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Ataxia-telangiectasia (A-T) is a severe syndromic neurodegenerative inborn
error of immunity characterized by DNA reparation defect, chromosomal
instability, and hypersensitivity to ionizing radiation, thereby predisposing
affected individuals to malignant transformation. While the leading disease
symptomatology is associated with progressively debilitating cerebellar ataxia
accompanied by central and peripheral nervous system dysfunctions, A-T is
a multisystemic disorder manifesting with the heterogeneity of phenotypic
features. These include airway and interstitial lung disease, chronic liver
disease, endocrine abnormalities, and cutaneous and deep-organ
granulomatosis. The impaired thymic T cell production, defective B cell
development and antibody production, as well as bone marrow failure,
contribute to a combined immunodeficiency predisposing to infectious
complications, immune dysregulation, and organ-specific immunopathology,
with the A-T hyper-IgM (HIGM) phenotype determining the more severe
disease course. This study aimed to clarify the immunodeficiency and
associated immune dysregulation as well as organ-specific
immunopathology in children with A-T. We also sought to determine
whether the hyper-IgM and non-hyper-IgM phenotypes play a discriminatory
role and have prognostic significance in anticipating the clinical course and
outcome of the disease. We retrospectively reviewed the medical records of
twelve A-T patients, aged from two to eighteen years. The patients’
infectious history, organ-specific symptomatology, and immunological
workup including serum alpha-fetoprotein, immunoglobulin isotypes, IgG
subclasses, and lymphocyte compartments were examined. For further
comparative analysis, all the subjects were divided into two groups, HIGM A-
T and non-HIGM A-T. The clinical evaluation of the study group showed that
recurrent respiratory tract infections due to viral and bacterial pathogens and
a chronic obstructive airway disease along with impaired humoral immunity,
in particular complete IgA deficiency, were noted in all the A-T patients, with
both HIGM and non-HIGM phenotypes. The most important features with
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the discriminatory role between groups, were autoimmune disorders, observable four
times more frequently in HIGM than in non-HIGM A-T. Two patients with the HIGM
A-T phenotype were deceased due to liver failure and chronic Epstein-Barr virus
(EBV) infection. It may therefore be assumed that the HIGM form of A-T is associated
with more profound T cell dysfunction, defective immunoglobulin class switching,
chronic EBV expansion, and poorer prognosis.

KEYWORDS

ataxia-telangiectasia, inborn errors of immunity, syndromic immunodeficiency, infection,

immune dysregulation, malignancy
Introduction

Ataxia-telangiectasia (A-T) is an autosomal recessive

syndromic inborn error of immunity (IEI) (1) characterized by

the DNA reparation defect, genomic instability, and sensitivity

to ionizing radiation with multisystemic involvement and

unfavorable outcome. The disease pathophysiology results from

mutations in the Ataxia-Telangiectasia Mutated (ATM) gene

encoding for a protein kinase which is a member of the large

phosphoinositidil 3-kinase related protein kinase (PIKK) family.

The nuclear and cytoplasmic enzymatic ATM kinase activity is

pleiotropic and heterogeneous. The enzyme plays an important

role in controlling the cell-cycle checkpoints and coordinating

the cellular signaling pathways in response to DNA double-

strand breaks (DSBs), genotoxic factors, and oxidative stress. It

is also involved in cytoplasmic processes, phosphorylating

numerous substrates important in mitochondrial respiration and

energy metabolism. In A-T, the disruption of the multiplicity of

ATM kinase functions in DNA damage response, transcription

and translation regulation, protein aggregation, and autophagy,

maintaining cellular homeostasis (2–6) is underpinning the

multisystemic involvement with the multiplicity of phenotypic

features (7–9). The leading A-T symptomatology is characterized

by neurodegeneration and progressively debilitating cerebellar

ataxia with postural instability, oculomotor apraxia, dysarthria

and orolingual insufficiency, as well as extrapyramidal

dysfunctions with choreoathetotic movements, dystonia and

muscle tremor (4, 10–12). The extended disease phenotype also

includes chronic obstructive airway and interstitial lung disease

(13–16), chronic inflammatory non-alcoholic liver disease (17–

20), cutaneous and systemic granulomatosis (21–24), and

hormonal dysfunctions with growth retardation, gonadal

insufficiency, and diabetogenic insulin resistance (25–27). The

impaired thymic T cell production, defective B cell development

accompanied by hypogammaglobulinemia, IgG subclass and

antigen-specific antibody generation, and bone marrow failure

contribute to a combined immunodeficiency (28–30). The more

severe clinical disease course with infectious complications,

immune dysregulation, organ-specific immunopathology, and a

high risk of lymphoid malignancy has been assigned to the

phenotype characterized by low serum IgG and/or IgA and
02
normal to elevated IgM immunoglobulin isotype levels

corresponding with the hyper-IgM (HIGM) A-T variant (31–34).

This study aimed to clarify the immunodeficiency and

associated infectious complications, immune dysregulation as

well as organ-specific immunopathology in children with A-T.

We also sought to determine whether the hyper-IgM (HIGM)

and non-hyper-IgM (non-HIGM) phenotypes play a

discriminatory role and have prognostic significance in

anticipating the clinical course of the disease.
Patients and methods

The study group

Medical records of twelve A-T children, six boys and six

girls, aged from two to eighteen years who have been followed

and treated in our tertiary care university department of

pediatric immunology, have been reviewed. The clinical

analysis comprised the individual patients’ infectious history

with particular emphasis on respiratory complications,

autoimmune disorders, and organ-specific symptomatology.

The immunological laboratory work-up included serum

immunoglobulin G, M, and A isotypes, IgG subclass levels,

and peripheral blood B and T lymph cell flow cytometric

immunophenotyping. The alpha-fetoprotein (AFP) activity

was also examined in all the children studied.

Referring to the individual patients’ IgM levels, further

comparative analysis and dividing all the subjects into two

groups, HIGM A-T and non-HIGM A-T was done. Herein,

we stratified patients as HIGM A-T when their serum IgG

and/or IgA levels were decreased with IgM levels above the

reference values and non-HIGM A-T when their serum IgM

levels were normal or below the reference ranges.
The peripheral blood lymph cell flow
cytometric approach

Peripheral venous blood samples anticoagulated with

ethylenediaminetetracetic acid (EDTA-K2) were stored at a
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https://doi.org/10.3389/fped.2022.972952
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


Szczawińska-Popłonyk et al. 10.3389/fped.2022.972952
temperature of between 4 and 8°C and processed within 24 h.

Cells were labelled with the following murine fluorochrome-

stained monoclonal antibodies: anti-CD45 FITC (fluoresceine

isothiocyanate), anti-CD14 PE (phycoerithrin), anti-CD19 PE,

anti-CD19 PerCP (peridinin chlorophyll protein), anti-IgM

FITC, anti-IgD FITC, anti-CD38 APC (allophycocyanin),

anti-CD27 PE, anti-CD21 FITC, as well as anti-CD3 FITC,

anti-CD4 FITC, CD45RA FITC, CD127 FITC, CD185 FITC,

anti-CD8 PE, anti-CD16 + CD56 PE, CD25 PE, CD31 PE,

CD45RO PE, anti-CD3 PerCP, CD197 PerCP, anti-CD4 APC

and anti-CD8 APC (all Beckton-Dickinson Biosciences, USA).

Blood samples were mixed with antibodies, incubated in a

lysing solution (FACS Lysing Solution, Beckton-Dickinson,

USA), centrifuged twice, and suspended in a phosphate

buffered saline (PBS, Roche, Germany). The acquisition of

cells and analysis were carried out with the use of the flow

cytometer FACSCanto and FACSDiva software (Beckton-

Dickinson, USA). On biparametric scattering CD45 + CD14-

lymphocytes, the following sequential gating strategies for the

characterization of lymphocyte subpopulations were applied:

B cells were identified as CD19-expressing cells in the

lymphocyte population, and CD19+ B cells were then

analyzed either for the expression of CD27 and IgD, or CD21

and CD38 and IgM. The following B cell subsets were

delineated: immature CD19 + CD21lo, immature activated

CD19 + CD38loCD21lo, transitional CD19 + CD38hisIgMhi,

non-switched memory CD19 + CD27 + sIgD+, switched

memory CD19 + CD27 + IgD- B cells, and CD19 +

CD38hisIgM- plasmablasts.

T cells were identified as CD3-expressing cells in the

lymphocyte population and analyzed either for the expression

of CD4 and CD8. Subsequently, CD3 + CD4+ T helper cells,

and CD3 + CD8+ T cytotoxic cells were delineated.

T helper cells were then analyzed for either the expression of

CD27 and CD45RO or CD45RA, or CD31, CD127 and CD25,

or CD185. This approach enabled to identify the following T

helper cell subsets: CD3 + CD4 + CD31 + CD45RA + recent

thymic emigrants, naïve CD3 + CD4 + CD27 + CD45RA+,

regulatory CD3 + CD4 + CD25 ++ CD27-, central memory

CD3 + CD4 + CD27 + CD45RO+, effector memory CD3 +

CD4 + CD27-CD45RO+, terminally differentiated CD3 +

CD4 + CD27-CD45RA+, follicular CD3 + CD4 + CD185 +

CD45RO+, and regulatory CD3 + CD4 + CD45RO + CD127-

CD25++ T helper cells.

Among CD3 + CD8 + cytotoxic T cells, analyzed for the

expression of CD197, CD27 and CD45RO or CD45RA, the

following subsets were distinguished: naïve CD3 + CD8 +

CD197 + CD27 + CD45RA+, central memory CD3 + CD8 +

CD197 + CD27 + CD45RO+, effector memory CD3 + CD8 +

CD197-CD27-CD45RO+, and terminally differentiated CD3 +

CD8 + CD197-CD27-CD45RA + cells.

NK cells were defined as CD3- and CD16 + and/or CD56 +

cells.
Frontiers in Pediatrics 03
The relative values of PB lymphocytes, the B, T, and NK

cells of the total lymphocyte population as well as B and T

cell subsets were calculated. The absolute counts of all cell

subsets were calculated from the PB leukocyte counts. A

comparative analysis was done with the reference cut-off

values of B and T cell subsets for pediatric populations of

different age groups.
Statistical analysis

Due to the small patient sample size, resulting from the

rarity of the disease, statistical methods were not employed

and a descriptive showcasing of the study group was done.
Results

Immunodeficiency

In all A-T affected patients, humoral immunodeficiency was

observable. Whereas the elevated IgM levels were reflecting a

defective class switch recombination (CSR) process

discriminatory for the two HIGM and non-HIGM patient

groups, IgA deficiency was revealed in all but one patient in

each group. While serum IgG, IgG1 and IgG2 subclass levels

were decreased below the reference values in all the HIGM A-

T patients, in three out of six non-HIGM patients, IgG and

IgG1 subclass levels were within the reference values. In the

latter group, in one patient only, a low IgG3 subclass level

was shown, whereas IgG4 levels were normal in all six

patients. In flow cytometric PB lymphocyte analysis, impaired

B and T lymph cell differentiation and maturation were

revealed. Persistent lymphopenia, abnormal B cell neogenesis

with low B cell numbers, and defective development of

memory B cells were observable in all patients. T cell

lymphopenia with low numbers of recent thymic emigrants

(RTE) reflecting thymic dysfunction in generating naive T

cells, with low CD4 + CD45RA: CD4 + CD45RO + ratio alike

was the universal feature of both HIGM and non-HIGM A-T

phenotypes. In all the A-T patients studied, both HIGM and

non-HIGM, serum AFP activity was remarkably elevated

(reference serum level <8 ng/ml). The results of the

immunological workup in the A-T children studied are shown

in Table 1.
Infections

An in-depth analysis of individual patients’ infectious

history showed that all the patients studied suffered from

respiratory tract infections yet the course of the lung and

airway disease was variable. In two out of twelve patients, one
frontiersin.org
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with the HIGM A-T and another one with the non-HIGM A-

T phenotypes, aged 17 and 18 years, respectively, an

interstitial lung disease (ILD) with concomitant chronic

obstructive airway disease was noted. While the tracheal

aspirate cultures were positive in all the six HIGM A-T

patients, in two out of six non-HIGM A-T children the

cultures did not show bacterial pathogens. The most

frequently cultured pathogen was Streptococcus

pneumoniae, which was identified in five and two HIGM

and non-HIGM A-T patients, respectively. It is worth

noting that an opportunistic pathogen, Pseudomonas

aeruginosa was identified in cultures exclusively from

children with the HIGM A-T variant. Chronic infections

with herpes viruses, such as cytomegalovirus (CMV),

Epstein-Barr virus (EBV), and human herpes virus 6

(HHV6) assessed as peripheral blood viral loads were found

in four HIGM A-T patients and only two out of six non-

HIGM A-T patients. The results of microbiologic

investigations in all the A-T children studied and a

comparison between HIG and non-HIGM patients are

displayed in Table 2.
Immune dysregulation

Immune dysregulation phenotypes were two-fold more

frequently observable in HIGM A-T than in non-HIGM A-

T patients. Autoimmune hemolytic anemia (AIHA) was the

most common autoimmune disorder as it was seen in three

out of six HIGM A-T individuals. Other autoimmune

diseases such as autoimmune neutropenia (AIN), and

juvenile idiopathic arthritis (JIA), were seen in single cases

(the first occurred in HIGM A-T, whereas the latter was the

only autoimmune disorder diagnosed in a non-HIGM A-T

patient). Inflammatory chronic liver disease was the organ-

specific immunopathology in two patients with the HIGM

A-T variant who deceased due to liver failure. Non-

Hodgkin B-cell lymphoma (NHL) was a sequela in one

HIGM A-T patient. Two children with the HIGM A-T

variant died, aged 6 and 17 years old, both due to chronic

liver failure, pancytopenia, and chronic EBV infection. In

one of these patients, chronic hepatitis was accompanied by

cutaneous and systemic granulomatosis, involving the

palate, pharynx, larynx, and lungs. The summary of

immune dysregulation disorders with discrimination

between HIGM and non-HIGM A-T patients is displayed

in Table 2.
Discussion

The combined immunodeficiency belongs to the complex

and heterogeneous individual phenotype in ataxia
Frontiers in Pediatrics 05
telangiectasia patients. The impaired T cell compartment

manifesting as thymic dysfunction in generation recent

thymic emigrants and naive T CD4 + helper cells and also

suppressor/ cytotoxic T CD8 + cells is a universal feature of

A-T, observable in both HIGM and non-HIGM variants. A

decrease in CD4 + and CD8 + naive, central memory, and

terminally differentiated effector memory CD4+ T cells was

shown in the peripheral T cell compartment in all the A-T

affected individuals. This impaired generation of naive CD4

+ T helper cells with a low number of RTE and a CD4 +

CD45RA+: CD4 + CD45RO + ratio has, therefore, no

discriminatory significance between our HIGM and non-

HIGM A-T patients. Consequently, disturbed T cell

neogenesis and reduced T cell repertoire diversity

contribute to the increased predisposition to infections (28–

30, 35). The pathogenesis of defective T cell homeostasis in

A-T patients is complex and thymus dysfunction with low

thymic output (36), disorders of the cell cycle checkpoints

regulation, oxidative stress responses (37, 38), premature

immune aging process (39, 40) as well as increased CD95-

mediated apoptosis (41) have been postulated as candidate

contributory pathways. Among B cell subsets, a reduced

number of CD19 + CD27- cells representing naive B cells

and corresponding with the impairment of the bone

marrow output has been observed in our A-T children

studied, consistently with other reports (42, 43). The

switched-memory B cells have been depleted in three out of

six HIGM and four out of six non-HIGM children, which

is an unexpected finding in individuals with elevated serum

IgM levels reflecting an impaired class switch

recombination (CSR) (31–34) being the major criterion for

stratifying our patients with A-T. We have also noted that

IgA serum levels were admittedly higher in the non-HIGM

group with normal or partially deficient IgA in as many as

four patients. Referring to the recent report (44) on the

predictive role of IgA as a simple, surrogate marker in

anticipating the poorer prognosis in A-T patients, our five

HIGM A-T presented with a complete IgA deficiency. The

HIGM group also more frequently presented a deficit in

IgG subclass generation and this parameter has also been

shown to correlate with shorter survival in A-T (45). These

findings mirror a deeply impaired process of

immunoglobulin class switching and correspond with a

higher risk of respiratory tract viral, most frequently due to

Rhinovirus, and bacterial, such as Streptococcus pneumoniae

and Haemophilus influenzae infections (46–48).

Interestingly, the heterogeneity of IgG subclass distribution

had an important clinical significance also in patients with

non-HIGM A-T. Whereas the IgG2 deficiency was

associated with recurrent infections due to Streptococcus

pneumoniae, in patients with IgG3 deficiency no bacterial

pathogens or Haemophilus parainfluenzae were cultured in

the airways. Furthermore, the opportunistic pathogen,
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Pseudomonas aeruginosa which was cultured exclusively in

patients with the HIGM A-T variant, is associated with a

more severe course of lung disease and a higher risk of

chronic respiratory failure (16, 49). In our group of HIGM

A-T children, impaired CSR was associated with more

severe clinical phenotypes, including autoimmune

phenomena, granulomatous disorders, inflammatory organ-

specific immunopathology, lymphoproliferation, and

malignancy, consistently with previous reports (18, 24, 33,

34). Whereas in three out of all the six HIGM A-T

patients, Epstein-Barr virus (EBV)-DNA was persistently

identified in peripheral blood pointing to the EBV

reactivation, important concerns are raised regarding the

role of the dysfunctional ATM kinase activity in favoring

the EBV life cycle and promoting lymphoproliferation and

malignancy in immunocompromized A-T individuals (50,

51). Interestingly, our six-year-old A-T patient with HIGM

variant, in whom non-Hodgkin lymphoma (NHL) was

diagnosed, showed reactivation of human herpes virus

(HHV)-6 but not EBV, which DNA was undetectable. This

observation might be supported by studies of the immune

response to HHV-6 in T-cell immunodeficient humans

failing protection against the reactivation of the virus

causing infectious, inflammatory, and malignant life-

threatening complications (52, 53).

In conclusion, due to the rarity of A-T, our single-center

group of pediatric patients is relatively small, a fact that

presents as a major limitation of this study. Whereas we

were able to stratify our A-T children into HIGM and non-

HIGM groups according to the serum IgM levels, we

observed B cell developmental impairment in both

phenotypes. Accordingly, IgA deficiency was a universal

feature in all but one A-T patient studied and did not play

any discriminatory role between HIGM and non-HIGM

groups. Likewise, low thymic RTE output and low naive T

helper to memory T helper lymph cell ratio was the

cardinal feature of both HIGM and non-HIGM A-T

immunophenotypes. However, immune dysregulation

associated with autoimmune disorders showed a striking

predilection to the HIGM phenotype. Non-effective

antibody maturation, expansion of IgM autoantibodies

during immune response to infection, and an increased

germinal center autoreactive B cell population have been

proposed as contributing factors to autoimmune disorders

in HIGM-AT (34). Furthermore, a fatality due to EBV

expansion and liver failure was observable solely in HIGM

A-T patients. It may therefore be assumed that more

profound T cell dysfunction may be assigned to the

defective immunoglobulin class switching and HIGM A-T

phenotype with a poorer prognosis.

Our observations highlight the complexity of

pathophysiology and symptomatology in A-T, a disease at the
Frontiers in Pediatrics 07
interface of immune deficiency, autoinflammation, organ-

specific immunopathology, and malignancy with a more

severe and unfavorable course associated with the HIGM A-T

variant. Therefore, affected children require pediatricians’

awareness, careful and attentive evaluation, and

multidisciplinary care under the pediatric immunologist’s

supervision to improve prognosis.
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