
TYPE Mini Review

PUBLISHED 19 August 2022

DOI 10.3389/fped.2022.953150

OPEN ACCESS

EDITED BY

Carlo Pietrasanta,

Harvard Medical School, United States

REVIEWED BY

Payal Damani-Yokota,

New York University, United States

*CORRESPONDENCE

Ashley L. Steed

steeda@wustl.edu

SPECIALTY SECTION

This article was submitted to

Pediatric Immunology,

a section of the journal

Frontiers in Pediatrics

RECEIVED 25 May 2022

ACCEPTED 28 July 2022

PUBLISHED 19 August 2022

CITATION

Sakleshpur S and Steed AL (2022)

Influenza: Toward understanding the

immune response in the young.

Front. Pediatr. 10:953150.

doi: 10.3389/fped.2022.953150

COPYRIGHT

© 2022 Sakleshpur and Steed. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Influenza: Toward
understanding the immune
response in the young

Sonia Sakleshpur and Ashley L. Steed*

Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States

Annually influenza causes a global epidemic resulting in 290,000 to 650,000

deaths and extracts a massive toll on healthcare and the economy. Infants and

children are more susceptible to infection and have more severe symptoms

than adults likely mitigated by di�erences in their innate and adaptive immune

responses. While it is unclear the exact mechanisms with which the young

combat influenza, it is increasingly understood that their immune responses

di�er from adults. Specifically, underproduction of IFN-γ and IL-12 by the

innate immune system likely hampers viral clearancewhile upregulation of IL-6

may create excessive damaging inflammation. The infant’s adaptive immune

system preferentially utilizes the Th-2 response that has been tied to γδ T

cells and their production of IL-17, which may be less advantageous than the

adult Th-1 response for antiviral immunity. This di�erential immune response

of the young is considered to serve as a unique evolutionary adaptation such

that they preferentially respond to infection broadly rather than a pathogen-

specific one generated by adults. This unique function of the young immune

system is temporally, and possibly mechanistically, tied to the microbiota, as

they both develop in coordination early in life. Additional research into the

relationship between the developing microbiota and the immune system is

needed to develop therapies e�ective at combating influenza in the youngest

and most vulnerable of our population.
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Introduction

Influenza contributes significantly to morbidity and mortality globally and is

especially devastating at the extremes of the population, the young and the elderly.

Influenza causes an annual epidemic resulting in 3 to 5 million cases of severe illness

and 290,000 to 650,000 respiratory deaths globally (1). Strikingly, about 99% of the

deaths occur in children under the age of five in developing countries. Children

under five who are otherwise healthy are at increased risk for influenza simply

based on age. Children under age of two are additionally at higher risk for serious

health complications due to influenza, such as pneumonia, encephalopathy, and the

worsening of pre-existing chronic health problems. Moreover, among children under

five, influenza-related outpatient hospital visits were 10 to 250 times as common as

hospitalizations, highlighting the toll influenza takes on the young annually (2).
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Influenza is not only dangerous for young children but

the entire population as children are more likely to contract

influenza and are more likely to transmit influenza to all age

groups. Younger children tend to have longer periods of viral

shedding over which they are contagious compared to adults (3).

Vaccination has been a key strategy to protect the population

from influenza. Unfortunately, the young immune system

responds to immunization with lower memory responses,

resulting in lower antibody and memory T cells compared to

adults (4).While unvaccinated infants are at an even greater risk,

vaccinated infants have a reduced ability to prevent morbidity

from influenza compared to other age groups (5).

Controlling and eliminating infant viral infections may

also have far reaching health benefits and minimize the risk

of childhood cancer as certain infections have been found to

trigger the development of some cancers (6). While this link is

well-established, it remains unclear if the differential immune

response generated by the young contributes to this malignant

cellular transformation. Therefore, further understanding of

age dependent immune responses will likely inform across

multiple fields of health care. Of note, in those patients already

undergoing treatment for cancer, influenza poses a further threat

given their immunocompromised status (7).

While recent studies investigating the influenza virus have

begun to establish mechanisms behind the varied immune

response in adults and the young, the infant’s innate and

adaptive immune system response to influenza is still poorly

understood. While previously considered to be deficient, the

young’s differential response may serve a separate adaptive

function. The infant’s immune response may be tied to

or instructed by the establishment of the microbiota. The

microbiota has been shown to impacts the infant’s immune

function, and certain microbes are correlated with induction

of specific cytokines and therefore play a role in resistance

to infection (8). This relationship is worthy of further

investigational exploration as it may lead to effective strategies

to mitigate the impact of influenza in the young.

Many viral infections have more
severe pathogenesis in children than
in adults

Viral infections in children are typically more severe and

often have a different disease presentation than adults. These

viral infections in children, specifically infants and toddlers, can

impact the function of multiple organ systems and have fatal

consequences. Their social behaviors make them more likely to

contract viral infections in the first place. Children also have

differences in anatomy that make airway clearance challenging

during viral respiratory infections. Their smaller airways lend

to mucous obstruction and their cartilaginous chest walls

promote ease of collapse increasing the severity of pulmonary

disease. Enteric viral illnesses that often cause asymptomatic or

mild infections in adults can have life-threatening impacts on

young children, specifically those under two, often via severe

dehydration. While vaccines exist for many common viral

illnesses, their effectiveness in infants and young children has

been relatively limited (9).

The most prevalent viral infections in infants and children

are respiratory viruses, and influenza is a leader in causing severe

disease in young children. Studies have found children under the

age of five have a 12-fold increased risk of hospital admission

due to influenza virus infection compared to older children.

While infants with predisposing medical conditions are at a

greater risk for severe viral complications, healthy infants and

young children have also been shown to develop severe cases

of infection (10). Some studies have found that the number of

influenza-related deaths of previously healthy children is almost

equal to the number of deaths in children with chronic illnesses.

Comparatively, most adults with fatal cases almost always had

preexisting health conditions (11).

Children’s immune systems respond
to infections di�erently than adult
immune systems

Infants and young children are more susceptible to many

viral infections and rely primarily on innate immunity, as

their adaptive immune system remains naive due to limited

pathogen exposure. The development and utilization of the

innate immune system soon after birth aids in the development

of the adaptive immune system. Studies have shown that

neonatal innate responses may not be fully developed at birth,

contributing to their increased susceptibility to infection (12).

However, under some circumstances, neonates are able tomount

a seemingly mature innate and adaptive immune response (13).

The exact mechanisms underlying this differential response in

the young are yet to be understood, but it is apparent that their

innate and adaptive immune systems function differently from

adults and is worthy of further investigation. This need is further

highlighted by the COVID-19 pandemic, in which children have

consistently fared better than their adult counterparts (14) and

underscores the importance of understanding the cellular and

molecular mechanisms driving these discrepant outcomes.

Interestingly, the differences in children’s immune systems

also vary geographically. Studies have shown ties between the

innate immune system and the gut microbiome, which is heavily

influenced by the geographic environment in which children are

raised. The colonization of the gut by certain bacteria, partially

determined by the predominant diet and lifestyle of the region,

correlated with varied cytokine responses to the TLR2 pathway,

production of IL-10 by dendritic cells, and the pro-inflammatory

response (15–17).
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Age-related changes in innate
immune response contribute to the
increased morbidity in children with
influenza

Our current understanding of virology does not

readily predict differences in the mechanism by which

influenza infects adults and children at the virus-

cell level. Thus, the varied symptoms and differential

pathogenesis in children and adults is likely the

result of known differences in immune responses

and functions.

Studies looking specifically at cytokine levels and innate

immune function have found elevated levels of IL-6, IL-12, and

IFN-γ in critically ill adolescents who survived influenza (18).

Non-surviving adolescents had severely low levels of the specific

inflammatory cytokine TNF-α, which is typically produced by

innate immune cells in recovered adolescents. Congruently,

infected children also had elevated levels of IL-6 (19). These

findings have led some to believe that hypercytokinemia,

the rapid release of many systemic inflammatory cytokines,

during influenza infection may contribute to morbidity

and mortality in the young (19). Specifically, children’s

predisposition to increased inflammation in response to

influenza may be responsible for their severe disease progression

which may contribute to influenza-related death observed

worldwide (11).

Studies of innate immune responses in infants compared to

adults found less responsive innate immune function. Activation

of TLR expression in children and adults was equivalent, but

the downstream effects of the TLR activation needed for viral

clearance varied with age (20, 21). Infant monkeys exhibited

increased viral replication and decreased type 1 IFN secretion

(22). The importance of type I IFN is highlighted by recent

studies demonstrating that the transcription factor RUNX1

facilitates influenza infection by dampening IFN responses (23)

and further underscored by identification of mutations in the

type I IFN pathway in patients with severe influenza (24, 25).

In contrast to adolescents, the infant and child innate immune

responses also had limited production of IL-12 and IFN-γ (26).

Neonatal mouse models of infection are able to recapitulate

increased influenza-induced morbidity and similar immune

responses (or lack thereof) as observed in human children.

Mouse models have found that neonatal T cells in the lungs

have lower IFN-γ secretion, a finding that extended past the

neonatal period (27). Animal models have also shown that

infected neonatal mice secrete less IFN-γ specifically from their

NK cells, T cells, and macrophages (28, 29). Neonatal mice also

exhibit delay viral clearance compared to adult mice (27). This

delayed clearance is associated with low levels of CD4T antiviral

and helper cell activity due to blocks in cytokine production

and IFN-γ signaling (27). The inefficient response of the young’s

immune system to influenza infections likely contributes to

increased morbidity during their first few years of life (30).

Further studies looking at the differentially regulated

genes in preterm and term children have shown similar

trends. Specifically preterm children had comparatively higher

expression of genes that downregulated IFN-γ production, IL-

10 secretion, and T cell proliferation. These findings may explain

the differences in susceptibility to influenza and other diseases

between preterm and term infants (27, 31).

Conversely, as it pertains to SARS-CoV-2 infection, infants

and children tend to exhibit milder symptoms and disease

pathogenesis compared to adults (32). Infants lack the lung

inflammatory response triggered by adult innate immune

systems (33), possibly due to increased immunosuppression

from a less reactive innate immune system (34, 35). The

downregulated innate immune response in infants, that is a

major factor in increased childhood influenza morbidity, may

be protective during SARS-CoV-2 infection.

Taken together, both excessive damaging inflammation but

deficient expression of certain mediators necessary to control

viral replication may work in concert to negatively impact the

young’s response to many viral infections. Accordingly, recent

studies aimed at identification of which aspects of the immune

response contributed to increased illness severity found that the

deficient innate immune response works in conjunction with

a decreased adaptive immune response. Therefore, the young’s

adaptive immune system, specifically T-cell immunity, deserves

further investigation and discussion.

Neonatal adaptive immunity serves a
di�erential not deficient function in
responding to pathogens

Previous perceptions of the neonatal immune system as

deficient are now being revised as studies are finding that the

altered immune response to pathogens may serve a purposeful

function. The lungs of infected neonatal mice have been

observed to have lower levels of memory CD4+ and CD8+

T cells (36), which was initially viewed as a deficient function.

This finding is cell-intrinsic, not environmentally regulated (5).

The inability to generate memory cells may be an evolutionary

advantageous adaptation, as it is more beneficial for survival to

opt for a robust generalized response to infection rather than

developing memory cells early in life (5).

Furthermore, CD8+ T cells made at birth have been found

in adults with continued functionality (37). Neonatal adaptive

immune cells may not respond to infections in the same

manner as those of the adult immune systems because they

serve a separate, developmentally important function which is

maintained independently of adult immune function.

Mechanistically, neonatal T cells are placed in an effector-

like state by developmentally regulated miRNAs, which
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have been found to modify and monitor their activation,

differentiation, and metabolism (38–40). Adult immune cells,

on the other hand, have greater potential to differentiate into

memory cells and are less metabolically active (37, 41). Neonates

express and display receptors typically associated with innate T

cells and produce IL-8 that triggers a broad and non-specific

response (42). This adaptation programs neonatal immune cells

to respond to a wide range of pathogens, a response that is likely

useful in the first few years of life.

T regulatory cells help viral
clearance independent of T cell
migration patterns

Neonates have a high number of T regulatory cells (Tregs)

in the lungs which monitor and modify immune responses.

However, the lack of non-regulatory T cells moving into the

alveoli of infected lungs occurs independently of Tregs, as

neonatal mice deficient in Tregs do not have different T cell

migration patterns (43).

Two regulatory cytokines, IL-10 and TGFβ, have been

identified to play a direct role in mediating T cell migration

into airways. IL-10 knockout pups with neutralization of TGFβ

by antibody or with deletion of the TGFβ receptor have shown

increased infiltration of CD4+ cells into the airways (43).

However, there is conflicting evidence on the role of IL-10 in

solidarity. Some studies have shown IL-10 knockout pups had

no significant difference in T-cell migration or viral clearance

while others found that IL-10 is necessary for the inflammatory

response induced by influenza yet has a negative effect on viral

clearance (43, 44). Whether these cytokines play a role in the

differences in the young’s response to infection is worthy of

further investigation.

Delayed migration of T cells into
alveolar spaces in response to
reduced expression of cytokines and
preference for a type-2 response
bias

While neonatal mice have difficulty recruiting T cells into

the alveoli, they still have a delayed T cell response to influenza

infection in the interstitial tissue. This delayed response

corresponds with reduced signaling from proinflammatory

cytokines TNF-α and IFN-γ (45). The alveolar spaces of neonatal

lungs contain normal levels of neutrophils and elevated levels

of eosinophils likely in response to elevated expression of

chemokines CCL5, CCL3, and CXCL2, but lacks the T cells that

were characteristic of infected adult lungs (46).

The bronchoalveolar lavage fluid of infected neonatal mice

has reduced levels of IFN-γ and its induced chemokine CXCL9

(46). IFN-γ was not necessary to clear influenza from the

lungs as IFN-γ knockout mice had no difference in influenza

mortality, but there was an association between mice deficient

in IFN-γ and the delayed T cell response (47). Additional studies

that exogenously administered adult levels of IFN-γ to infected

neonates were unable to elicit increased T cell migration into the

alveolar spaces (46). Titration experiments conducted in adult

mice found that T cell migration was independent of viral dose,

and similar experiments in neonatal mice established that the

lack of T cell migration into the lungs is independent of the

viral load (46). Thus, IFN-γ may play a role in T-cell antigen

presentation or priming that is necessary to clear infection.

T cell migration patterns may be influenced by the inability

of neonatal mice to have a clear type-1 biased T cell response.

Neonates seem to have a greater number of type-2 biased T cells

that geographically cluster in areas without viral antigen, thereby

contributing to the general interstitial inflammation observed

in neonates (48). While specific chemokines may not be the

singular defect in T-cell alveolar migration, there have been

associations between the lack of certain chemokines and their

cellular source in the young (49).

γδ T cells initiate increased
production of IL-17 as a part of a
type-2 immune response which
protects neonatal lungs from further
damage

The decreased number of CD8+ T cells in the neonatal

lungs in response to infection may be due to their inability to

initiate a robust type-1 immune response. However, neonates

have increased development and migration of γδ T cells to the

lungs which may contribute to lung tissue homeostasis during

infection and is associated with a type-2 immune response (50).

A recent study found that certain γδ T cells can be triggered

by viral infection to undergo transcriptional reprogramming in

an adaptive manner like CD8+ T cells in response to antigen-

induced differentiation (51). These changes in γδ T cells may be

a beneficial immune response during viral infection.

γδ T cells produce IL-17A which initiates a type-2 tissue

response with the production of IL-33, the recruitment of ILC2s

and Treg cells, and the production of amphiregulin (52, 53).

Specifically, IL-17A suppresses early IFN-γ expression in the

lungs to establish a type-2 response. IL-17A, however, serves

as a feedback mechanism by later negatively regulating type-2

cytokines to possibly prevent further tissue damage in the lungs

(54, 55).
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FIGURE 1

Di�erences in the infant and adult immune response to influenza infection.

There is contradicting evidence on how IL-17A and

influenza induces IL-33 production and the downstream

effects triggered for tissue repair and remodeling. IL-33 is

an alarmin cytokine that triggers type-2 inflammation, and

mice lacking IL-33 have defective ILC2 responses and impaired

immunity (56, 57). Children with influenza had elevated

levels of IL-33, which positively correlated with levels of IL-

17A but not with IFN-γ (52). IL-33 has not been shown

to be associated with type-1 immune responses, albeit IL-

17A may have an important regulatory role in fighting early

neonatal infection. The cellular source of these key cytokines

also impacts downstream biology as epithelia-derived IL-33

is pro-inflammatory while dendritic cell derived IL-33 is

immunosuppressive (58). How IL-33 signaling and its outcome

are regulated in the young vs. older population remains to

be determined.

While the links between IL-17A and IL-33 pathways are

unclear during influenza infection, they play an important role

in type-2 immunity and mediating infection responses in the

young. Given the smaller, more fragile lungs of neonates, lung

damage from influenza can have severe short and long-term

effects. The preference for a type-2 immune response over a type

1 immune response may be necessary to protect young lungs

and prevent further damage (52). Therefore, the IL-17A/IL-33

pathway requires further study as its axis may be a potential

target for therapeutic intervention.
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Neonatal immune system function
and response are correlated with
microbiota development

Further studies looking at the adaptation of infant immune

systems to their environment have found connections between

the gut microbiota and immune function. Similar to the immune

system, the microbiota evolves with the host and adapts to its

environment. Infant immune systems are influenced by early

exposure to themicrobiota after birth and are largely determined

by the maternal microbiota. Early microbial colonization plays

an important role in the immediate development of the immune

system. Germ-free mice have abnormal immune development

and deficient antibody production (59–61). Specifically, germ-

free mice have lower numbers of IL-17, defective T regulatory

cells, and impaired responses to certain inflammatory pathogens

(59). A dysbiosis in the microbes colonizing human newborn

gut has been shown to impede the development of a

normal immune system early in life (31). Disturbances in

microbiota development can also create long-term health

impacts by resulting in immune defects. A lack of microbiota

colonization can result in chronic inflammatory diseases and

early administration of antibiotics in infants can lead to the

development of diabetes and eczema (62).

While the exact mechanisms through which microbes

impact immunity remains to be established, the microbiota

clearly plays an important regulatory role in many aspects of

immunity. Metabolites from the gut microbiota can impact

the immune response directly on the mucosa or by entering

circulation through epithelial cells (63). Gut microbes can

produce fatty acids that impact the immune system or generate

metabolites that bind to specific immune receptors (64). Pattern

recognition receptors that play a role in innate immunity can

respond to microbes and initiate cytokine release and signaling

that further modulate immune responses (63).

The role of the developing microbiota in influenza-infected

infants is still unclear. Given the correlation between neonatal

immune development and microbiota colonization as well as

the vast effects of the microbiota on immunity, further study

is warranted to understand how the young’s microbiota affects

the differential response of the immune system to influenza.

Such an understanding is particularly important as microbial

interventions have the potential to confer beneficial immune

responses and assist in targeted therapies (65).

Conclusions

Infants are generallymore susceptible to viral infections than

adults and have more severe disease pathogenesis. Influenza

in particular is a dangerous seasonal threat to the young

population. However, their immune systems respond differently

than adults, making existing interventions such as vaccines

less effective. Deciphering differences in the young’s immune

response can therefore inform development of more targeted

and effective therapies.

Given the known differences in their innate and adaptive

immune responses, there is a growing consensus that neonate

immune systems may serve a unique function and purpose

compared to adults. Their more broadly generalized immune

response and type 2 skewing may serve to protect the young in

the first few years of life when multiple pathogens are likely to

be encountered without also eliciting damaging inflammation.

The well-observed differences in T cell migration patterns in

infants is considered a major factor in their poor outcomes

upon influenza infection. In addition, the differential expression

of certain cytokines and stimulation of Tregs likely contributes

as well.

While the differences between the young and mature

immune system continue to be described, understanding

the mechanistic basis behind those differences will become

paramount. Furthermore, the differences we observe in the

young’s immune system may be shaped by the simultaneous

development of their microbiota. Uncovering how the

microbiota impacts its effects will further garner much needed

information that will allow for targeted therapeutic approaches

not only for the young but for all (Figure 1).
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