosine kinase inhibitors).

malignancies. It has been developed a great deal recently. The
structure of the latest generation of CAR-T cells includes the
extracellular antibody domain of a single chain variant fragment
(ScFv) targeting the surface markers of leukemic cells, the
intracellular T-cell signal domain, including the CD3ζ domain
and costimulatory domain, such as 4-1BB or CD28, as well
as more functional elements, such as cytokines (78–80). It can
be produced not only from autologous T cells but also from
allogeneic T cells after a previous allogeneic HSCT at disease
recurrence, rarely leading to graft-vs.-host disease. Approval for
the treatment of R/R ALL in pediatric and young adult patients
has been granted. Additionally, the FDA approved the use of
Breyanzi (lisocabtagene maraleucel, liso-cel) for the treatment
of R/R large B-cell lymphoma on February 5, 2021 (81). Odora

Anagnostou et al. systematically reviewed and analyzed the
efficacy of CD19-specific CAR-T-cell therapy, and the CR rate
and cumulative recurrence rate after treatment were 81 and
36%, respectively (82). The CR rates of patients with autologous
and allogeneic T-cell-derived CAR-T cells were 83 and 34%,
respectively. CD22 CAR-T cells are confirmed to be an effective
salvage therapy for patients who have experienced relapse after or
are refractory to CD19-targeted therapies.

Notably, the control of EM relapse with CAR-T cells and
their penetration of the blood–testis barrier and blood–brain
barrier have been reported (83–85). In a post hoc analysis,
195 patients with relapsed or refractory CD19-positive ALL or
lymphocytic lymphoma in which participants received CD19-
directed CAR T-cell therapy were recruited. Among these 195
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TABLE 1 | Clinical trials of blinatumomab in pediatric ALL.

Trial No. of patients Efficacy Toxicities

Multicentric real-life retrospective analyses: in
pediatric R/R BCP-ALL (61)

39 CR rate with ≥ 5% blasts: 46%
CR rate with ≤ 5% blasts: 81%

Median-OS: 16 months
Median-relapse-free survival: 33.4 months

Adverse events ≥ grade III: 34.8%
Neurotoxicity: 39.1%

A single-center experience: pediatric R/R BCP-ALL
(62)

38 Response rate: 34%
Complete molecular remission rate: 24%

CRS: 50%
Neurotoxicity: 15%

RIALTO trial: in pediatric R/R BCP-ALL (63) 110 Median OS: 14.6 months
CR after 2 cycles: 73.5%

1-year OS rate: 87% received allo-HSCT
vs. 29% without allo-HSCT

CRS ≥ grade III: 1.5%
Neurotoxicity ≥ grade III: 3.6%

Phase III trial: blinatumomab vs. consolidation
chemotherapy in pediatric high-risk first-relapse
B-ALL (64)

108 MRD remission rate: 90% vs. 54%
EFS rate: 69% vs. 43%

Death rate: 14.8% vs. 29.6%
Adverse events ≥ grade III: 57.4% vs. 82.4%

Retrospective analyses: in infant ALL with
KMT2A-rearranged (65)

11 MRD-negative rate: 100%
3-year EFS rate: 47%
3-year OS rate: 81%

CRS: 27%
Neurotoxicity: 9%

Phase III trial: blinatumomab vs. chemotherapy in
children and AYAs with high or intermediated risk
first-relapse B-ALL (66)

208 2-year OS rate: 71% vs. 58%
MRD remission 75% vs. 32%

Infection: 15% vs. 65%
Febrile neutropenia: 5% vs. 58%

Sepsis: 2% vs. 27%
Mucositis: 1% vs. 28%

Phase I/II trial: in pediatric R/R BCP-ALL (67) 70 CR after 2 cycles: 39%
MRD-negative rate: 57%

CRS: 11%
Neurotoxicity: 24%

BCP-ALL, B-cell precursor acute lymphoblastic leukemia; R/R ALL, relapsed or refractory acute lymphoblastic leukemia; CR, complete remission; OS, overall survival;
EFS, event-free survival; MRD, minimal residual disease; CRS, cytokine release symptom; allo-HSCT, allogeneic hematopoietic stem cell transplant.

TABLE 2 | Clinical trials of inotuzumab ozogamicin in pediatric ALL.

Trial No. of patients Efficacy Toxicities

Phase II trial: in pediatric R/R ALL (71) 51 CR rate: 67%
MRD-negative rate: 71%

Hepatic transaminitis or
hyperbilirubinemia ≥ grade III: 12%

Infections ≥ grade III: 22%
SOS: 52% after HSCT

Phase II trial: in pediatric R/R ALL (75) 48 CR/CRi rate: 58.3% ALT elevation ≥ grade III: 6.3%
hyperbilirubinemia ≥ grade III: 2.1%
SOS ≥ grade III after HSCT: 28.6%

Phase I trial: in pediatric R/R ALL (76) 25 Response rate after DLI: 80%
Response rate after DLII: 85%

MRD-negative rate: 84%
12-month OS rate: 40%

Case report: in infants and young children with R/R
ALL (72)

15 CR rate: 47%
6-month OS rate: 47%

Veno-occlusive disease: 13% (after HSCT)

Retrospective study: in pediatric BCP-ALL (77) 29 CR rate: 47.6%
12-month OS rate: 45.8%
12-month EFS rate: 27.5%

French trial: in pediatric CD22-R/R ALL (73) 12 CR/CRi rate: 67%
MRD-negative rate: 17%
12-month OS rate: 38%
12-month EFS rate: 33%

Relapse rate: 17%
Hepatic toxicities ≥ grade III: 33%

Neutropenia ≥ grade III: 83%
Thrombocytopenia ≥ grade III: 75%

Anemia ≥ grade III: 33%
SOS: 50% (after HSCT)

SOS, sinusoidal obstruction syndrome; DLI, dose level I; DLII, dose level II.

patients, the CR rate was similar between the CNS-positive group
and the CNS-negative group (97% vs. 96%), with no significant
difference in relapse-free survival (60% vs. 60%) or OS rate
(83% vs. 71%). The study confirmed that CAR-T therapy actively
clears CNS disease and maintains durable remission in children
and young adults with CNS relapsed or refractory B-ALL or

lymphocytic lymphoma without increasing the risk of severe
neurotoxicity (86).

The most common adverse reactions are CRS (87, 88)
and attention deficit or insanity, with incidences of up
to 75∼100% (89, 90) and 64% (91), respectively. Other
toxicities include infusion reaction, tumor lysis syndrome,
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allergic reaction and immunogenicity, infection and anti-
infection prevention.

With the continuous research and development of CAR-T
cells, different modified CAR-T cells have also been developed.
The experiments of Magnani et al. suggested that CAR-T cells
genetically engineered with sleeping beauty (SB) transposons
and differentiated into cytokine-induced killer (CIK) cells have
good anti-leukemia activity and no serious side effects (92). Dai
et al. conducted a study on CD19/CD22 bispecific CAR T-cell
therapy in patients with relapse or inefficacy after CD19 targeted
therapy (93). It was confirmed that bispecific CAR T cells could
stimulate strong antileukemic activity; the MRD-negative CR rate
was 100%, and the incidence of neurotoxicity was 0.

Nevertheless, despite its many advantages over other forms
of cancer therapy, including in vivo expansion and long-term
persistence, treatment with CAR-T cells remains a work in
progress. Therefore, the alternative platform of CAR projects
and gene editing techniques (such as CRISPR–Cas9 gene editing)
have also been introduced into the construction of CARs to
overcome the current limitations of this therapy. New alternative
platforms include γδ T cells and NK cells. Using γδ T cells from
donors as the host of CAR can avoid graft host reaction because
these cells lack allogeneic (94, 95). In vivo experiments have
proven that it is feasible to produce γδ CAR-T effector cells with
high purity and high efficiency (96). Another research hotspot
is CAR-NK cells, which are cheaper and less toxic than CAR-T
cells (97–102). In phase I and phase II trials, 64% of patients with
R/R CD19-positive cancers achieved remission after receiving
anti-CD19 CAR-NK-cell therapy, with an adverse reaction rate
of 0% (103). Similarly, CRISPR/Cas9 technology is unveiling a
new era for CAR-T-cell therapy (104–107). Through genome
editing technology, it is possible to create the next generation
of CAR T-cell products, including universal CAR T cells,
by destroying endogenous T-cell receptors (TCRs) or human
leukocyte antigens (HLAs), removing inhibitory regulators to
produce more powerful CAR T cells, and adding suicide genes or
inducible safety switches to create more controllable CAR T cells.
The relevant clinical trials and their results are shown in Table 3.

Molecular Targeted Drugs
With the increased understanding of genetic mutations
discovered in ALL, treatments targeting genetic mutations and
signaling pathways are emerging. As a new landmark therapeutic
approach, targeted therapy has been described as a promising
treatment for pediatric ALL with specific genetic abnormalities.
The main purpose of using molecularly targeted drugs combined
with chemotherapy or immunotherapy is to improve outcomes
of R/R B-ALL patients (113). Herein, there are many novel
molecular targeted drugs under development.

Tyrosine Kinase Inhibitors
Of the chromosomal abnormalities described in ALL, the most
common is a fusion gene called BCR-ABL. This disorder is
classified as Philadelphia chromosome-positive (Ph +) ALL
(114–116). Ph + ALL patients account for approximately 3%
of pediatric ALL patients. Prior to the emergence of tyrosine

kinase inhibitors (TKIs) targeting the BCR-ABL gene, the 5-
year EFS of Ph + ALL patients with chemotherapy alone was
dismal, at only approximately 30% (117), and the OS rate of
chemotherapy combined with HSCT was approximately 45%.
However, the incorporation of TKI into the chemotherapy
regimen significantly increased the long-term survival rate of
Ph + patients, with a long-term survival rate of nearly 60–75%
in the imatinib group (118–120) and over 80% in the dasatinib
group (119, 121).

The first generation of TKI is imatinib. In patients with
recurrent Ph + ALL, the initial CR rate of imatinib is 20–29%,
and the CR rate is more than 90% when imatinib is added
to intensive chemotherapy (122). The 5-year OS rate and EFS
rate of the second-generation TKI dasatinib are 86 and 60%,
respectively (123, 124). However, taking into account the rapid
development of drug resistance and short response (125–128),
a new generation of TKIs, such as ponatinib (129), has been
developed. A phase II clinical trial conducted by Cortes et al.
(130) on second-generation TKI resistance or intolerance or
CML and ALL carrying T315I mutations in adults showed that
the 5-year OS and EFS of the patients reached 73 and 53%,
respectively, confirming the third-generation BCR-ABL inhibitor
ponatinib. It can overcome the problem of drug resistance of
second-generation TKIs (131). Its application in adults plays a
good role in predicting the application of ponatinib in children
with Ph + ALL. The clinical efficacy of ponatinib in children with
Ph + ALL needs further study.

Janus Kinase Inhibitors
Ph-like ALL has a gene expression pattern similar to Ph + ALL
but lacks the BCR-ABL fusion gene (132). The activation of
the JAK pathway, which is a cytoplasmic tyrosine kinase with
a crucial role in signal transduction from multiple hemopoietic
growth-factor (HGF) receptors, is one of the most common
abnormal events in Ph-like ALL (133). As the first approved
inhibitor of the JAK kinase family, ruxolitinib has particular
efficacy against both JAK1 and JAK2 (134) and was approved as
the first inhibitor of the JAK family by the FDA and the European
Drug Administration (EMA) in 2011 and 2012, respectively
(135–138). Another JAK2 inhibitor, pacritinib (139), has also
shown exceptional efficacy in hematologic malignancy (140).
Other inhibitors, including tofacitinib (141) and peficitinib (142),
mainly inhibit JAK3 and have been approved for the treatment of
rheumatoid arthritis (RA) in the United States.

Preliminary clinical studies have confirmed that roxolitinib
is well tolerated in the treatment of R/R tumors (including
leukemia) in children (134, 137). Notably, several Ph + ALL
mouse models constructed by Appelmann and Kong et al.
confirmed that dasatinib (143) or nilotinib (144) combined with
ruxolitinib significantly prolonged the survival time of mice,
eliminated leukemia proliferating cells (LPCs) more effectively,
and decreased the activity of phosphorylated JAK2 at the
molecular level, thus limiting the emergence of ABL1 mutants of
dasatinib and reducing drug resistance and recurrence compared
to single-agent therapy both in vitro and in humanized mice.

In addition, it has been reported that triple intrathecal
injection (IT) therapy plus ruxolitinib was well tolerated
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TABLE 3 | Clinical trials of CAR-T therapy in pediatric ALL.

Trial No. of patients Efficacy Toxicities

Phase II trial: B-ALL in pediatric and young adults
(108)

75 CR rate: 81%
MRD-negative rate: 100%

6-month OS rate: 90%
6-month EFS rate: 95%
12-month OS rate: 76%
12-month EFS rate: 50%

Adverse events ≥ grade III: 73%
CRS: 77%

Neurotoxicity: 40%

Phase II trial: EM-ALL in pediatric and young adults
(83)

55 CR rate in CNS group: 88%
CR rate in non-CNS EM group: 66%

Multicentric real-life retrospective analyses:
CD19-targeted CAR-T in pediatric ALL and
non-Hodgkin lymphoma (109)

511 CR rate: 85.5%
EFS rate: 52.4%
OS rate: 77.2%

CRS ≥ grade III: 11.6%
Neurotoxicity ≥ grade III: 7.5%

Phase I trial: CD19-targeted CAR-T in pediatric R/R
B-ALL (110)

30 CR/CRi rate: 83.3%
MRD-negative rate: 75%

1-year-OS rate: 63%
1-year-EFS rate: 60%
3-year-OS rate: 42%
3-year-EFS rate: 37%

CRS: 90%
Neurotoxicity: 15%

CRS ≥ grade III: 16.7%
Neurotoxicity ≥ grade III: 10%

Phase I trial: in pediatric and young adult
Ph-negative R/R B-ALL (111)

52 1-Year-OS rate: 92.3%
1-year-EFS rate: 80.1%
2-year-OS rate: 84.3%
2-year-EFS rate: 76.0%

1-Year relapse rate: 14.1%
2-year relapse rate: 19.7%

A pilot trial: humanized CD19-targeted CAR-T in
children and adults with R/R B-ALL and
B-lymphoma (112)

74 1-Year relapse-free rate: 84% in CAR-naïve
cohort and 74% in retreatment cohort

2-year relapse-free rate: 74% in CAR-naïve
cohort and 58% in retreatment cohort

CRS: 84%
Neurotoxicity: 39%

by Ph-negative B-ALL patients with systemic and central
nervous system recurrence and successfully eradicated highly
refractory leptomeningeal ALL (132, 145). This case confirms
that ruxolitinib combined with chemotherapy can eradicate
chemotherapy-resistant CNS leukemia.

BCL-2 Inhibitors
The BCL-2 protein family, which is critical for controlling cell
survival, has been identified as one of the six hallmarks of cancer
(146), containing six anti-apoptotic proteins, such as BCL-2, and
several proapoptotic proteins that maintain the balance between
cell death and survival. BCL-2, which can confer a survival
advantage to tumor cells by preventing apoptosis (147, 148),
is particularly dysregulated in multiple human cancers (149–
152). Therefore, overexpression of BCL-2 might be associated
with chemoresistance. Ventoclax (ABT-199), as an efficient and
safe BCL-2 inhibitor, has become a novel method of targeted
therapy in ALL. Navitoclax (ABT-263) has been demonstrated as
a single agent or in combination with other drugs to successfully
ameliorate leukemia progression while easily causing significant
thrombocytopenia (153, 154). Other inhibitors include ABT-
737 (155).

To date, the unexpected efficacy and potential therapeutic
strategies of ventoclax observed in patient-derived xenograft
tumor (PDX) models lacking BIM expression and in MLL-
rearranged ALL xenografts in vivo and in vitro have been
confirmed (156, 157). Ventoclax combined with other drugs can
increase chemosensitivity, prevent drug resistance, and reduce
the incidence of dose-dependent side effects of chemotherapy
compared to the single agent use of this drug. Moreover,

several clinical cases of ETP-ALL have proven that ventoclax
combined with low-intensity chemotherapy (158), nelarabine
(159), decitabine (160) or bortezomib (161) has a good
antileukemia effect.

Personalized Treatment Based on Novel
Techniques
Genomic Sequencing
R/R ALL is characterized by clonal heterogeneity. Genetic and
epigenetic abnormalities, which can increase the proliferation
potential of leukemic cells, drive treatment resistance and
eventually give rise to relapse or treatment failures (162).
In the last two decades, there have been important genomic
discoveries in ALL, such as RNA sequencing (RNA-seq),
next-generation sequencing (NGS) and genomic-capture high-
throughput sequencing (gc-HTS-seq) (163), which play an
essential role in risk stratification and have therapeutic and
prognostic implications (163–165).

Notably, comprehensive genomic studies have revolutionized
our understanding of the molecular taxonomy of ALL by
clarifying the subclassification of ALL. Li et al. performed
an initial study to reanalyze and delineate the transcriptome
landscape of BCP-ALL through RNA-seq, which identified
six additional undescribed gene expression subgroups apart
from eight previously described subgroups and revealed related
prognostic stratification. In addition, gc-HTS seq also expands
the spectrum of suitable MRD targets and allows for the
identification of genomic fusions associated with risk and
treatment stratification in childhood ALL. Similarly, a novel
technique called digital multiplex ligation-dependent probe
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amplification (digital MLPATM) can provide fast and highly
optimized aberration profiling for the decipherment of the clonal
origin of relapse and yields extremely relevant information for
clinical prognosis assessment (166).

The results described above strongly suggest that genomic
techniques should be introduced into the clinical diagnostic
workup. Recently, personalized medicine in ALL has been
used to characterize patients into prognosis groups based on
karyotypes to guide treatment options. The highlights of these
techniques include detecting inherited predispositions of ALL,
finding relevant molecularly targeted therapies through genomic-
defined ALL subtypes and monitoring treatment response via
pharmacogenomics and novel MRD biomarkers (167). These
mutations confer chemoresistance and might have implications
for therapeutic decisions. Insights into the genomics of ALL
further provide a compelling biologic rationale to expand the
scope of precision medicine therapies for childhood ALL.
Ultimately, tailored treatment strategies for ALL-related gene
damage and pathways might improve antileukemic efficacy,
diminish recurrence, and reduce adverse toxicity.

High-Throughput Drug Sensitivity Screening
However, the choice of options for follow-up personalized
treatment only through abnormities in patients’ genotypes is
extremely limited.

Currently, high-throughput drug sensitivity (HDS) screening
has already been used for the development of personalized
treatment approaches in acute myeloid leukemia (AML). It can
improve the long-term survival rate of AML patients through
individual molecular characteristics or drug sensitivity profiles
(168). A vast number of preliminary clinical trials have exhibited
outstanding and encouraging benefits in seeking optimum
individualized approaches based on HDS screening (169–171).

Intriguingly, EI Andersson et al. systematically explored the
diversity of drug responses in T-cell prolymphocytic leukemia (T-
PLL) patient samples by using this platform and correlated the
findings with somatic mutations and gene expression profiles.
The trial showed that all T-PLL samples were sensitive to SNS-
032, a cyclin-dependent kinase inhibitor, indicating previously
unexplored targeted tactics for treating T-PLL, which has
notoriously chemorefractory behavior (172).

In the absence of targetable mutations, these drug sensitivity
screenings can provide treatment options rather than genetic
abnormalities. However, HDS screening of anticancer drugs
has not yet been generally applied in clinical practice for ALL

patients, and it has great potential in personalized treatment,
particularly in drug target problems for chemo-resistance groups
(173). By performing HDS screening, we can analyze and
determine optimal individual dosages combined with or without
targeted drugs, which improves treatment efficacy while reducing
or avoiding toxicity (174–176). Nevertheless, we still need larger
trials to evaluate the utility of these technologies in routine
clinical settings along with long turnover times and high costs.

CONCLUSION

R/R ALL is still a difficult topic among children. Existing
immunotherapy and molecular targeted therapy have proven
their effectiveness, feasibility and safety, and they have
significantly improved the prognosis of patients since they were
approved for use. The latest research results also prove the
prognosis of the era without chemotherapy. Moreover, novel
techniques, such as whole-genome sequencing, next-generation
sequencing and HDS screening, play a vital role in selecting
appropriate individualized drugs and reducing treatment failure
caused by drug resistance. For the treatment of patients with
R/R B-ALL, we need a comprehensive understanding of patients’
genotypes and immune indicators, combined with the course of
the disease, economic status and level of medical technology in
the country, to choose the appropriate treatment.

In the future, we will further study the molecular mechanism
of R/R ALL, design safer and more effective precision medicine
to address the chemotherapy resistance and recurrence of tumor
cells, prolong life expectancy and enhance the quality of life
of pediatric patients. It is believed that the dismal situation of
children with R/R ALL will be overcome.
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