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Pediatric congenital heart disease (CHD) patients are at higher risk of postoperative

complications and clinical deterioration either due to their underlying pathology or due

to the cardiac surgery, contributing significantly to mortality, morbidity, hospital and

family costs, and poor quality of life. In current clinical practice, clinical deterioration is

detected, in most of the cases, when it has already occurred. Several early warning

scores (EWS) have been proposed to assess children at risk of clinical deterioration

using vital signs and risk indicators, in order to intervene in a timely manner to

reduce the impact of deterioration and risk of death among children. However, EWS

are based on measurements performed at a single time point without incorporating

trends nor providing information about patient’s risk trajectory. Moreover, some of these

measurements rely on subjective assessment making them susceptible to different

interpretations. All these limitations could explain why the implementation of EWS in high-

resource settings failed to show a significant decrease in hospital mortality. By means of

machine learning (ML) based algorithms we could integrate heterogeneous and complex

data to predict patient’s risk of deterioration. In this perspective article, we provide a brief

overview of the potential of ML technologies to improve the identification of pediatric

CHD patients at high-risk for clinical deterioration after cardiac surgery, and present the

CORTEX traffic light, a ML-based predictive system that Sant Joan de Déu Barcelona

Children’s Hospital is implementing, as an illustration of the application of an ML-based

risk stratification system in a relevant hospital setting.
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INTRODUCTION

Congenital heart disease (CHD) is the most common birth
defect, accounting for almost 1% of all births (1) and
remains a major contributor to early childhood morbidity and
mortality. Healthcare advances have significantly decreased CHD
infant mortality, yielding over 90% survival into adulthood.
However, this has increased in- and out-of-hospital morbidity,
exponentially increasing healthcare costs and caregiver burden.
More than 80% of CHD surgical patients have cardiovascular
complications such as arrhythmias and strokes during adulthood
(2, 3). These complications affect functional and cognitive status
and overall quality of life.

Compared to others, patients with CHD require more
home health services, medical equipment and medication,
e.g., hospitalization of infants with CHD represents 23% of
global hospital resources even though accounts for only 4%
of hospitalization (4). In addition, pediatric CHD patients are
at higher risk of postoperative complications such as clinical
deterioration, cardiac arrests, etc. either due to their underlying
pathology, the cardiac surgery or the prolonged Intensive Care
Unit (ICU) stay, contributing significantly to mortality, hospital
stay, cost, and overall quality of life (5). In current clinical
practice, anticipation of clinical deterioration in hospitalized
pediatric patients remains challenging and, in most of the cases,
adverse events are diagnosed when they have already occurred.
Several early warning scores (EWS) exist for children. Common
examples include the Pediatric Early Warning System (PEWS)
score (6), the Brighton PEWS (7), and the Bedside PEWS
(8), a simplified version of the PEWS. The Cardiac Children’s
Hospital Early Waring Score (C-CHWES), a modification of
PEWS proposed for children with heart disease (9), has proven
to be more sensitive and specific for identification of cardiac
arrest and unplanned ICU transfer compared to PEWS (10).
There are additional scores that have also been developed to
predict mortality for intensive care patients, such as the PRISM-
IV (11) and the PICSIM score (12). However, some of these
EWS rely on subjective assessment making them susceptible to
different interpretations, and have been unable to demonstrate a
significant decrease in hospital mortality (13). Therefore, there
is a need for the development of automated predictive models
capable of capturing patient-specific data and predicting the risk
of clinical decompensation continuously in real-time.

With the development of electronic health record (EHR)
systems, large amounts of complex, high dimensional and
heterogeneous data captured daily, are readily available for the
development and validation of automated predictive models. By
means of machine learning (ML)-based algorithms we could
integrate data from different sources to predict which patients
are at risk for clinical decompensation. In this article, we
provide a brief overview of the potential of ML technologies
for risk prediction in hospitalized children with a particular
focus on CHD, since this population is at higher risk for clinical
decompensation, cardiac arrest and mortality. Moreover, we
present the CORTEX traffic light, an ML-based predictive system
that Sant Joan de Déu (SJD) Barcelona Children’s Hospital
is implementing, as an illustration of the application of an

ML-based system to stratify the risk of deterioration of pediatric
CHD patients after cardiac surgery in a relevant hospital setting.

MACHINE LEARNING TO PREDICT
CLINICAL DETERIORATION AND/OR ICU
(RE-)ADMISSION

Most adverse events in pediatric patients after cardiac surgery
are preventable by early recognition of deterioration. For that
reason, a number of different ML models have been proposed
during the last 5–10 years to identify pediatric patients at
risk of early postoperative clinical deterioration. We have
summarized the publications on the use of ML in the prediction
of clinical deterioration and unplanned ICU readmission in
Supplementary Table 1.

Most of the postoperative adverse events are preceded by
changes in patients’ vital signs. Therefore, vital signs, such
as heart rate (HR), respiration rate (RR), body temperature
(BT), systolic (SBP), diastolic (DBP) and mean blood pressure
(MBP) and oxygen saturation (SpO2) are the most common
patient’s variables used by the different authors to build their
predictive models (13–25), with different levels of resolution
ranging from few seconds (18, 21) to few hours (13). Zhai et
al. (25) were the first group proposing to use an ML model
to predict ward-to-ICU transfer using automatically extracted
EHR data. They implemented a logistic regression model with
155 variables extracted from 36 measurements including vital
signs, to predict ICU transfer for children in acute wards within
the first 24 h of hospital admission, which showed an 0.91 area
under the receiver operating characteristic (AUROC) in the
test set. Then, several other ML-based models were proposed
to predict clinical deterioration and/or an unplanned ward-to-
ICU transfer (13, 14, 17, 20, 22, 26), adverse events within
the ICU (15, 18, 19, 21, 23, 24, 27) or need for critical care
within the emergency department (28). However, the best results
were achieved when vital signs data were combined with other
variables such as medications and/or laboratory test data as
shown by Ruiz et al. (15). They developed an ensemble of 5
extreme gradient boosting models, using a total of 1,028 regularly
collected EHR variables (vital signs, medications, laboratory tests
and diagnosis) to identify patients in the cardiac ICU at elevated
risk of clinical deterioration. Although they validated the model
in a small cohort, the resultingmodel achieved anAUROCof 0.92
at 4 h before deterioration (15).

Regarding MLmodels specifically developed for children with
CHD, most of the research has been focused on neonates with
single ventricle, since these patients remain at significant risk of
clinical deterioration and death compared to other CHD. Rusin
et al. (24) implemented amultivariate logistic regressionmodel to
predict cardiorespiratory deterioration using six vital signs from
25 children with parallel circulation admitted to the ICU between
early neonatal palliation and stage 2 surgical palliation. The
proposed model showed the best performance approximately 1
to 3 h before deterioration (AUROC= 0.91). However, the study
cohort was quite small, and all the subjects were from a single
center. Ruiz et al. developed first a set of naïve Bayesianmodels to
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predict critical events in infants with single-ventricle physiology.
The model was developed using 34 variables, including vital signs
and laboratory data, from 93 children admitted to the ICU, and
evaluated at 5 different time points before the onset of critical
events. Their model was able to detect critical events 1 h in
advance with AUROC of 0.88. However, all the subjects were
from a single institution and therefore, their results may not
be generalizable to different populations or institutions. More
recently, the same authors presented an improved version of
their model, developed using a bigger cohort of 488 patients
with single-ventricle physiology, showing also very good results
as discussed above (15).

On the other hand, Gu et al. (29) developed a multivariate
logistic model for the prediction of postoperative risk in children
with coarctation of the aorta (CoA), using data from 514 patients
from two centers. However, they only used nine clinical, patient
demographic, and surgical related variables such as incision of
left thoracotomy, preoperative ventilation, etc. without including
vital signs monitoring data. Their final model achieved an
AUROC of 0.82 (29).

MACHINE LEARNING TO PREDICT
MORTALITY

Several ML-based models have been already developed for
mortality prediction in ICU, especially for adult population (30–
34), based on large public available ICU datasets such as Medical
Information Mart for Intensive Care (MIMIC-III) (35) and eICU
Collaborative Research Database (eICU) (36). However, few ML-
based models have been specifically developed for pediatric ICU.
We have summarized the studies conducted to predict mortality
in the pediatric population in Supplementary Table 1.

Most of the proposed models were developed to make one
prediction per patient encounter using data within the first hours
after ICU admission (37–40), rather than predict the risk of
mortality continuously across the entire encounter. However, in
order to continually assess individual patient’s risk of clinical
deterioration ormortality it is important to integrate information
not only from a single time point, as the current scoring systems
do, but also data from previous time points, that is, longitudinal
temporal data. For example, it is more critical and useful for
the clinician to know the speed of the decrease in oxygen
saturation level, or how much time oxygen saturation level
has been below patient’s baseline for the last hour rather than
knowing that oxygen level is low at a specific time point. For
that reason, ML models based on recurrent neural networks
(RNN), such as long short-term memory (LSTM) models have
been proposed to continuously assess the individual child’s risk
of mortality thought their hospital admission. This type of
ML models can process entire sequence of data, thus allowing
retention of information from previous times and integration
with newly acquired data to make a new prediction. Aczon et al.
(41, 42) developed a LSTMmodel using 430 distinct physiologic,
demographic, laboratory, and therapeutic variables, to provide
individual patient’s mortality risk at any time during their ICU
admission when a recorded measurement became available. The

authors evaluated the performance of their model at various time
points from 0 to 24 h after ICU admission, as well as, from 1
to 24 h prior to discharge. Their model performed well showing
an AUROC of 0.99 24 h prior to discharge. However, they only
used data from a single center to develop and validate their
model, thus limiting its generalizability to different institutions.
Ho et al. (43) partially investigate the problem of ML models
generalization and their dependence on the data quality, by
emulating different permutations of EHR data collected from two
different ICUs from the same children’s hospital. They showed
a large performance disparity between the two different test sets
across all data permutations and algorithms. Among the different
ML models evaluated, their results indicated that the multilayer
perceptron model learned more generalizable patterns than the
RNN, maybe due to the larger number of parameters used by the
RNN, which could lead to overfitting of the data (43).

Other authors proposed to use perioperative data to predict
the risk of mortality after cardiac surgery in pediatric patients
with CHD. For example, Bertsimas et al. developedMLmodels to
predict mortality, need for postoperative mechanical ventilatory
support and prolonged length of stay (LOS) for patients with
CHD that underwent cardiac surgery. The model was based on
preoperative data from more than 235,000 patients, but without
including vital signs data (44). Their model based on optimal
classification trees achieved a mortality AUROC of 0.86. Jalali
et al. (45) used a Chain Monte-Carlo simulation method to
impute missing data and developed and tested five ML models
to predict the individualized risk of prolonged LOS and risk of
mortality or cardiac transplantation at 1-year after the Norwood
surgical procedure. They used preoperative and intraoperative
data from 549 newborns with single ventricle physiology to train
the five ML models. The best results were obtained with the deep
neural network (DNN) model that demonstrates an AUROC of
0.95 for 1-year mortality or cardiac transplantation and 0.94 for
prolonged LOS.

Although deep learning-based models outperformed more
traditional ML-based models as illustrated in most of the
publications discussed here, their applicability in a real
clinical setting is still very scarce mainly because they are
considered “black-box” models due to their complexity and
lack of interpretability with the inherent difficulty of providing
an intuitive clinical explanation of the proposed prediction.
Therefore, other explainable ML approaches able to integrate
complex and heterogeneous time-varying data, based on for
example the identification of individuals with similar patterns,
seem more promising (46–49).

THE CORTEX “TRAFFIC LIGHT”

CHD affects approximately 108,000 new-borns each year in EU
and over 2M EU citizens. Approximately 25% of them will
require surgical or trans-catheter intervention during their first
year of life (1, 50). Unfortunately, about half of these patients
suffer from neuro-developmental impairments that expand
through adulthood. To address this, in 2020 SJD Barcelona
Children’s Hospital launched CORTEX “traffic light,” a CHD
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TABLE 1 | Demographic and clinical data of the patients included the 1st year pilot study of CORTEX “traffic light”.

Variables Control group AE group p-value* AE without ICU p-value* AE with ICU p-value*

(N = 253) (N = 41) transfer(N = 33) transfer (N = 8)

Age 7.02 ± 6.08 5.08 ± 5.46 0.056 5.82 ± 5.51 0.083 2.02 ± 4.31 0.006

Sex, female n (%) 107 (42.3%) 11 (26.8%) 0.061 9 (27.3%) 0.098 2 (25%) 0.329

LOS (days) 1.6 [1.0, 7.0] 9.9 [7.5, 25.1] <0.001 9.2 [6.9, 13.7] <0.001 43.3 [15.9, 62.9] <0.001

Cyanotic CHD n (%) 56 (22.1%) 15 (36.6%) 0.045 10 (30.3%) 0.295 5 (62.5%) 0.008

Number of adverse events <0.001 <0.001 <0.001

0 253 (100%) 0 (0%) 0 (0%) 0 (0%)

1 0 (0%) 34 (83%) 2 (84.8%) 6 (75%)

2 0 5 (12%) 4 (12.1%) 1 (12.5%)

2 + 0 2 (5%) 1 (3.0%) 1 (12.5%)

Death 0 (0%) 1 (2%) – 0 (0%) – 1 (12.5%) –

AE, adverse event; LOS, Length of stay; CHD, Congenital Heart Disease; Cyanotic CHD includes the following defects, common arterial trunk (before corrective surgery), double outlet

right ventricle (before corrective surgery), double outlet left ventricle, transposition of the great arteries, double inlet ventricle, pulmonary valve atresia, pulmonary valve stenosis, tricuspid

valve stenosis, Ebstein’s anomaly, hypoplastic right heart syndrome, hypoplastic left heart syndrome, pulmonary infundibular stenosis, subaortic stenosis, atresia of aorta, interruption

of the aortic arch, atresia of pulmonary artery, stenosis of pulmonary artery, congenital pulmonary arteriovenous malformation and total anomalous pulmonary venous connection.

Continuous variables are expressed as mean ± standard deviation or median [25th−75th percentile] based on a normal distribution by Kolmogorov-Smirnov testing. Categorical

variables are presented as n (%).*As compared to control group. Bold values denote statistical significance at the p < 0.05 level.

AE group accounts for all the patient encounters in which CHD patients experienced one or more adverse events (AE). We then split AE group into two subgroups: AE without ICU

transfer group, which includes all the patient encounters in which a patient experiences an AE without an unplanned ward-to-ICU transfer; and AE with ICU transfer, which includes all

the patient encounters in which a patient experiences an AE followed by an unplanned ward-to-ICU transfer.

patient stratification score system fed with EHR patient data used
in daily practice for CHD management in SJD. This scoring
system automatically extracts real-time data from EHR (e.g.,
HR, SpO2, cardiac physiology, etc.) to stratify patient risk of
clinical deterioration during the entire patient journey after
cardiac surgery (ICU, ward and home). The risk is then rated
via a traffic light scorecard (green = stable; yellow = at risk;
red = unstable), allowing optimal decision-making (e.g., early
discharge from ICU if green light after surgery). The scorecard
appears on the dashboard of the SJD command center. The
first and current version of CORTEX “traffic light” consisted
of a set of rules applied to six vital sign monitoring variables
(HR, SpO2, RR, SBP, DBP, and BT) as a function of patient’s
age and cardiac physiology (cyanotic/non-cyanotic CHD) (see
Supplementary Table 2). More details about CORTEX “traffic
light” are provided in Supplementary Methods.

A 1-year pilot study was conducted in SJD (from September
2020 to September 2021) to monitor CHD pediatric patients
at the ward using CORTEX “traffic light”, after surgical or
transcatheter intervention. A total of 254 pediatric patients with
a total of 294 episodes were monitored during the pilot study.
Table 1 shows the clinical and demographic data, including the
average LOS and number of adverse events (AE) experienced by
the patients during their ward admission. Of the 254 subjects,
41 (16.14%) experienced one or more AE on the ward but only
8 (3.15%) were followed by an unplanned ward-to-ICU transfer
(Table 1). Twenty-five (47.2%) were primarily cardiac events in
nature, whereas 12 (22.6%) were considered respiratory events.
There was one hospital death in the cohort. As seen in Table 1,
those patients experiencing an AE at ward have significant longer
hospital LOS. The description of the statistical analysis can be
found in the Supplementary Methods.

In order to retrospectively evaluate the performance of
CORTEX “traffic light” within 1st year pilot study, we
compared the score between control group, defined as ward

admissions during which patients did not experience AE, and
experimental group, defined as ward admissions during which
patients experienced one or more AE. We further divided the
experimental group into two subgroups: those patients who
experienced one or more AE followed by an unplanned ward-
to-ICU transfer and patients who experienced one or more
AE without an unplanned ward-to-ICU transfer. Individual
episodes for patients with multiple admissions were considered
independently. We computed the average CORTEX “traffic light”
score for each patient admission in a 30-min window, from
1 to 8 h before the AE, in 1 h intervals. Because controls did
not have an associated AE time, a time point was selected
randomly within their whole ward admission excluding the first
8 h after admission.

Figure 1A shows the average CORTEX “traffic light,” from
1 to 8 h before the AE, calculated in 1 h intervals, for the
three study groups [controls: patients who did not experience
any AE (green), patients who experienced an AE but without
an unplanned ward-to-ICU transfer (blue) and patients who
experienced an AE followed by an unplanned ward-to-ICU
transfer (red)]. As illustrated in this graph, the average,
CORTEX “traffic light” score of those children who experienced
an unplanned ward-to-ICU transfer was significantly higher
compared to controls already 4 h before the AE (2.27 vs. 5.03,
p = 0.037). Moreover, we evaluated whether CORTEX “traffic
light” has helped us to optimize patient allocation of resources
during this 1st year pilot study. To do that, we compared ICU and
hospital LOS of CHD patients admitted to our hospital within the
same period before the implantation of SJD CORTEX and before
the COVID19 pandemic. A reduction of CHD ICU and hospital
LOS by 7 and 8% respectively with associated hospital savings of
138 k was observed.

We are currently working on the implementation of an
improved version of CORTEX “traffic light” by integrating
more than 50 patient’s variables including data not only
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FIGURE 1 | (A) Comparison of average CORTEX “traffic light” score, from 1 to 8 h before the adverse event (AE) between controls (green), patients who experience

one or more AEs without an unplanned ward-to-ICU transfer (blue) and patients who experience one or more AEs followed by an unplanned ward-to-ICU transfer

(red). T denotes the time when an AE occurs. Lines: group means; whiskers: +/- standard error. * Significantly different from the control group, p < 0.05. (B) The

overall pipeline of CORTEX “traffic light” machine learning-based algorithm for the risk stratification of CHD pediatric patients.

from monitoring but also from laboratory, medications,
echocardiography, etc. by means of interpretable ML
algorithms based on representation learning (through non-linear
dimensionality reduction and manifold learning) (47–49, 51), as
illustrated in Figure 1B. Once fully validated, CORTEX “traffic
light” will be used to continuously monitor CHD pediatric
patients, and predict their individual risk of clinical deterioration
throughout hospital admission and even at home. This will also
help to allocate appropriate care treatment, use resources more
efficiently and improve patient and family satisfaction, with an
expected impact on clinical outcomes and healthcare costs.

CONCLUSIONS

Pediatric patients with CHD are at higher risk for
clinical deterioration, and early recognition of this can
improve outcomes and prevent mortality. ML models
that aggregate multimodal patient data to discriminate
different patterns and identify subacute stages of clinical
decompensation, and taking into account patient longitudinal
data, are promising for individual risk stratification
and outcome prediction in children with CHD after
cardiac surgery.
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We believe that, in the near future, ML algorithms will
become integrated into our hospitals, thus improving patient
management, allocation of healthcare resources and ultimately
individualized clinical care. However, lack of interpretability in
predictive models, such as the commonly referred to as “black-
box models” can undermine trust in ML models, especially
in healthcare. Therefore, care must be taken to ensure that
models are not only accurate but can also provide interpretable
explanations to the clinician as to why they have given a particular
result, to facilitate the understanding of the model’s predictions.

In the setting of CHD, with very heterogeneous presentations,
interpretable MLmodels based on comparing the current patient
with previously known ones or with themselves during their
temporal trajectory, by presenting a computed information
similarity, can help clinicians in their decision-making, for
prognosis and therapy prediction.
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