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Perinatal hypoxia-ischemia (HI) is still a significant contributor to mortality and adverse
neurodevelopmental outcomes in term and preterm infants. HI brain injury evolves over
hours to days, and involves complex interactions between the endogenous protective
and pathological processes. Understanding the timing of evolution of injury is vital to
guide treatment. Post-HI recovery is associated with a typical neurophysiological profile,
with stereotypic changes in cerebral perfusion and oxygenation. After the initial recovery,
there is a delayed, prolonged reduction in cerebral perfusion related to metabolic
suppression, followed by secondary deterioration with hyperperfusion and increased
cerebral oxygenation, associated with altered neurovascular coupling and impaired
cerebral autoregulation. These changes in cerebral perfusion are associated with the
stages of evolution of injury and injury severity. Further, iatrogenic factors can also affect
cerebral oxygenation during the early period of deranged metabolism, and improving
clinical management may improve neuroprotection. We will review recent evidence that
changes in cerebral oxygenation and metabolism after HI may be useful biomarkers
of prognosis.

Keywords: cerebral blood flow, hypoxia-ischemia brain, biomarkers, fetal sheep, neonatal encephalopathy,
monitoring

INTRODUCTION

Perinatal hypoxia-ischemia (HI) is a major cause of brain injury and contributes to 0.6 million
neonatal deaths globally every year and approximately 1.3 million intrapartum stillbirths (1). In
high income countries, moderate to severe hypoxic-ischemic encephalopathy (HIE) occurs in ∼1–
4 infants per 1,000 live births at term, leading to death and severe disabilities such as cognitive
and neuromotor impairments, including cerebral palsy (2). Brain injury in preterm infants is
multifactorial, but rates of HIE in preterm infants are higher than at term (3). Preterm birth
is associated with about one-third of all cases of cerebral palsy (4), and high rates of motor
deficits, cognitive and language delay, and behavioral problems (5). Therapeutic hypothermia is
standard care for term infants with moderate-severe HIE to reduce death and disability. However,
the neuroprotection is partial, as many infants still survive with disability despite treatment with
therapeutic hypothermia, and its safety for preterm infants has not been established (6).

One of the central challenges is to identify infants at risk of developing brain injury and
poor outcomes, and in particular, term infants with mild HIE and preterm infants show subtle
neurological signs (7, 8). Past clinical studies have primarily focused on neonates with moderate to
severe HIE. There is emerging evidence that infants with mild HIE are at increased risk of adverse
neurodevelopmental outcomes (9). As a result, there has been therapeutic drift, with many centers
offering therapeutic hypothermia for infants with mild HIE despite limited systematic evidence
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for benefit or harm (10). Ongoing clinical trials (NCT04621279
and NCT04176471) are assessing effectiveness of therapeutic
hypothermia for mild HIE.

Finding ways to reliably identify the stage of injury is critical.
For effective neuroprotection, therapeutic hypothermia needs to
be started within 6 h from birth, corresponding with the transient
recovery of mitochondrial function and metabolism during the
so called “latent” phase (6). This latent phase typically lasts
for about 6–8 h after moderate to severe HI. This is followed
by a phase of secondary deterioration of oxidative metabolism,
cytotoxic edema and ultimately bulk cell death lasting for ∼72 h
(11). Even after this time, there is considerable evidence for
tertiary evolution of ongoing injury and dysmaturation, but also
ongoing repair processes that may last for weeks to months
(12, 13). These phases of evolving injury after HI are associated
with characteristic neurophysiological and cerebral perfusion
changes. We will discuss the temporal profile of these changes
during recovery after HI, and review recent evidence that changes
in cerebral oxygenation and metabolism may have value as
prognostic markers.

The Latent Phase:
Post-hypoxic-ischemic Neural
Suppression and Delayed Hypoperfusion
During HI, anoxic depolarization leads to profound suppression
of EEG activity. After reperfusion, and recovery of oxidative
metabolism at the start of the latent phase, EEG activity is
initially highly suppressed, even after milder hypoxia-ischemia.
For example, in preterm fetal sheep, the severity of EEG
suppression in the first 3 h did not discriminate between mild
or severe HI (14). At least in part, this reflects that early EEG
suppression is related to a combination of neural dysfunction
and endogenous neuro-inhibition mediated by factors such as
neurosteroids and sympathetic nervous system activation (15).
By contrast, subsequent more rapid recovery of EEG activity
reflected less severe injury both in preterm and near-term fetal
sheep (e.g., see Figure 1) (14, 16).

Consistent with this, in term infants with moderate-severe
HIE, significant suppression of EEG voltage was seen on
recordings within 6 h of birth. Rapid recovery of severely
suppressed (isoelectric) EEG was associated with normal
neurodevelopmental outcomes (17). The predictive value of
aEEG changes during the first 6 h of life is relatively limited,
although quantitative EEG features may have utility (7). In
preterm fetal sheep exposed to moderate-severe HI, abnormal
epileptiform activity (spikes, sharp, and slow waves) with
suppressed background was reported throughout the latent
phase. The peak epileptiform activity was seen around 3–4 h post-
HI, and the frequency of sharp waves was associated with greater
subcortical neuronal loss (18, 19). This pattern is very different
from the typical overall suppression seen in moderate-severe
HIE at term (20). However, interestingly a small cohort study
in term infants with mild HIE found that early EEG recordings
(3–6 h after birth) showed disruption of the sleep cycle, excessive
sharp and slow waves and changes in spectral measures in the
low-frequency bands compared to healthy term infants (21). We

FIGURE 1 | Examples of changes in EEG power (top panel), cortical
impedance (middle panel), and cerebral oxygenation (difference in oxygenated
and deoxygenated hemoglobin, bottom panel) during baseline and 60 h
post-HI recovery in near-term (0.85 gestation) fetal sheep subjected to 15 min
(n = 2) or 18 min (n = 2) complete umbilical cord occlusion. Fifteen and
eighteen minutes of asphyxia reflect moderate and severe HI, respectively. In
the moderate group, total EEG power remained suppressed, but epileptiform
transient activity on a suppressed background was seen during the latent
phase. High amplitude, stereotypic seizures developed during the secondary
phase. EEG power in the severe group increased with the onset of status
epilepticus and subsequently fell below the moderate group. A secondary rise
in impedance (delayed cell swelling) was only seen in the severe group.
Cerebral oxygenation remained stable in the moderate group, but the severe
group had early reduction and subsequent increase in cerebral oxygenation
during the secondary phase.

speculate that these maturation and severity related differences
may reflect relative sparing of the cortex in this setting. Further
studies are needed to assess if these qualitative and quantitative
features of EEG can improve early identification of preterm or
term infants who would benefit from therapeutic hypothermia.

By contrast with the consistent early suppression of EEG
activity after moderate to severe HI, cerebral perfusion typically
recovers to control values followed by a delayed (secondary)
fall, across multiple species and paradigms. Broadly, the more
severe the period of HI the earlier this secondary hypoperfusion
occurs and the longer it lasts, with relatively little effect on
the depth of the fall (22). This post-ischemic fall in cerebral
blood flow is not related to hypotension but rather to increased
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vascular resistance actively mediated by the sympathetic nervous
system (18). For example, in 0.8 gestation fetal sheep subjected
to 10 min of HI, delayed cerebral hypoperfusion was associated
with EEG suppression, reduced cortical heat production but
increased oxygenation, suggesting preserved coupling of blood
flow and metabolism (23). Consistent with this, even 30 min
of ischemia at the same gestational age was associated with
no change in arterio-venous brain oxygen extraction during
secondary hypoperfusion, showing that cerebral metabolism was
suppressed proportionately to the fall in perfusion (24).

In preterm fetal sheep, however, there was a significant fall
in cerebral oxygenation measured by near-infrared spectroscopy
(NIRS) at 2–3 h after umbilical cord occlusion, corresponding
with the peak of epileptiform transient activity, suggesting
a mismatch between perfusion and metabolism (Figure 2).
Speculatively, this transient period of secondary hypoxia
could exacerbate neural injury (18), although suppressing the
epileptiform activity with dizocilpine, a potent anti-excitotoxic
agent, was associated with only a minimal improvement
in neuronal loss in the cornu ammonis 1/2 region of
the hippocampus (25). Clinically, there are limited data on
neurophysiological changes during this critical early period after
birth. In the pre-hypothermia era, severe HIE in term infants was
associated with reduced cerebral blood volume, oxygenation, and
cytochrome oxidase during the first 12 h after birth (26).

Secondary Deterioration: Delayed
Mitochondrial Failure and Cerebral
Hyperperfusion
Neuropathological processes triggered during the latent
phase lead to delayed, “secondary,” deterioration of oxidative
metabolism due to failure of mitochondrial function, with
cytotoxic edema, seizures and ultimately cell death (6). Clinically,
magnetic resonance spectroscopy (MRS) of term infants
exposed to birth asphyxia shows a delayed fall in the cerebral
concentration of high energy phosphates on the second day after
birth. In turn, the severity of impaired oxidative metabolism
is associated with greater risk of adverse neurodevelopmental
outcomes and death (27, 28).

In near-term fetal sheep, hypoperfusion resolves in the
secondary phase, and is followed by a progressive increase
in cerebral blood flow peaking at a broadly similar time to
cytotoxic edema (29). It is important to note that this is a true
hyperperfusion at a time when oxygen consumption is failing,
and so leads to increased cerebral oxygenation. The delayed post-
ischemia vasodilation in near-term fetal sheep is in part mediated
by nitric oxide, and nitric oxide blockade increased subsequent
neuronal loss (30). This raises the possibility that secondary
hyperperfusion may be protective, perhaps by increasing removal
of toxic products. It is interesting to note that in preterm
fetal sheep subjected to 25 min of asphyxia, although cerebral
blood flow does not increase during the secondary phase,
nevertheless, cerebral oxygenation measured by NIRS increases
substantially (18). Thus, just as at term, this delayed increase in
cerebral oxygenation likely reflects reduced utilization associated
with mitochondrial dysfunction. Not surprisingly, therapeutic

FIGURE 2 | Changes in EEG power (top panel), carotid blood flow (index of
cerebral perfusion) (middle panel), and cerebral oxygenation (bottom panel)
during baseline and 72 h of post-HI recovery in preterm (0.7 gestation) fetal
sheep subjected to sham occlusion (n = 4) or 25 min of asphyxia (n = 8).
Hypoperfusion during the latent phase was associated with a transient
decrease in cerebral oxygenation. Despite the sustained reduction in cerebral
blood flow, there was an increase in cerebral oxygenation during the
secondary phase.

hypothermia, which reduces brain metabolism, has considerable
impact on perfusion. In fetal sheep, therapeutic hypothermia
reduced cerebral blood flow in association with an increase in
cerebral vascular resistance, with a concomitant suppression of
EEG power consistent with reduced brain metabolism (31).

Clinical studies have reported a similar pattern of changes
in cerebral perfusion and oxygenation and have assessed
the predictive value of these parameters. For example, a
reduced cerebrovascular resistive index on transcranial Doppler
ultrasound in term infants with moderate to severe HIE, is both
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consistent with the evidence above for increased perfusion, and
is associated with adverse neurodevelopmental outcomes (32).
Interestingly, hypothermia markedly attenuates the predictive
power of this parameter (33).

Although changes in the secondary phase of evolution are
too late to help guide the decision to initiate therapeutic
hypothermia, biomarkers in this phase may still help to
identify infants who might benefit from additive treatments with
hypothermia. Cerebral blood flow and oxygenation measured
by NIRS are increased on the first day of life in neonates with
moderate-severe HIE, similarly to the studies in fetal sheep
discussed above. Importantly, the degree of hyperperfusion was
associated with the severity of injury and subsequently increased
risk of adverse neurodevelopmental outcomes (34, 35). An
increase in cerebral oxygen saturation during hypothermia and
rewarming was also associated with injury severity (36). However,
variable predictive ability was seen in these small observational
studies (37). Moreover, in most of the studies, cerebral oxygen
saturation and adverse neurodevelopment were not significantly
associated before 24 h of age; speculatively, this may reflect
variability in the onset of perinatal injury before birth.

Importantly, several studies have reported a trend for
increasing cerebral oxygenation during hypothermia and
rewarming to be associated with adverse neurodevelopmental
outcomes, compared to stable oxygenation values in neonates
with normal MRI findings (36, 38). This suggests that continuous
monitoring with NIRS may still offer useful predictive value
despite high inter-individual variability. Further, combined
assessment of NIRS monitoring with continuous EEG
background and seizure recordings may improve the predictive
value of cerebral oxygenation (39).

Therapeutic cooling in neonates with moderate-severe HIE
can be achieved with either selective head cooling or whole-
body cooling. In practice, both these modes result in similar
reduction in mortality and major disability (40). Small cohort
studies in infants who received whole-body or selective head
cooling found that cerebral hemoglobin oxygen saturation was
higher in infants with adverse neurodevelopmental outcomes
(35, 41), presumptively reflecting reduced oxygen consumption
due to greater brain injury. However, there are no clinical data
comparing cerebral metabolic alterations with two modes of
cooling. A study in newborn piglets showed that selective head
cooling with constant rectal temperature was associated with a
temperature gradient between cortex and deep brain structures,
whereas systemic hypothermia resulted in a more homogenous
cooling (42). However, despite the difference in temperature
gradient both modes of cooling were associated with a similar
reduction in cerebral perfusion and oxygen uptake, indicating a
comparable metabolic suppression.

Finally, there is growing recognition that mild HIE can
be associated with a significant risk of neurodevelopmental
abnormalities. For example, a small cohort study of term infants
with mild HIE showed that 11 of 18 had abnormal Doppler
findings on the first day of life and that this was associated with
white matter abnormalities on MRI (43). Further studies are
needed to understand the cerebral metabolism and oxygenation
changes after mild HI.

Postnatal Cerebral Hypoxia in Preterm
Infants
Cardiorespiratory instability in preterm infants, related to
immature lungs, periodic breathing and apnea and patent ductus
arteriosus (PDA), is highly associated with both intermittent and
sustained falls in cerebral oxygenation (44, 45). In extremely
preterm infants, low cerebral oxygenation saturation during the
first 96 h after birth is associated with increased risk of mortality
and brain injury, including intraventricular hemorrhage and
periventricular leukomalacia (46, 47). Observational studies in
very preterm infants have also reported that a higher burden
of cerebral hypoxia during the first 72 h, and lower area
under the curve for cerebral oxygenation saturation during the
first two weeks of life was associated with neurodevelopmental
impairment (48, 49). These findings suggest that cerebral
oxygenation monitoring might improve outcomes in the early
neurocritical care of preterm infants. The phase II SafeboosC
trial showed that NIRS monitoring between 3 and 72 h
after birth and guideline-based treatments for blood pressure
management reduced the duration of cerebral hypoxia in
extremely preterm infants (50), but was not associated with
improved neurodevelopmental outcomes (51). Phase III trials
are now underway to examine if targeting cerebral oxygenation
during the immediate transition after birth and whether a NIRS
monitoring based approach to improve cerebral oxygenation in
extremely preterm infants could reduce neural injury and adverse
neurodevelopmental outcomes (52).

Altered Neurovascular Coupling
In addition to the overall changes in cerebral oxygenation
during the secondary phase, there is evidence from assessment
of dynamic perfusion with neural activity that cerebrovascular
regulation may be impaired (53). A small prospective study of
wavelet-based neurovascular coupling in term infants with HIE
showed that coherence of aEEG and cerebral oxygen saturation
during the first 24 h after birth was higher in infants with normal
MRI than those with abnormal MRI findings (54). With a cut-
off of a 10% reduction, neurovascular coupling had an area
under the curve of 0.808, with a positive predictive value of
94% and negative predictive value of 52% for predicting brain
abnormality on MRI, which was better than the total Sarnat
score. Interestingly, in an exploratory analysis, infants with mild
HIE who had an abnormal MRI also had lower neurovascular
coupling than those with a normal MRI. Larger cohorts will be
needed to assess the feasibility of neurovascular coupling as a
biomarker of injury in the latent phase and to help stratify the
severity of injury.

Impaired Cerebral Autoregulation
Cerebral autoregulation is a physiological mechanism that
maintains relatively stable cerebral blood flow during changes in
blood pressure. Multiple studies in term infants with moderate-
severe HIE have reported impaired cerebral autoregulation
during and after therapeutic hypothermia (55, 56). Recent studies
have refined time and frequency domain analysis of NIRS
parameters to quantify autoregulatory disturbances, such as
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spectral coherence analysis of mean arterial pressure (MAP) and
NIRS parameters (hemoglobin difference) to calculate pressure
passivity, moving correlation coefficient between MAP and
relative total tissue hemoglobin concentration to calculate time
spent below optimal MAP (range of MAP with the most dynamic
vascular reactivity), and wavelet-coherence analysis of MAP and
cerebral oxygen saturation (55, 57, 58). These studies showed that
the extent of autoregulatory disturbances during hypothermia
and rewarming are associated with injury severity and adverse
neurodevelopmental outcomes. It is important to note that
measures during normothermia after rewarming were more
predictive of adverse outcomes, highlighting again the impact
of hypothermia on brain activity, and the potential value of
neuromonitoring after rewarming (56).

A study in a small cohort (n = 14) of term infants with
mild HIE using multichannel NIRS showed that although
overall autoregulation remained normal, there were regional
differences in autoregulation that were not associated with MRI
abnormalities (59). It is unknown if the regional autoregulation
differences are associated with injury patterns in severe HIE.
Impaired autoregulation is likely a consequence of vascular
dysfunction associated with the ongoing injurious processes. Still
repeated hypo- and hyperperfusion due to loss of autoregulation
can also lead to further neural injury. A better understanding of
these pathological processes is necessary to establish if improving
blood pressure stabilization after hypothermia would have an
additional neuroprotective effect. In term infants with moderate-
severe HIE, low blood pressure variability from 18 to 27 h after
birth may be additive with perinatal factors for predicting an
adverse EEG profile at 48 h (60), but the long-term predictive
value is unclear.

Seizure-Induced Secondary Metabolic
Challenges
The early postnatal period of deranged metabolism and impaired
cerebral vascular function in the secondary phase also coincides
with peak seizure activity. HIE-associated seizures have typical
onset and maximum seizure burden within 24 h after birth (61).
Therapeutic hypothermia reduces seizure burden, but nearly
half of the cooled babies still have seizures, and the odds of
seizures during rewarming are higher (62). The incidence of
seizures in preterm infants is much higher than term infants
(63). Several clinical studies have shown that seizure burden is a
prognostic marker for injury severity and higher risk of mortality
and adverse neurodevelopmental outcomes in both preterm and
term infants (63, 64). However, these analyses are retrospective
and cannot establish if seizures independently contribute to the
exacerbation of neural injury or if seizure burden is only a
reflection of the severity of the evolving injury.

Understanding the seizure-induced metabolic demand and
associated perfusion changes is vital to determine whether
seizure-related metabolic disturbances worsen neural injury. For
example, a study in near-term fetal sheep subjected to 10 min of
asphyxia induced by complete umbilical cord occlusion showed
that short duration post-HI seizures of up to 3.5 min were not
associated with a fall in cerebral oxygenation. Seizures longer

than 3.5 min were associated with a transient mild fall in
cerebral oxygenation, which plateaued with a delayed increase
in cerebral blood flow (65). Similarly, simultaneous recording of
EEG and NIRS in near term infants with HIE showed that during
seizures, there is an increase in cerebral metabolic demand and
a biphasic hemodynamic response with an initial reduction in
oxygenation and perfusion followed by an increase in blood flow
(66). Notably, the initial decrease in oxygenation was transient
and did not change with the duration of the seizure. The
mechanisms mediating the early hemodynamic response are not
clearly understood. Collectively, these data suggest that mild
oxygenation changes during discrete single post-HI seizures are
unlikely to contribute to neural injury. By contrast, in neonatal
piglets, post-HI seizures were associated with altered cerebral
metabolites on MRS at 24 h and worse neural injury at 72 h;
however, causality was not established (67). Furthermore, case
studies using simultaneous video EEG recording and diffuse
optical tomography in neonates with HIE showed differential
spatial distribution of hemodynamic changes across the cortex,
likely indicating regional changes in neural activity and perfusion
during seizure propagation (68).

While we know that seizures are more common in preterm
than term-born neonates, little is known about the changes
in cerebral metabolism and perfusion during seizures in the
preterm brain. A study in 12 preterm infants showed that seizures
are associated with pressure passive fluctuations in cerebral
blood flow velocity that could increase the risk of intracerebral
hemorrhage (69). Understanding the mechanisms that regulate
perfusion during neonatal seizures and the contribution of
seizure-induced metabolic changes to neural injury is important
for improving seizure management.

In near-term fetal sheep, seizure activity during the secondary
phase is also associated with increased excitotoxic index in the
brain (70), likely due to failure of reuptake. Moreover, the phase
of secondary deterioration is also associated with upregulation
of neuronal injury markers such as Tau protein, neuron-specific
enolase, S100 calcium-binding protein beta and neurofilament
light chain protein, inflammatory proteins such as glial fibrillary
acidic protein, interleukins (IL-6, IL-8, and IL-10), TNF-alpha
and oxidative stress markers in the plasma (7).

Long-Term Neurophysiological
Alterations
The secondary phase after HI resolves after 3–4 days into
a tertiary phase involving persistent inflammation, delayed
evolution of cystic injury and repair and reorganization processes
(12, 13, 71). On the one hand these processes are essential
for reorganizing the brain, but the very prolonged exposure
to inflammation raises the intriguing possibility that there
could be an extended therapeutic window of opportunity to
improve recovery.

Studies of neurophysiological recovery in fetal sheep after HI
showed persistent suppression of overall EEG power during the
tertiary phase, with altered maturational changes in spectral edge
frequency distribution associated with sleep-state development
and impaired or absent recovery of sleep-state activity at term
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(72, 73). Similarly, clinical data show that the neurophysiological
and metabolic disturbances after HI persist for weeks. The
time of onset and quality of sleep-wakefulness in neonates with
HIE is associated with the severity of the injury and impaired
neurodevelopment (74). Small prospective and retrospective
studies have reported that functional integrity of the ascending
pathways measured by somatosensory evoked potential was
altered in term infants with HIE after rewarming and during the
first 2 weeks of life, and these alterations were predictive of MRI
abnormalities (75, 76).

Magnetic resonance spectroscopy studies in term infants with
moderate-severe HIE have shown that the early increase in
lactate concentrations during the secondary phase resolves, but
low concentrations of NAA in the deep gray matter structures
during 5–14 days after birth were associated with adverse
neurodevelopmental outcomes at 2 years of age (77, 78). It
is important to note that while these functional measures at
single time points are associated with adverse outcomes, long-
term studies with continuous or repeated assessments will be
required to identify neurophysiological features associated with
the delayed evolution of injury to guide the development of future
therapeutic strategies.

Iatrogenic Changes in Cerebral
Oxygenation
Term infants with HIE and preterm infants are exposed
to various regimens for clinical management and for trials
examining neuroprotective treatments. A better understanding
of metabolic and vascular effects of iatrogenic factors in these
babies may offer therapeutic opportunities. Treatments that alter
cerebral metabolism and/or perfusion during the early post-HI
recovery may further exacerbate the neural injury. For example,
in preterm fetal sheep, post-HI treatment with dexamethasone
was associated with cerebral deoxygenation during the latent
phase, increased abnormal ictal activity during the secondary
phase and greater subcortical neuronal loss (79, 80). Similarly,
delayed treatment with high-dose (5,000 IU) intravenous boluses
of human recombinant erythropoietin starting at 6 h after
moderate-severe HI in preterm fetal sheep was associated with
increased cerebral vascular resistance and prolonged cerebral
hypoperfusion without a corresponding reduction in EEG power
(81). This sustained mismatch between perfusion and brain
activity during the secondary phase was associated with the
development of cystic white matter injury.

Postnatal cardiorespiratory instability has cumulative effects
on cerebral oxygenation in preterm infants. In addition,
iatrogenic factors can also contribute to cerebral hypoxia.
Hemodynamic management of preterm infants is challenging, as
the definition of the lower limit of blood pressure in extremely
preterm infants is controversial and may promote overtreatment.
Importantly, after severe asphyxia in near-term fetal lambs
infusion of the inotropic agent, dopamine was associated with
only a transient improvement in arterial blood pressure, and did
not prevent terminal hypotension (82). Clinically, nearly 30%
of extremely preterm infants receive inotropes for treatment of
hypotension [defined as mean BP (mmHg) lower than infant’s

gestational age] on the first day of life but there is little evidence
for benefit (83). In a prospective blinded study in extremely
preterm infants, dopamine improved blood pressure but did not
prevent cerebral hypoxia (84).

Patent ductus arteriosus is a common cardiovascular
complication in preterm infants. Indomethacin is effective in
closing PDAs; however, an RCT in preterm infants showed that
a high dose of indomethacin was associated with a significant
reduction in cerebral blood flow and oxygen delivery (85). This
is of concern since, despite conflicting evidence, prophylactic
indomethacin is administered inconsistently but relatively
commonly to extremely preterm infants to promote PDA closure
and ultimately to improve cerebral perfusion (86). Further,
an observational study in very preterm infants showed that
prophylactic indomethacin treatment was associated with a
mild but significant increase in cerebral oxygen extraction,
denoting reduced cerebral blood flow (87). These findings
suggest that further examination of the cerebrovascular impact
of prophylactic indomethacin treatment is warranted.

Pharmacological interventions are routinely used for sedation
and analgesia in neonates undergoing therapeutic hypothermia
to reduce stress, but management of sedation is not standardized
(88), and there are very limited clinical data of the impact of
commonly used sedatives on brain injury in term neonates.
Secondary analysis of the Magnetic Resonance Biomarkers in
Neonatal Encephalopathy study suggested that pre-emptive
morphine sedation during therapeutic hypothermia was not
associated with improvement in neurodevelopment, and that
neonates who received morphine were more likely to develop
hypotension and had longer hospital stays (89). It is also
important to consider the clearance of many agents is reduced
during hypothermia and so metabolite accumulation can occur
over time (89). A small retrospective study reported that there
was no relationship between the cumulative dose of fentanyl
during therapeutic hypothermia and neurodevelopmental
outcomes; however, further pharmacokinetic studies are needed
(90). Despite limited data on superiority over opiates, the
selective alpha-1 adrenergic receptor dexmedetomidine is
increasingly being used as a sedative in critically ill term and
preterm infants (88). Worryingly, in a prospective study,
dexmedetomidine administration was associated with greater
instability of oxygenation and increased need for respiratory
support (91). Moreover, in newborn piglets, combined treatment
with dexmedetomidine and therapeutic hypothermia after HI
reduced clearance of dexmedetomidine, leading to increased
plasma concentrations that were associated with greater risk of
cardiac arrest and neuronal loss (92). Randomized controlled
trials of sedatives during therapeutic hypothermia are needed to
establish their safety and long-term effects.

CONCLUSION

Small prospective and retrospective studies have shown that
the overall higher cerebral oxygenation, altered neurovascular
coupling and impaired cerebral autoregulation during and after
hypothermia are associated with adverse neurodevelopmental
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outcomes. Large, well-designed, prospective studies are now
required to assess the viability of these measures as a cot-
side tool. Excitingly, early data from small prospective studies
have shown that measures such as neurovascular coupling
may be valid prognostic biomarkers for mild HIE; validation
studies in larger cohorts are needed. The majority of the
neuromonitoring data in present studies have been acquired
during or after hypothermia. Future studies examining the
dynamic measures of cerebrovascular function early after birth
in both term and preterm infants are required to assess
them as markers for early identification of at-risk infants.
Finally, data on the potential for adverse iatrogenic effects on
cerebral oxygenation suggest the need for careful assessment of
acute and long-term neural effects of clinical management in
critically ill neonates and implementing evidence-based changes
in practice. Large clinical trials with comparative approaches are

required to standardize data collection and analysis for cerebral
oxygen measurements, and to establish true normative values in
preterm infants.
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